
Roles of biomaterials in
modulating the innate immune
response in ocular therapy

Mehrnoosh Rafiei1,2, Jin Teng Chung1 and Ying Chau1*
1Department of Chemical and Biological Engineering, The Hong Kong University of Science and
Technology, Hong Kong, China, 2Institute for Nanoscience and Nanotechnology, Sharif University of
Technology, Tehran, Iran

The eye is a hard-to-treat organ due to its poor regenerative capacity and
susceptibility to inflammation; as a result, it has an immune privilege
mechanism. In the case of ocular degenerative disorders, chronic and
uncontrolled ocular inflammations can overcome this immune response to
initiate and exacerbate tissue degeneration, ultimately leading to blindness.
Recent landmark discoveries on the key roles of the ocular innate immune
system in regulating acute and chronic inflammations as well as tissue fibrosis
and homeostasis have shed light on the value of novel treatment interventions in
modulating ocular immune responses at the molecular, cellular, and tissue levels.
This strategy can be attained by using therapeutics to target resident phagocytes
and antigen-presenting cells, namely, microglia and dendritic cells, as well as
infiltrating neutrophils and macrophages. Biomaterials are foreign materials to the
host and interact with innate immune cells. To leverage such intrinsic
immunomodulatory properties, biomaterials such as implants, injectable
depots, and nano/micro particles can be used alone as a treatment or with
different payloads as carriers in immune-related ocular disorders. This article
discusses how physicochemical properties such as biodegradability, size, shape,
and charge affect biomaterials’ interaction with the eye’s innate immune system,
therefore influencing outcomes towards pro- or anti-inflammatory responses.
Knowledge about the eye’s immunological response is required for designing
tolerogenic biomaterials including intraocular lenses, cellular scaffolds,
therapeutic molecule depots, or carriers of gene therapies. The discussion
presented in this review will shed light on the potential use of biomaterials to
direct immune responses toward favorable treatment outcomes.
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1 Introduction

Since eye tissue, which serves as our window to the outside world, lacks the ability to
regenerate, immune-related inflammation poses a serious risk to the eye by potentially
damaging its tissue, leading to vision loss. As a result, ocular tissue employs an immune
privilege strategy to actively prevent any inflammation by providing an immunosuppressive
environment (Niederkorn, 2019; Murakami et al., 2020). The term “immune privilege”
comes from Medawar and others’ definition in the 1940s (Medawar, 1948; Taylor, 2016),
where the ocular anti-inflammatory mechanism of having a private microenvironment for
improving the anti-inflammatory response and tolerating the ocular immune cell’s function
and balancing it was discussed. Eye tissue, in homeostatic conditions, has an
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immunoregulatory function (Dick et al., 2003). This inherent ocular
immune tolerance, however, is compromised by several
degenerative disorders including uveitis, diabetic retinopathy
(DR), dry eye disease (DED), age-related macular degeneration
(AMD), and choroidal neovascularization (CNV) (Perez and
Caspi, 2015; Murakami et al., 2020; Gilger and Hirsch, 2022).

The body’s immune system response battles danger agents in
two ways: the innate immune response and the adaptive immune
response (Dempsey et al., 2003). In this way, the innate immune
system acts as a first defender during the first days of the
inflammation process or injury. If the innate immune cells are
activated and do not regulate by proper signaling pathways after
treatment, chronic inflammation and even visual impairment may
occur (Murakami et al., 2020).

Different innate immune cells, including neutrophils, microglia/
macrophages, and dendritic cells in the eye, play essential roles in the
aforementioned types of diseases. The infiltration and activity of
innate immune cells change depending on the type of ocular
disorder, its location, and the milieu supplied by the cells
(reviewed in detail by (Murakami et al. (2020)), in the form of
inflammatory induction or suppression. When eyes are infected or
injured, different proinflammatory cytokines and chemokines (such
as tumor necrosis factor-alpha (TNF- α), interleukin 8 (IL8), IL6,
IL12, C-X-C motif chemokine ligand 10 (CXCL10), and C-C motif
chemokine ligand 2 (CCL2), etc.) are produced by innate immune
cells (Das et al., 2022). For uveitis, literature reports have shown that
macrophages are essential innate immune cells in the development
and resolution of experimental autoimmune uveitis. Macrophages
can impact both proinflammatory side (by TNF-α activation) and
immunosuppressive side [by RANTES (CCL5) production that is
responsible for recruiting CD8+ T (killer T) cells] (Mérida et al.,
2015; Yang et al., 2016;Murakami et al., 2020; Kubota et al., 2022). In
a study on ocular infiltration of macrophages in experimental
autoimmune uveitis (EAU), it was found that 1 week (day 16)
after the beginning of macrophage infiltration in the eye (day 9),
the inflammation reached a maximum amount (Sonoda et al., 2003).
Monocytes from the peripheral blood infiltrate and differentiate into
macrophages in degenerative retinal diseases with a reduced blood-
retinal barrier function (Ginhoux et al., 2013). In the aging retina
and choroid, inflammatory macrophages frommonocytes, dendritic
cells, and tissue-resident macrophages such as microglia are
important immune cells. These immune cells are involved in the
pathogenesis of AMD, and researchers observed infiltration of
macrophages and lymphocytes around the CNV area, as well as
an elevated amount of CCL2, IL-8, and vascular endothelial growth
factor (VEGF) in circulation blood monocytes (Lopez et al., 1991;
Lechner et al., 2017; Chen et al., 2019; Das et al., 2022). A recent
review by Das et al. provides more information on the effects of
aging on the function of immune cells during ocular disorders (Das
et al., 2022). In DR, activated neutrophils and macrophages can
cause retinal vascular injury. Moreover, the number of immune cells
in the choroid of DR patients was elevated (Schroder et al., 1991;
Lutty et al., 1997).

The biocompatibility of a material is defined by William’s
dictionary as “the ability of a material to perform with an
appropriate host response in a specific application” (Donaruma,
1988; Williams, 1999). Biomaterials can act alone as a treatment or
can be combined with other modalities to provide therapeutic

intervention. The roles of biomaterials in immunomodulation in
ocular therapy can be classified as follows. The first approach is to
use biomaterials to construct carriers of therapeutic agents while the
biomaterial itself is intended to passively and inertly affect the
immune response (Garzón et al., 2022). The second approach is
similar but more intriguing. Also for constructing carriers, the
biomaterial is designed to interact with the immune system, to
promote the immunogenic or immunotolerant effect, depending on
the application, and to augment the effect of the cargo (Im, 2020;
Gao et al., 2022). For these two approaches, the immunomodulatory
cargoes include steroids, proteins, and nucleic acids. In a third
approach, biomaterials are used to make ophthalmic devices such
as ocular lenses and ocular inserts (Kwon et al., 2020). The functions
and longevities of these devices in part depend on their interaction
with the immune system. The last approach is to use biomaterials to
support cell therapy. There are several reviews on the design criteria
of immunomodulatory biomaterials in tissue engineering (Zolnik
et al., 2010; Andorko and Jewell, 2017; Li H. et al., 2022; Mitarotonda
et al., 2022). One possible therapeutic intervention is to direct the
response of immune cells by using immunomodulatory biomaterials
alone or in combination with engineered cells. An overview of these
approaches is summarized in Figure 1. The biomaterials can be
designed to participate in the immunogenic or immunosuppressive
pathways based on their physicochemical properties such as form,
size, shape, charge, hydrophilicity/hydrophobicity, degradability,
and mechanical strength. In this review, we will focus on the
interaction of biomaterials with the eye’s innate immune system,
and consider how they can influence, positively or negatively, the
treatment of inflammatory ocular diseases.

2 The innate immune system in the eye

Eye tissue has been recognized as an immune-privileged organ for
150 years. The first long-term survival of mouse skin implanted into a
dog eye’s anterior chamber was described by a Dutch ophthalmologist
(van Dooremaal, 1873). Zirm carried out the first successful human
corneal transplant a few years later, in 1905 (Zirm, 1906; Niederkorn,
2019). At the time of these observations, neither the human immune
system nor the fundamentals of implant rejection had been studied. By
inserting rabbit skin into an allogenic rabbit’s anterior chamber,
Medawar further demonstrated in 1948 the distinct immunologic
characteristics of the eye (Medawar, 1948). Immune privilege is an
action in the homeostatic condition of the eye that modulates the
induction and progression of inflammation to prevent any excessive
inflammation that could degenerate tissue (Murakami et al., 2020).
Ocular immune privilege consists of an immunosuppressive
microenvironment with different components including
transforming growth factor-β (TGF-β) (Taylor and Ng, 2018),
retinoic acid (Zhou et al., 2011), programmed cell death-ligand 1
(PD-L1) (Sugita et al., 2009), galectins (Toscano et al., 2006), and
cluster of differentiation-200 receptor (CD200R), etc. (Dick et al., 2003;
Murakami et al., 2020). The innate immune cells are dependent on these
ocular microenvironment signals to destroy or regenerate tissue during
inflammation (Murakami et al., 2020). After infection, injury, or even
using implants in the eye, neutrophils, macrophages/microglia cells, and
dendritic cells attack the site of inflammation and start secreting
proinflammatory cytokine and chemokines. In this way,
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proinflammatory-activated macrophages, broadly classified as
“M1 macrophages”, secrete proinflammatory cytokines including
IL1-β, IL12, inducible nitric oxide synthase (iNOS), and TNF-α. The
M1macrophages kill the pathogens or prepare a fibrotic capsule around
the foreign implant, recruit leukocytes to the site, and activate the
adaptive immune system. This process spans from the first days to
weeks, depending on the damage and implanted biomaterial.
Afterward, the macrophage cells’ phenotypes change to the
characteristics of “M2 macrophages”, which regenerate and heal the
area by angiogenesis and by secreting anti-inflammatory cytokines such
as IL10 and TGF-β (Anderson, 2003; Mosser and Edwards, 2008;
Andorko and Jewell, 2017). As a result, the phenotypic diversity of
macrophages with distinct markers and functions can be targeted using
biomaterials with specific physiochemical properties to achieve the
desired inflammatory function. The M1 markers can be used to
upregulate the inflammatory functions and the M2 markers can be
used to downregulate the inflammatory function of macrophages

(Figure 2). In the same way as macrophages, neutrophils respond to
extracellular stimuli in a context-dependent manner and can polarize
from N1 to N2 phenotypes, similar to the M1 and M2 phases of
macrophages (Cuartero et al., 2013; García-Culebras et al., 2018). In this
review, our focus is on downregulation of the innate immune system
inflammatory response in the case of ocular inflammation by using
modulatory biomaterials in different forms such as implants, injectable
depots, nano/micro systems, and hybrids of these systems (Figure 1).

2.1 Key players as innate immune cells in
the eye

2.1.1 Neutrophils
The main players in acute inflammation and the first line of

fighting any danger, including pathogens, inflammation, and injury
in the innate immune system, are neutrophils. Neutrophils’ lifespan

FIGURE 1
Immunomodulatory drug delivery systems for ocular innate immune cells immunotherapy. Biomaterials such as nanoparticles, microparticles,
implants, eye drops, and injectable depots, with or without immunomodulatory cargoes, can be used to treat ocular diseases via different administration
routes. Depending on the physiochemical properties, the biomaterials can promote or suppress the response from proinflammatory innate immune cells,
which will in turn affect the therapeutic outcome (Created in BioRender.com).
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has been shown to be very short (less than 24 h) in mice and
humans, although recently, a number of studies showed that the
lifespan of neutrophils can be increased by inflammatory cytokines
and signals that induce the adaptive immune system and aggravate
the inflammation for up to 5.4 days (Pillay et al., 2010;
Kolaczkowska and Kubes, 2013). They are the first immune cells
that detect any inflammation that occurs, by sensing the pathogen-
associated molecular pattern (PAMP) present in microbes and the
danger-associated molecular pattern (DAMP) present in injured
tissues. Neutrophils play a critical role in the pro-inflammatory
function through phagocytosis and by secreting pro-inflammatory
cytokines to induce an innate and adaptive immune response
(Ghosh et al., 2019). Neutrophils also release neutrophil
extracellular traps (NETs). NETs are composed of nuclear DNA,
histones, and other granular proteins. NETs are induced by nitric
oxide, cytokines, and other autoantibodies to prevent inflammation
progression. However, it has been shown that chronic aggregation of
NETs can cause autoimmune, allergic, chronic diseases, tissue
damage, and immune rejection to implants (Kolaczkowska and
Kubes, 2013; Mahajan et al., 2021; Mun et al., 2021; Yıldız and
Yıldız, 2022). For example, Mahajan et al. (2021) found that NETs
aggregated after ocular surface inflammation, resulting in
meibomian gland dysfunction (MGD) due to blockage. Although
it has been shown that NETs are useful to prevent inflammation
progression in the eye rheum, they are harmful to corneal diseases,
uveitis, and diabetic retinopathy and contribute to poor prognosis of
these diseases (Estúa-Acosta et al., 2019). Neutrophils perform
diversely in inflammation and injury conditions by regulating
acute inflammation and repair processes, autoimmune diseases,
and chronic inflammatory diseases, based on the type of
cytokines and special receptors that exist in the inflamed

environment (Estúa-Acosta et al., 2019; Liew and Kubes, 2019;
Tan et al., 2020). The signaling pathways of an inflamed
environment can result in different phenotypes of neutrophils:
N1, which represents the proinflammatory phase, and N2, which
represents the anti-inflammatory phase (Cuartero et al., 2013;
García-Culebras et al., 2018).

2.1.2 Microglia/macrophages
Macrophages are key players in the innate immune system,

fighting any infection and danger in the tissue through phagocytosis
and by inducing regeneration and fibrosis afterward. They function
in a spectrum between the M1 proinflammatory phase and the
M2 anti-inflammatory phase (Tan et al., 2020). The interferon-
gamma (IFN-γ), TNF-α, IL-1 β, IL12, IL6, and lipopolysaccharides
(LPS) signals can activate the M1 macrophage phase and iNOS
M1 activated cell expresses surface markers, cluster of
Differentiation 36 (CD36), CD86, CD80, C-C chemokine
receptor type 7 (CCR7), and major histocompatibility complex
class II (MHCII) (Figure 2). On the other hand, the
M2 macrophage phase is activated by signaling factors such as
IL-4, IL13, TGF-β, and IL10, and the M2 activated cell expresses
surface markers of CD206, CCL204, and CD163. Throughout the
eye, they can be found in the anterior and posterior parts (cornea,
iris, ciliary body, choroid, sclera, and vitreous), and play a critical
role in controlling inflammation and injury in the first days
(Chinnery et al., 1947; Ghasemi et al., 2012). For instance, vitreal
macrophages (also known as hyalocytes) are located between the
inner limiting membrane of the retina and the vitreous membrane
that contains condensed vitreal collagen (Chinnery et al., 1947).

Retina tissue in the eye possesses resident immune cells known
as glial cells, which are categorized into three main groups:

FIGURE 2
Eye tissue and the key innate immune cells in the inflamed area. The pro-inflammatory innate immune cells, including N1 neutrophils (NTs),
M1 macrophages/microglia (MΦ/MG), and immunogenic dendritic cells (DCs), with proinflammatory functions that are listed in the left window, can be
re-educated by immunomodulatory biomaterials to anti-inflammatory cells, including N2 NTs, M2MΦ/MG, and tolerogenic DCs, with anti-inflammatory
functions that are listed in the right window (Created in BioRender.com).
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astrocytes, microglia, and Müller glia. Microglia cells are myeloid-
derived populations in the retina that manage the immune response
and environmental cues by interacting with retinal cells and
maintaining the retinal cell’s homeostatic function and neuronal
homeostasis (Tan et al., 2020; Guo et al., 2022; Wang and Cepko,
2022). They play a critical role in interacting with retinal cells and
recruiting neutrophils andmacrophages for further functions during
eye injuries and inflammation (Minghetti et al., 2008; Tan et al.,
2020). The resting state of microglia cells is achieved by intraretinal
signaling and cytokines secretion such as TGF-β and IL-10 and this
state has a low expression of membrane receptors (Langmann,
2007). They are sensitive and can be activated through toll-like
receptor (TLR) signaling with a variety of triggers, including LPS,
calcium level fluctuations, proinflammatory cytokines (IFN-γ, TNF-
α, etc.), thrombin, aggregates, peptides derived from ocular
infections, autoimmune processes, ischemia, neuronal damage,
and neurodegeneration-associated signals. Microglia cells are the
first players in reacting to injury or inflammation at retina or ocular
sites (Langmann, 2007; Minghetti et al., 2008). In the first 24 h of
microglia activation, cell proliferation, morphology transition to
ameboid shape, migration, phagocytosis, upregulation of
immunoglobulin G (IgG), CD1 receptors, and secretion of
different proinflammatory signals such as cytokines (IL1-β, IL6,
TNF-α), chemokines (CCL3 (MIP-1 α), CCL4 (MIP-1 β), CCL2),
and other signals (NO, ROS) occurs (Fan et al., 2022). Neutrophils
and macrophages are recruited according to the proinflammatory
signal’s level. The P2 purinergic receptor (P2Y12) is a phagocytic
receptor expressed on microglia that responds to tissue damage by
sensing ADP/ATP (Adenosine Di/Tri-Phosphate). This receptor has
been shown to be necessary for the clearance of apoptotic cells, and
inhibiting it increases the clearance time (Blume et al., 2020). A
microglia is characterized by three distinct phases: the resting phase
with ramified shapes, the activated pro-inflammatory phase or
M1 phase with ameboid, and the anti-inflammatory phase (M2)
with ramified shapes. Activation of microglia to theM1 phase occurs
when infection, inflammation, or a local ocular injury takes place in
the eye tissue. The activated microglia rapidly migrate to the site of
inflammation or injury and secrete proinflammatory signals
including TNF-α, cyclooxygenase-2 (COX-2), and iNOS to
recruit peripheral immune cells (monocytes). Afterward,
microglia and recruited macrophages fight the foreign harmful
agent using hypo phagocytic functions. Following microglia and
macrophage phagocytosis and removal of debris via M1 activation,
the M1 activation phase transitions to the M2 anti-inflammatory
phase by passing the phenotype from M1 to M2. Arginase 1 (ARG
1), CD206, and IL-10 are among the regenerating and angiogenesis
factors that this M2 phenotype secretes, helping to return the
inflamed area to homeostasis (Tan et al., 2020). However,
chronic activation of microglia is one of the major players in the
development of neurodegenerative diseases, including glaucoma,
wet AMD, and DR, by the barrier breakdown mechanism
(Reichenbach and Bringmann, 2020). The markers for the
different phases of microglia are identical to those for monocyte-
derived macrophages (TNF-α, COX-2, and iNOS), in addition to
specific surface markers for differentiating from monocyte-derived
macrophages, such as P2Y12 for the resting and M2 phases of
microglia and ionized calcium-binding adapter molecule 1 (Iba-1)
protein marker for the phagocytotic and activated microglia (Ito

et al., 1998). Some reports claim that the expression of the Iba-1
surface marker is associated with the microglia’s phagocytosis phase
(Ohsawa et al., 2000; Morillas et al., 2021). Between microglia and
retinal cells, a variety of ligand-receptors exist that inhibit microglia
activation and restore their resting phase and homeostasis state. For
instance, TGF-β signaling is used to downregulate the MHC-II,
CD80, and CD86 receptors, which are expressed on the surface of
M1microglia; glycoprotein CD200 (known asmAbOX2) is detected
by CD200R (a myeloid-specific receptor on microglia); CD200-
CD200R complex inhibits microglia activation; and chemokine
fractalkine (CX3CL1) and CX3CR1 receptors produce a complex
that inhibits the phagocytotic phase of microglia (Langmann, 2007;
Minghetti et al., 2008).

Microglia activation is linked to several inflammatory and
degenerative ocular disorders, including retinitis pigmentosa
(RP), AMD, glaucoma, DR, and uveitis in the eye. This is due to
their status as resident immune cells in the retina, whichmakes them
very sensitive to changes in cell phenotype, ligand-receptor
interactions, and environmental signals. For instance, it has been
shown that in experimental AMD, aging CX3CR1 deficiency causes
microglia to migrate and accumulate in the subretinal space because
it lacks the CX3CR-1-CX3CL1 complex, which physiologically
maintains microglia homeostasis (Penfold et al., 2001; Minghetti
et al., 2008). Arroba et al. studied the polarization dynamics of
microglia in DR in in vitro and in vivo in mice and found that the
microglia are initially in the M2 phase, but at more advanced stages
of DR development, their phase shifts to M1 and chronic pro-
inflammatory (Arroba et al., 1862). Since the progression of RP,
AMD, glaucoma, DR, and uveitis has been related to the activation
of microglia, these cell types are of great interest as a target for
treating these diseases. There are two effective ways to accomplish
this goal: either preventing their pro-inflammatory response or
reprogramming them via gene therapy to downregulate the
inflammatory response and immune cell recruitment (Arroba
et al., 1862; Minghetti et al., 2008; Guo et al., 2022; Wang and
Cepko, 2022).

The dynamics of microglia activation and repolarization to
homeostasis, with Iba-1 (for M1 phase) and P2Y12 (for
M2 phase) as markers, was monitored in an ocular hypertension
(OHT)-induced glaucoma mouse model by Ramírez et al. (2020).
The authors showed that at first (day 0), the damaged tissue released
ATP signals and P2Y12 was upregulated. After a few hours, the
P2Y12 expression was downregulated, and this decreasing signal
was themost sensitive alarm for the transition from the resting to the
M1 phase of microglia with Iba-1+. After 24 h, the Iba-1+ cells
showed P2Y12 expression elevation. On the 3rd and 5th days,
downregulation of P2Y12 expression was observed. Based on
their collected data, the authors stated that the inflammation
peaked and was strongest on the 3rd and 5th days after
induction. Then, P2Y12 expression increased slowly from day
8 to reach the naïve eye amount on the 15th day for this animal
model. The same group conducted a different time point
investigation on the levels of proinflammatory cytokines (IFN-γ,
TNF-α, IL-1 β, IL6, IL12, IL17, and IL18) and anti-inflammatory
cytokines (IL4, IL10, IL13, and TGF-β) produced following OHT
induction in the glaucoma, and found that IL6 expression peaked
after 1, 3, and 5 days of induction. Interestingly, the authors
discovered that IL4 and IL10 are important modulatory cytokines
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that allow activated microglia to repolarize to the M2 phase before
further inflammation progression and tissue damage (Fernández-
Albarral et al., 2021).

2.1.3 Dendritic cells
Dendritic cells (DCs), similar to macrophages, are phagocytic

and are able to present antigens to immune effector cells. The
distinctive feature of DCs is their migration to lymph nodes to
activate naïve lymphocytes, thereby bridging innate and adaptive
immunity. Most DCs are found in the corneal and conjunctival
epithelium, thereby serving as the first line of defense on the ocular
surface. In the posterior ocular section, DCs can be mostly found in
the retina and choroidal space (McMenamin et al., 2019). Once
activated, most ocular DCs migrate to cervical lymph nodes to
trigger downstream immune responses. There are several subtypes
of DCs that can be found in the eye, such as conventional DCs
(cDCs), Langerhans cells (LCs), plasmacytoid DCs (pDCs); they all
play key roles in maintaining immune tolerance and resolving post-
inflammation challenges.

In mice, cDCs can be classified into types 1 and 2. cDC1 can be
identified as CD4−CD8α+CD11b-CD11c+ and cDC2 as
CD4+CD8α-CD11b+CD11c+. cDCs recognize both extracellular
and intracellular pathogens; of which cDC1 can efficiently cross-
present exogenous antigens on MHC-I molecules to CD8+ T cells,
whereas cDC2 activates CD4+ T cells, and trigger TH2 and
TH17 immune responses. On the other hand, pDCs are
distinguished from cDCs by the expression of CD45RA,
lymphocyte antigen 6 complex (Ly6C), sialic acid binding
immunoglobulin-like lectin H (Siglec-H), and CD317. These cells
are important in anti-viral immunity and systemic autoimmunity,
because they can sense intracellular self and non-self nucleic acids
via TLRs pathways and produce type I and III interferons
(Musumeci et al., 2019). In addition, LCs are another subtype of
DC, which are considered to be potent APC. Under physiological
conditions, their population frequency is 5%. However, during a
disease/inflammation-challenged state, their population is
replenished by infiltrating monocytes and 10%–20% of LCs
migrate to the lymph nodes (Merad et al., 2008). LCs play a
crucial role in maintaining immune resolution post-infection and
tolerance. In the disease context of allergic contact dermatitis, it was
observed that LCs can effectively induce anergy and apoptosis of
CD8+ T cells while activating ICOS+ CD4+ FoxP3+ Treg cells
(Kaplan et al., 2005).

Resident DCs are considered “immature” during the resting
state. During the pathogen infection/inflammation state, DCs
undergo maturation, expressing higher level of MHC-molecules,
the co-stimulatory molecules CD86, CD83, CD40, and producing
pro-inflammatory cytokines such as IL-12, IL-6, and TNF-α. Indeed,
the activation of CD86+ DC participated in the onset and
progression of dry eye disease (Maruoka et al., 2018). In
addition, DCs were also found to promote the progression of
anterior uveitis (Lin et al., 2019).

Under physiological conditions, ocular cells can actively
participate in the suppression of DC immunogenic activation
to maintain an anti-inflammatory state in the ocular environment.
For instance, retinal pigment epithelial cells can produce IL-1Ra
to suppress DC activation. Corneal stromal cells can produce
TGF-β1 to inhibit DC activity while promoting corneal wound

healing (Hamrah et al., 2003; Lu et al., 2012; Sugita et al., 2013;
Morante-Palacios et al., 2021). In fact, DCs can also be activated
into tolerogenic phenotypes. These DCs can produce anti-
inflammatory cytokines such as IL-10, TGF-β, and indoleamine
2, 3-dioxygenase (IDO) to suppress T-cell activity and function in
maintaining ocular tolerance. Tolerogenic DCs can be generated
in vitro with the co-culture of stromal cells or by treatment with
immunosuppressive agents such as IL-10, TGF-β, vitamin D
receptor agonists, and vasoactive intestinal peptide (VIP)
(Dempsey et al., 2003; Hu and Wan, 2011; Haneklaus et al.,
2012; Perez and Caspi, 2015; Puri et al., 2022). Although
tolerogenic DCs demonstrated therapeutic strengths in
autoimmune diseases, the exploration of their potential in the
ocular field is still under investigation.

3 Application of biomaterials in
immunomodulation of the innate
immune system

Biomaterials are widely used as carriers or scaffolds for ocular
therapeutic entities, such as small molecular drugs,
biomacromolecules such as proteins or nucleic acids and living
cells. The carriers however have been known to actively interact with
the immune system. The resulting host reaction as a result of the
implanted materials is coined “foreign body response” (FBR).
Biomaterial-induced FBR can lead to cargo clearance and
elimination, countering therapeutic intentions. However, if
properly gauged by appropriate material selection and design, the
immune reaction can be utilized for pro-healing responses.
Therefore, the design of biomaterials generally adopts strategies
to 1) mitigate or 2) leverage FBR depending on the therapeutic goals
in the eye. Indeed, this can be achieved with the high responsivity
and plasticity of the above-mentioned innate immune cells in
response to the exogenous biomaterials’ cues. With the
appropriate selection of biomaterials and platform characteristics,
these cells can be strategically manipulated and programmed toward
a pro- or anti-immunomodulatory response to facilitate the overall
therapeutic outcome.

Understanding the dynamics of FBR, that is, the biomaterials-
innate immune cell interplay, is critical for this goal. The activation
mechanism of innate immune cells by biomaterials is mainly
governed by pattern-recognition receptors (PRRs). PRRs are
present on the plasma membrane surface or in the cytoplasm
and can sense a broad range of damage and pathogenic cues.
PRRs consist of TLRs, nod-like receptors (NLRs), and
inflammasomes. TLRs exist on the surface or in the endosomal
compartment of antigen-presenting cells (APCs) including
microglia, macrophages, and dendritic cells, and recognize a
broad range of microbial molecules such as proteins, nucleic
acids, and LPS, etc. NLRs are intracellular receptors with
inflammasome subunits. Inflammasomes are the complex of
these proteins, act as receptors of the innate immune system, and
are responsible for the inflammatory response by cysteine-aspartic
acid protease-1 (caspase-1) induction to produce the
proinflammatory cytokines IL-1 β and IL-18. NLR1, NLR3,
NLR4, and absent in melanoma 2 (AIM2) are different
inflammasomes that play a key role in ocular inflammatory
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disorders such as glaucoma, DED, AMD, and DR in recent years
(Yerramothu et al., 2018). It has been demonstrated in studies that
dopamine, DMSO, microRNA-223 (miR223), and other
inflammasome suppressors can lower the severity of
inflammatory ocular illnesses. However, the mechanism by which
inflammasomes function in the human body is unknown,
necessitating more study to identify novel therapeutic approaches
that focus on the inflammasome cascade (Bauernfeind et al., 2012;
Haneklaus et al., 2012; Ahn et al., 2014; Yerramothu et al., 2018).

The activation of PRRs begins with the detection of foreign
patterns including DAMP and PAMP and the secretion of signaling
pathways to combat harmful agents (Andorko and Jewell, 2017).
PAMPs and DAMPs can take in diverse forms; for instance,
polysaccharides, peptides, glycopeptides, lipopeptides, LPSs, and
nucleic acids, etc., which are derived from microbes or damaged
host cells fragments during invasion and tissue injuries. The eye’s
innate immune system is extremely sensitive in detecting these
molecular entities. Once the cells are activated, they secrete
proinflammatory cytokines to initiate FBR. Similarly, the surfaces
of biomaterials and delivery platforms also exhibit physicochemical
features that resemble PAMPs. Therefore, FBR is inevitable with the
introduction of ocular implants, injectable depots, and nano/micro
particles. On the other hand, several TLRs are expressed by different
ocular tissues, such as the cornea, conjunctiva, retinal pigment
epithelial cells, and the uvea, to protect and isolate the eyeball
from any specific PAMP (Wakefield et al., 2010). The uvea, for
instance, is particularly susceptible to LPS-mediated TLR4, and
acute anterior uveitis has been observed, based on TLR4 cell
response to LPS (Yu and Hazlett, 2006). The ocular innate
immune system, however, is also perceptive to anything that
poses a threat to the host tissue through endogenous DAMPs.
These molecules are released from the injured tissue or dead
cells’ intracellular or extracellular regions including ATP, high
mobility group protein B1 (HMGB1), and other molecules
derived from injured tissue (Mahaling et al., 2022). According to
the review by Mahaling et al. (2022)), these DAMPs are linked to
inflammations brought on by age, increased ocular pressure,
oxidative stress, ischemia, stress, and environmental factors, etc.,
in retinal illnesses.

A vast diversity of biomaterials has been explored and
commercialized in ophthalmic drug delivery systems, mostly
aiming to circumvent FBR. Conversely, with a deeper dive into
the ocular immune response and biomaterial interplay and
dissections, we can better understand the active role of
biomaterials, and derive potential therapeutic approaches in
ocular regenerative medicine and immune interventions. This can
be achieved by targeting the FBR cascade, in terms of the
distribution and timing of the key immune cellular and
molecular players, using biomaterials and delivery devices.
Moreover, learning from the natural defense mechanism against
pathogens, the biomaterial polymer structure’s repeating units, size,
hydrophobicity, and patterning can be fine-tuned to mitigate or
engage innate immune cell activation (Kakizawa et al., 2017). In the
next section, we discuss several biomaterial systems, such as
implants and injectable depots, nano/micro particles, and hybrid
systems, as well as their physiochemical requirements for directing
ocular innate immune cells to the desired anti- or pro-inflammatory
phenotypes.

3.1 Implants and injectable depots

FBR is inevitable with the introduction of ocular implants and
injectable depots. In ocular therapy, biomaterials can be used to
implant cells, create therapeutic implants, and create injectable
depots. During the initial stage of FBR, the acute inflammatory
response generates pro-inflammatory cytokines to promote
inflammatory cell infiltration, extracellular matrix (ECM),
vascular remodeling, and perfusion. This can lead to an increase
in ocular pressure, oxidative stress, ischemia, stress, and retinal
illnesses, all of which are detrimental to the ocular structure and
function. The chronic inflammation process often leads to
deposition of the collagenous matrix surrounding the implants,
causing rejection. Particularly for the intraocular lens (IOL),
intravitreal drug depots, retinal prostheses, other long-term
ocular implants, and fibrotic encapsulation not only result in
device wastage but also vision compromise (Anderson et al.,
2008; Veiseh and Vegas, 2019). Therefore, the timing and
dynamics of FBR are important targets for biomaterial development.

An anti-FBR approach is rather common in ocular applications,
especially for extended, controlled delivery platforms and
prostheses. Biomaterials and delivery platforms are often used in
an “immune stealth” or anti-inflammatory context to inhibit
immune recognition and suppress the deposition of proteins and
cells; thereby extending the half-life and bioavailability of
therapeutic entities. Polyethylene glycol (PEG) is one of the most
popular stealth materials in suppressing non-specific protein
deposition on hydrophilic polymer coated devices. In some
applications, it is useful for the biomaterial to mimic the ECM of
the tissue, in terms of biochemical and biomechanical properties, to
suppress the immune activation. The major compositions of ocular
ECM are hyaluronic acid and collagens. For this ECM-mimicking
purpose, the use of ECM-derived components and analogs, such as
hyaluronic acid, fibrin, and collagen, as well as decellularized tissue,
has been extensively explored (Rowley et al., 2019). These materials
are commonly used in the development of intravitreal implants and
corneal grafts. Moreover, ECM-derived peptides, including arginyl-
glycyl-aspartic acid (RGD), matrix metalloproteinase (MMP)-
sensitive peptides, or leukocyte-associated immunoglobulin-like
receptor-1 (LAIR-1) ligand, are also incorporated on synthetic
materials to improve the biocompatibility of the implants
(Rowley et al., 2019). The design parameters of biomaterials for
the anti-FBR approach is further discussed in the following section.

3.1.1 Hydrogels and polymeric depots
Hydrogels are widely used as delivery devices and supporting

scaffolds in the ocular field. Hydrogels are 3D crosslinked
hydrophilic polymers. They can hold small hydrophilic molecular
drugs, and bioactive molecules such as proteins and nucleic acids.
They can protect labile cargoes from tissue clearance and enzymatic
degradation. Controllable hydrogel architecture design and
degradability can help provide spatial and temporally controlled
release of cargoes. More importantly, hydrogels also possess
mechanical and optical characteristics that are compatible with
those of the eyes.

For anterior ocular treatments, hydrogels are commonly used in the
preparation of artificial tears, corneal regeneration, and IOL fabrication
to provide structural support. Non-etheless, implantation sites such as
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the ocular surface and epithelial and stromal regions are populated with
innate immune cells. They are sensitive to environmental anomalies
triggered by the implants, eye drops, and injectables, subsequently
inducing a cascade inflammatory response. Indeed, corneal haze and
posterior capsular opacification (PCO) are common post-surgical
complications in artificial corneal and IOL transplants, respectively.

On the other hand, for the ocular posterior, hydrogels can be used
as vitreous substitutes to regulate intraocular pressure and structures.
Delivery depots can protect laden drugs and therapeutic cells while
providing controlled release of the therapeutic molecules directly to the
diseased sites, circumventing the blood-retinal barrier. With
appropriate biomaterial selection, FBR can be suppressed. For
instance, a single intravitreal injection of in-situ crosslinkable
hyaluronate (HA)/dextran hydrogel, which was designed to provide
sustained release of anti-VEGF for 6-months, showed no inflammation
of the ocular structures (Yu et al., 2015; Yu et al., 2019). In addition, the
prolonged presence of thermosensitive methoxy-poly (ethylene glycol)-
block-poly (lactic-co-glycolic acid) (mPEG-PLGA-BOX) hydrogel in
the vitreal region, providing extended release of anti-VEGF for 42 days,
also avoided inflammation in the posterior ocular region (Hu et al.,
2019). However, another study that adopted PolyActive™, degradable
PEG-polybutylene terephthalate-based (PEG-PBT-based)
microparticles, to deliver anti-VEGF, observed inflammation at both
acute initial and later stages of the treatment, suggesting that
degradation products from the microparticles could trigger
immunogenic responses in the eye (Adamson et al., 2016). The co-
delivery of immunosuppressive signals also inhibited FBR against the
long-term device. For instance, the commercial intravitreal injectable
Ozurdex® is a degradable poly (lactide-co-glycolide) (PLGA)matrix for
extended release of dexamethasone to circumvent FBR and actively
suppress inflammatory events of uveitis.

Therefore, it is crucial to maintain ocular immune tolerance,
that is, anti-inflammatory and anti-FBR responses, in order to
improve the lifetime and optimal performance of the delivery
device (Allyn et al., 2022). The general design strategies of
implants and injectables often aim to 1) reduce non-specific
protein and cellular adhesion or design anti-fouling properties to
circumvent FBR, 2) introduce a delivery system with tissue-
matching properties, and 3) mask receptors associated with pro-
inflammatory pathway activation for suppressing innate immune
activations. In the first approach, biomaterials and delivery
platforms are often used in an “immune stealth” or anti-
inflammatory context to inhibit immune recognition and to
suppress the deposition of proteins and cells, thereby extending
the half-life and bioavailability of therapeutic entities. PEG is
amongst the most popular stealth material in suppressing non-
specific protein deposition on hydrophilic polymer-coated devices.

3.1.2 Encapsulated cell implants
3.1.2.1 Immunomodulatory cells

For decades, it has been demonstrated that mesenchymal stem
cells (MSCs) are potential immunomodulators of the innate and
adaptive immune systems (by inhibiting Th1 and Th17 and
inducing the Treg and M2 macrophage phases) for various
ocular inflammatory disorders such as corneal angiogenesis,
neovascularization, autoimmune uveitis, and autoimmune DED
(Lee et al., 2015; Song et al., 2018; Oh and Lee, 2021; Li Y. et al.,
2022).

For targeted delivery to the eye, MSCs can be injected naked or
encapsulated in a polymeric scaffold such as hydrogels to promote
ocular tissue regeneration or suppress degeneration. The hydrogels
can serve as a supporting matrix to separate the cells’ cargo from the
host tissue. In addition, they will support cell growth and functions,
while the meshwork can facilitate sufficient exchange of materials
between implanted cells and their host tissues, ensuring that laden
cells are functioning properly. The choice of biomaterial is critical in
the second strategy, to achieve immunomodulatory and
biocompatibility goals using different administration routes such
as topical or contact lenses or injectable scaffolds.

3.1.2.2 Implants for encapsulating engineered cells
Based on previous works on several anti-inflammatory

applications using MSCs and bandage contact lenses, the
amniotic membrane (AM) is the most employed scaffold in the
topical administration of MSCs in ocular surface therapy (Abu-Ain
and Webber, 2010). AM exhibited remarkable anti-inflammatory
and immunomodulatory effects (Parolini et al., 2009; Orozco
Morales et al., 2019; Beeken et al., 2021). However, due to donor
variability and the danger of disease transmission, this procedure
lacks standard safety regulations. Synthetic and natural hydrogels
can be employed as substitutes for AMs in this application. For
instance, fibrin gel was used in a study as the carrier of rabbit MSCs
and was transplanted on the surface of damaged rabbit cornea; it can
be differentiated to corneal epithelial cells and inhibited
inflammation in the area (Gu et al., 2009). Another scaffold that
has been used is polylactic acid (PLA) nanofibers for seeding bone
marrow-derived MSCs (BM-MSCs), adipose tissue-derived MSCs
(Ad-MSCs), or limbal epithelial stem cells (LSCs) for the treatment
of corneal optical properties after alkali burns that precede the
inflammatory response (Cejka et al., 2016). BM-MSCs nanofibers
and LSCs nanofibers are capable of suppressing corneal
inflammation and neovascularization by suppressing MMP9,
iNOS, and VEGF in the cornea. Polyamide 6/12 nanofiber
scaffold (Zajicova et al., 2010) is another example of using
hydrogels with MSCs in ocular surface inflammations; it
significantly reduced the local inflammatory response in various
ocular surface injuries.

Counterintuitively, the inflammatory response triggered by
biomaterials can be leveraged to accelerate tissue regeneration,
involving MSC and LSC. Polysaccharide has been shown to
accelerate the tissue repair process by stimulating the
inflammatory phase, with increased activation of macrophages,
infiltrating cells, and fibroblasts (Matica et al., 2019). In this way,
the acute inflammatory phase can be soon taken over by the
proliferative phase to facilitate rapid re-epithelization and wound
closure. The timing and dynamics of the inflammatory response are
important targets for biomaterial development. Particularly, at the
early stage of inflammation, intervention using biomaterials can
promote pro-healing responses, predominantly for the delivery of
therapeutic entities for ocular tissue regeneration.

Besides the use of MSC-encapsulated implants as an
immunomodulatory treatment, there is another intriguing cellular
therapeutic strategy that has been tested in clinical trials for eye
disorders. In this strategy, cells are genetically transfected before
encapsulation, and by then loading cells inside the polymeric
implant, the engineered cells are capable of producing the
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targeted protein for a prolonged time (Zhang et al., 2011; Wong
et al., 2017; Belhaj et al., 2020). The polymeric implant is permeable,
allowing the therapeutic drug to diffuse while protecting cells from
the host’s immunological responses. As a result, the selection of
biomaterial as a protective carrier is critical to avoid inducing an
unwanted immune response, or, even one step better, inducing an
anti-inflammatory response. Neurotech is a pioneer in this
technology, having developed the NT-501 device to provide
sustained delivery of ciliary neurotrophic factor (CNTF; a growth
factor shown to decrease photoreceptor degeneration in RP animal
models) to treat retinal degenerative diseases such as RP, AMD, and
glaucoma (Zhang et al., 2011; Kauper et al., 2012a; Kauper et al.,
2012b; Chew et al., 2015).

Early clinical trials employed polymeric matrix-based systems,
such as NT-501 (Renexus®), which is composed of a semi-
permeable, non-biodegradable polysulfone scaffold, with
polyethylene terephthalate as an internal matrix, to support
CNTF-producing ARPE-19 cells. However, this cell-encapsulating
device measured 1 mm in diameter and 6 mm in length, and
requires surgical insertion in the vitreal region. NT-501 is
currently under stage 2 clinical trials for glaucoma, and no
device-related adverse events have been reported so far (Zhang
et al., 2011; Wong et al., 2017). This method may be used for long-
term delivery of different proteins and polypeptides such as VEGF-
antagonist, inhibitory domain of factor H (complement receptor
2 and factor H (CR2-fH)) as a complement inhibitor of CNV, or
anti-inflammatory cytokine target to suppress inflammation in
inflammatory diseases (Adamson et al., 2016; Belhaj et al., 2020).

To improve patient compliance and ease of use, several hydrogel
alternatives have been proposed, using a less-invasive injection
procedure in encapsulated cell therapy. Immune-compatible
materials, such as alginate and collagen-based hydrogels have
been developed to deliver cells. Studies demonstrated minimal
host-cells attachment on the hydrogel surface, the presence of
living cell colonies, and the generation of active biomolecules
over an extended number of days of implantation (Wikström
et al., 2008; Wong et al., 2017; Belhaj et al., 2020). For instance,
in one animal study, ARPE-19 cells were transfected to express the
gene of choice and encapsulated in alginate polymer using a
microencapsulation method coupled with electrospray to generate
an encapsulated cell alginate capsule. The size of the capsule was
controlled by the alginate concentration and the voltage of the
electrospray. The results showed that a size of 150 μ l was more
suitable for intravitreal injection, and that this method can be used
for long-term delivery (around 6 weeks) of complement inhibitors
for AMD treatment. The authors’ technique was reported to be
appropriate for animal models as it lacks the stability of alginate,
which prevents it from being destroyed during injection (Wikström
et al., 2008; Belhaj et al., 2020). In future, it may be worthwhile to
study the immunomodulatory effect of biomaterials as implants for
improving the functionalities of these encapsulated cell implants.

3.1.3 Implants and injectable depots design
parameters
3.1.3.1 Mechanical strength

Ocular tissues exhibit different mechanical strengths, with the
cornea at 3.8 MPa, IOL at 2.5–6 MPa, and vitreous 20–50 Pa. Tissue
stiffness is subject to differences in species, age, and disease states

(Nickerson et al., 2004; Formisano et al., 2021). Corneas and IOLs
undergo substantial mechanical loading and stretch as part of their
normal functions in maintaining ocular pressure and visual acuity.
Resident innate immune cells have been exposed and habituated to
these mechanical stimuli during physiological conditions (Liu and
Li, 2021; Du et al., 2022). However, during diseased conditions, such
as during glaucoma, the change in intraocular pressure and
mechanical environment may induce pro-inflammatory activation
of resident immune cells and may exacerbate disease progression. In
fact, mechanical sensors, transient receptor potential vanilloid
(TRPV), pannexin-1, and P2X7 can be found on retinal ganglion
cells (RGCs) and glial (Müller) cells in posterior ocular structures
(Križaj et al., 2014). The activation of mechanosensors may result in
the release of pro-inflammatory mediators, such as IL-1β, which can
in turn promote the activation of nuclear factor kappa B (NF-κB) in
microglia. On the other hand, the corneal epithelium, which
comprises the major ocular anterior surface, is able to sense
shear stress. Abnormalities in mechanical properties can trigger
the activation of resident innate immune cells (Liu and Li, 2021).
Pathological conditions may result in dry eye disease.

Therefore, hydrogel stiffness should match tissue stiffness
depending on the implantation site, to help maintain ocular
structures and immune responses. The mechanical strength of
hydrogels can be tuned by changing the polymer concentration,
molecular weight of polymers, and crosslinking densities, as well as
by incorporating nanomaterials and composites. For instance, in dry
eye symptom relief, our group reported a HA-based soft hydrogel,
which matched the mechanical properties of the tear film and provided
surface lubrication for an extended period of time, without frequent
corneal instillation. Moreover, when combined with cyclosporine, an
immunosuppressant, the treatment regime significantly improved the
symptoms of dry eye diseases in canine clinical studies, in comparison
to cyclosporine treatment alone (Yu et al., 2021). It was reported that
hard methacrylate-gelatin (GelMA) hydrogel, with a measured strength
of 29 kPa, can induce M1 differentiation of macrophages in vitro and
severe FBR responses in vivo, in contrast to softer alternatives with
strengths of 2 and 10 kPa (Zhuang et al., 2020). A similar trend was
observed in the THP-1 macrophage line culture on collagen-coated
polyacrylamide gels, with higherM1 polarization on hard gels (323 kPa)
than softer gels (11 kPa and 88 kPa). It was also demonstrated that the
hydrogel stiffness modulated macrophage migration behavior, with a
higher spreading area and slower movement on the stiffer gel.
Moreover, it was reported that macrophages exhibit lower
phagocytic ability on a stiffer gel (Sridharan et al., 2019; Li and
Bratlie, 2021).

Soft hydrogels are generally preferred in ocular applications and
are favored in the structural design of the ocular surface and
intravitreal implants, with minimal adverse immune responses.
However, tissue engineering for corneas and IOLs requires
hydrogel scaffolds with much higher mechanical strengths to
withstand ocular structural changes and functions. To
accommodate these mechanical needs, other design
modifications, such as surface hydrophobicity and topography
are pursued to suppress immune activation.

3.1.3.2 Surface chemistry: Charge and hydrophobicity
In the case of cornea and IOL implantations, hydrophobic

materials are generally preferred in order to resist swelling, lens
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epithelial cell engagement, and migration from the peripheral to the
visual region (Zhao et al., 2017). Non-etheless, PCO and corneal
haze are common among patients after surgery, both of which are
characterized by the FBR of prostheses, resulting in secondary visual
impairment (Pintwala et al., 2014; Tamura et al., 2017). Indeed, it is
generally accepted that a hydrophobic surface can promote non-
specific protein deposition and initiation of FBR. Hunter et al.
(1981) were the first researchers who worked on the adjuvant
efficiency of the polymer backbone structure. It has been shown
that different inflammatory and immune responses are stimulated
based on the physiochemical properties (hydrophile-lipophile
balance) of the biomaterial and that the hydrophobic part of the
molecule can stimulate the innate immune cells and cause inherent
immunogenicity by PAMP or DAMP (Seong and Matzinger, 2004;
Andorko and Jewell, 2017). The process is characterized by the
fusion of macrophages to form giant body cells to facilitate the
clearance of foreign materials. The cells also secrete
immunomodulatory cytokines such as TNF-α, IL-1, and TGF-β
which can further promote nearby fibroblasts to secrete fibrinogen
that surrounds the prostheses to isolate them from the host tissue
environment.

Common strategies to bypass FBR include modifying the surface
charge and hydrophobicity of implants. Hydrophilic PEG and
anionic and zwitterionic polymers are often selected as coating
materials for such purposes. There are several ways to modify the
implant surface, and these generally involve physical or chemical
methods, as discussed in a previous review (Song et al., 2020). The
physical methods include electrospinning/spraying, spin coating,
dip coating, and layer-by-layer (LbL) polymer assembly; chemical
methods generally involve radical polymerization, 3-
aminopropyltriethoxylsilane (APTES) and glutaraldehyde,
carbodiimide coupling, or “click” chemistry. Indeed, studies on
surface modification of the commercial artificial corneas
Keraklear, Korea Seoul-type, and T-style keratoprostheses
demonstrated that coatings of hydrophobic poly (methyl
methacrylate) (PMMA) or poly (2-hydroxyethyl methacrylate)
(PHEMA) with PEG, a hydrophilic polymer, can effectively resist
immune cell engagement and suppress the secretion of pro-
inflammatory cytokines (Kim et al., 2002; Xiang et al., 2015;
Farid et al., 2020). As well as PEG, implant surface coatings with
zwitterionic polymer brushes, such as phosphorylcholine and
sulfobetaine, have also been utilized, and results demonstrated
superior capabilities in suppressing FBR (Han et al., 2017; Wang
et al., 2021). Other natural hydrophilic polymers, such as anionic
HA, have been employed together with lysozyme in PMMA surface
coating; they exhibited anti-bacterial properties and reduced the
adhesion of cells and bacteria in in vitro culture (Wang et al., 2014).
Moreover, a silicone-based hydrogel with a surface LbL assembly of
alginate and chitosan was developed to achieve sustained release of
the immunosuppressant diclofenac to suppress post-surgical
complications related to IOLs (Silva et al., 2016). The hydrogel
surface charge can also influence the treatment outcomes of several
posterior ocular diseases. In the case of glaucoma, the
suprachoroidal injection of HA hydrogel produced a shorter
retention time and showed minor inflammation and fibrosis at
the injection site. However, the application of the zwitterionic
hydrogel polycarboxybetaine significantly suppressed
inflammation and prolonged the reduction of intraocular

pressure (IOP) via suprachoroidal space expansion (Hao et al.,
2022).

3.1.3.3 Surface topography and porosity
On top of the choice of hydrophilic or hydrophobic material

chemistry, the surface roughness or topography of a hydrogel can
also affect the wetting state, protein adsorption, and cell interactions.
There is increasing evidence that hydrogel surface topography can
modulate cell behaviors such as adhesion, migration, proliferation,
and differentiation. During fabrication, hydrogel surface patterning
can be achieved, up to micron and sub-micron resolutions, with the
appropriate choice of materials and pattern design to counter the
swelling behavior while preserving the pattern fidelity. The
fabrication methods often include casting, nanoimprinting, 3D
printing, electrospinning, multiphoton patterning, lithographic
patterning, and swelling-induced patterning (Cui et al., 2021).

Surface patterning of hydrogels can influence the wettability of
materials. In the case of micropillar array design, the spacing and
height interfere with the water contact angle and protein adsorption,
as well as cell-material interactions. A high throughput screening
approach using a diverse library of 2,176 micropatterns was recently
developed to study the relationship between monocyte-derived
macrophages and topography. The study revealed that diameters
of 5–10 μm favored macrophage attachment, and smaller, denser
micropillars pattern can instruct M2 phenotype polarization
(Vassey et al., 2020). Another study also reported that
micropillars with 2 μm spacing and 4.5 μm in height are able to
resist silicone hydrogel wettability as well as protein and cell
adhesion (Papenburg et al., 2010). On the other hand, PVA with
2 μm gratings and a concave lens topography of 1.8 μm can promote
endothelial cell adhesion on PVA hydrogel, compared with wider
(10 μm) gratings, pillars, and convex lens textures (McWhorter
et al., 2013). In general, surface texture design often aims to
mimic niche tissue topographical features to better direct cell
behaviors for optimal delivery device performance and
therapeutic efficacy. IOLs with surface micropatterning are able
to resist PCO. The presence of micron-sized isotropic elements
arranged in a symmetric and regular pattern can resist cell adhesion
and migration. It was suggested that the texture interfered with the
formation of focal adhesion within cells, which hampers cell
adhesion and spreading. Indeed, the study demonstrated that
ridge(R)/grooves(G) patterns with sizes comparable to cells, e.g.,
R5G10 with a gradient spacing, can also significantly suppress
fibroblast cell adhesion and promote directional cell migration on
the culture surface (Kwon et al., 2017).

Conversely, anisotropic geometries, such as gratings, can
promote cell differentiation. It was observed that macrophages in
the pro-healing M2 state exhibit extended or oblong morphology, in
comparison to M1. Several studies demonstrated that by controlling
macrophage morphology using micropatterning methods,
macrophages can be polarized into the M2 state without the
addition of cytokines. The cells cultured on confined
micropatterned fibronectin lines 20 μm in width were able to
produce higher levels of IL-4 and IL-13 and resisted the effect of
M1-inducing LPS stimulus (McWhorter et al., 2013). In addition, a
honeycomb-like surface pattern 90 nm in size can also promote
M2 differentiation, with highest expressions observed for CD206,
IL-4, IL-10, and growth factors, which support tissue regeneration. It
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was suggested that the honeycomb-like texture can promote
filopodia formation, which is associated with RhoA/ROCK
signaling pathways, and can induce M2 polarization (Zhu et al.,
2021). Moreover, a study reported that fibrous meshes of gelatin
hydrogel nanofibers mimicking ECM promoted macrophage
adhesion and differentiation into M2 phenotypes, with
upregulation of CD206 expression and downregulation of IL-1β
and IL-8 in in vitro culture (Taskin et al., 2021).

The porosity of hydrogel implants can also be tuned to
modulate immune cell behaviors. Under physiological
conditions, cells reside in porous ECM which provides optimal
mechanical cues and spaces for biochemical cue exchange and cell-
cell communications. In pathological challenges, ECM polymer
backbones can support immune cell infiltration to wound sites.
The design of microporous hydrogels aims to promote immune
cell infiltration for local antigen delivery or immunomodulation.
This can be achieved by introducing degradable porogens during
hydrogel fabrication. A study reported an alginate-based porous
hydrogel system incorporating rapidly degradable alginate beads
into a non-degrading bulk alginate hydrogel. The authors further
adjusted the porosity of the hydrogel by adjusting the percentage of
porogens. The study revealed that a system with 50% porogen
significantly promoted DC infiltration and maintained the
immature phenotype, compared with 25% and 70% porosity
(Verbeke et al., 2015).

The size of pores can also be adjusted to protect cargoes from
immune cell-mediated clearance while preserving materials
exchange between the carrier and host tissue environments.
For instance, nanopores can be introduced to cell-laden
hydrogels to ensure that the cargo survives and functions.
Indeed, an alginate hydrogel with a pore size of 600 nm was
developed to encapsulate mesenchymal stem cells and was able to
resist pro-inflammatory immune cell infiltration (Moshaverinia
et al., 2015). Such hydrogel design could promote stem cell
survival and the maintenance of phenotypes to support tissue
regeneration.

3.1.3.4 Degradability
Biodegradable hydrogels have received increasing attention for

the design of drug delivery systems for spatiotemporally controlled
release, protection from physiological degradation and clearance,
and improved patient compliance. Hydrogel drug depots can be
injected into the vitreal space to provide extended release and to
improve the bioavailability of therapeutics for posterior ocular
disease treatment. Drug depots are often designed to match the
optical and mechanical properties of tissue sites to preserve visual
functions. Moreover, degradable drug depots are more favored in
intravitreal injections to circumvent the invasive surgical retrieval of
non-degradable implants from the eye.

Generally, depending on the hydrogel design, the depots can
undergo different types of biodegradation mechanisms, namely,
solubilization, chemical hydrolysis, and enzymatic degradation.
More importantly, the drug release kinetics can be controlled by
the hydrogel degradation rate. There are several strategies that have
been developed to regulate hydrogel degradation kinetics, which
involve physical and chemical factors. For instance, physical
interventions include changing the polymer concentration, the
molecular weights of hydrogel precursors, hydrogel size,

architecture, and microstructure. On the other hand, chemical
methods include introducing functional groups to modify
polymer charge or hydrophobicity, the nature of crosslinkers, and
crosslinking density (Kong et al., 2004; Jain et al., 2017; Lau et al.,
2021).

Non-etheless, the long-term presence of hydrogel depots in the
intravitreal space is often associated with FBR, and the design of
degradable depot formulations can induce chronic inflammation,
thereby hampering the immune compatibility of the delivery device.
In fact, an undesirable immune response has been observed in
vitreous substitutes that consisted of HA and PEG. In the case of
PEG, despite being known for its excellent anti-fouling properties in
bypassing FBR, its in vivo degradation has been shown to induce the
generation of anti-PEG antibodies and local inflammatory responses
(Reid et al., 2015; Chen et al., 2021). Moreover, for HA hydrogels, the
choice of molecular weights during preparation is crucial in
regulating its immunomodulating properties. Generally, higher
HA molecular weights (>500 kDa) are preferred, as they can
induce anti-inflammatory responses by promoting macrophage
M2 polarization and tolerogenic dendritic cell induction. Our
group observed that a higher HA molecular weight of 670 kDa
could avoid inflammatory responses when the polymers were used
to coat lipid-based nanoparticles to improve intravitreal retention in
rabbit eyes. Non-etheless, with the use of small HA molecular
weights such as 36 kDa and 120 kDa, inflammation is observed
in posterior ocular structures (Xiaonan, 2020). The underlying
mechanism is due to HA interactions with PAMP/DAMP
receptors on innate immune cells, in which the high molecular
weight biopolymer exerts competitive engagement of TLR2 and/or
TLR4 receptors of the immune cells, resulting in signaling inhibition
of pro-inflammatory pathways governed by Myeloid differentiation
primary response 88 (MyD88) and NF-κB. The smaller molecular
weight alternatives, on the other, hand can act as TLR agonists
(Østerholt et al., 2011; Rayahin et al., 2015; Gebe et al., 2017). A
recent study used zwitterionic hydrogel composed of
polycarboxybetaine and demonstrated its superior anti-fouling
ability against proteins and cells. The material was then used as a
vitreous substitute in a rabbit model, with no visible adverse effect
(He et al., 2021) (Figure 3).

3.2 Nano/micro particles

For years, nano/micro particles have been used as common drug
delivery systems in the eye and could be a potential drug delivery
carrier for ophthalmic applications. Nanoparticles (NPs) are
considered to have a size under 1000 nm and microparticles
(MPs) between 1 micron and 1 mm. MPs can be used as
microcapsules (a core drug with a polymeric layer surrounding
it) or microspheres (drugs dispersed throughout the polymer
matrix), based on their structure (Herrero-Vanrell et al., 2014).
Microcapsules are also referred to as ocular implants and these have
already been covered in the section on implants (Zimmer and
Kreuter, 1995; Adamson et al., 2016).

MPs are usually used in ocular applications for prolonged
delivery (at least 1 week) of proteins, peptides, and biomolecules.
PLGA is the most commonly used polymer in this area (Cohen et al.,
1991; Carrasquillo et al., 2003; Gavini et al., 2004; Mandal et al.,
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2018). For instance, Gavini et al. (2004) developed vancomycin-
encapsulated PLGA microspheres for topical ocular delivery, and
showed a high concentration of peptide drug in the rabbit aqueous
humor just after 3 h of topical administration. Albumin, gelatin, PLA,
polyanhydrides (Ron et al., 1993), and cyclodextrins (Davis and
Brewster, 2004) are other biodegradable polymers that are used as
microspheres. For the sustained release of pilocarpine, which is used
to lower intraocular pressure, Rathod et al. developed pilocarpine-
loaded egg albumin microspheres as an eye drop (Rathod and
Deshpande, 2008). Another work on the transscleral delivery of
PLGA microspheres encapsulated with pegaptanib sodium (an
RNA aptamer (EYE001) that inhibits VEGF) showed sustained
delivery of EYE001 over 20 days on the surface of the sclera to
treat choroidal and retinal diseases such as wet AMD (Carrasquillo
et al., 2003). The administration route and the type of polymer
significantly alter the inflammatory response of innate immune
cells in microsphere ocular delivery systems. For instance, it has
been demonstrated that intravitreal injection of PLA and PLGA
microparticles may increase inflammatory responses due to their
propensity to aggregate, making them more suitable for use as
depots for the simultaneous delivery of several biomolecules loaded
into nanoparticles (Herrero-Vanrell et al., 2014).

It has been demonstrated in the literature that NPs are favored
over MPs in circumstances of prolonged drug delivery and targeted
delivery to deeper ocular layers (Zimmer and Kreuter, 1995;
Andrés-Guerrero et al., 2015; Huang and Chau, 2019a). The use
of NPs in the treatment of ocular disorders is a promising new
tactic that may pave the way for more successful ocular therapy
and penetration for targeting posterior parts of the eye. They may
target the cornea, retina, and choroid, and exhibit several
advantages for use in the treatment of eye disorders. These
systems are capable of transporting various cargoes. For
instance, the use of NPs may make it easier and more effective
to distribute hydrophobic anti-inflammatory drugs such as
corticosteroids and unstable nucleic acids such as mRNA.
Furthermore, since they can pass through intricate ocular
barriers such as ocular-retinal barriers and blood-retinal
barriers of the eye, their delivery route through difficult-to-
access areas of the eye is facilitated. Additionally, they sustain
the long-term release of immunomodulatory medications for
chronic ocular inflammatory conditions (Diebold and Calonge,
2010; Huang and Chau, 2019a; Tang et al., 2022). Various nano/
microparticles that have been employed in immunomodulatory
ocular applications are listed in Table 1 as a summary. Smart
biomaterials, on the other hand, may be created to target specific
tissue locations by employing optical, electrical, or mechanical
targeting properties. They have several uses in biological imaging,
targeting, smart drug delivery systems, and anti-inflammatory eye
treatments (Ren et al., 2019; Luo et al., 2020).

3.2.1 Nanoparticle design parameters
Immune cells may respond in either a pro- or anti-inflammatory

manner depending on the physiochemical characteristics of
nanoparticles, including their size, shape, chemical composition,
and surface charge (Figure 4). Therefore, by taking these variables
into account, nanoparticles can be designed to regulate the immune
response. The impact of these parameters is discussed in the
following sections.

3.2.1.1 Size
The size of the particle is a key characteristic that drives the

innate immune cell response, and as the particle size grows, the
innate immune cells’ inflammatory and phagocytosis responses are
amplified. The main disadvantages of corneal topical applications
are drug bioavailability over time and increasing corneal
penetration. Studies have indicated that the nanoparticle size
should be less than 200 nm to allow easy uptake via endocytosis
in the conjunctiva and cornea. Particle size is directly associated with
penetration through the barriers of the cornea. A 180 nm gelatin
nanoparticle, used as an eye drop in rabbit eye, for instance, could be
retained in the cornea for a long time as a result of being taken up by
ocular epithelial cells (Tseng et al., 2013; Soiberman et al., 2017; Tsai
et al., 2018; Souto et al., 2019).

The literature also mentions the possibility of injecting positively
charged particles with a size range of 50–350 nm into the vitreous body.
Notably, for particles bigger than 350 nm, the size impact may be a
significant component affecting their distribution, but for particles
smaller than 350 nm, the charge effect is a significant parameter
(Tsai et al., 2018; Mobaraki et al., 2020). A previous review paper by
our group, on intravitreal nanoparticles for retinal delivery (Huang and
Chau, 2019a), also noted that nanoparticles, after passing the internal
limiting membrane (ILM), are directed to inner layers via endocytosis.
To determine whether a particle with a particular size and charge may
pass through the vitreous and ILM barriers or not, it is crucial to
consider the size-cut off for nanoparticles passing through those
barriers. Peynshaert et al. provide an in-depth discussion on drug
delivery barriers in the posterior segment of the eye (Peynshaert et al.,
2018; Peynshaert et al., 2019).

On the other hand, for the treatment of posterior ocular diseases,
particles and implants larger than 2 μ m in size remain in the
vitreous and are not be able to pass through the retinal and other
ocular barriers, similar to earlier reports of intravitreal sustained
delivery of fluocinolone acetonide (FA) from a micron-size
polymeric implant for over 1 month (Glybina et al., 2009;
Glybina et al., 2010; Iezzi et al., 2012). Depending on the type of
polymer and administration route used, the particles have the
potential to be immunogenic, as previously discussed. Injecting
ganciclovir-loaded PLGA microspheres intravitreally, for instance,
resulted in their tendency to aggregate by building a depot in the eye,
as well as a modest localized FBR response (Herrero-Vanrell et al.,
2014). Adamson et al. (2016) also covered the limits of intravitreal
injection of anti-VEGF-loaded PolyActive™ microparticles for the
treatment of wet AMD. Particle migration from the vitreous to the
anterior chamber, a delay in the breakdown of the polymer relative
to the release of the payload, and early and late stages of ocular
inflammatory response were listed as challenges in using these
microparticles in clinical settings (Adamson et al., 2016).

Regarding the immunogenicity and cellular uptake mechanism of
smaller nanoparticles, there are still several unanswered problems.
Therefore, a crucial factor in identifying whether the innate immune
cell interaction pathway is pro- or anti-inflammatory is particle size. In
1998 (D’orazio and Niederkorn, 1998) an intriguing experiment was
carried out by D’Orazio et al. The authors investigated the ocular APC
response to various antigen types, as well as how the type of antigen
affected anterior chamber-associated immune deviation (ACAID),
which is a defense mechanism for controlling and avoiding
immunologically induced damage. Ovalbumin (OVA) antigen was
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TABLE 1 Summary of different micro/nano particles used in the immunomodulation of ocular disorders.

Material Physicochemical
properties

Anti-
inflammatory

cargo

Ocular disease Anti-inflammatory
agent

Ref.

Pegaptanib sodium-PLGA
microsphere

Size 14–16 μ m EYE001 Choroidal and retinal
diseases (wet AMD)

EYE001 RNA to inhibit
VEGF

Carrasquillo et al.
(2003)

Pilocarpine-egg albumin
microsphere eye drop

Size 1–12 μ m Pilocarpine IOP in eye Pilocarpine to reduce IOP Rathod and
Deshpande (2008)

Vancomycin-PLGA
microsphere as eye drop

Size ~11 μ m Vancomycin Ocular infections Vancomycin as peptide
antibiotic

Gavini et al. (2004)

Dexamethasone sodium
phosphate-Zn-PLGA

nanoparticle (DSP-Zn-NP)

Size 210 nm, near neutral surface
charge (−9 mV), hydrophobic

Dexamethasone Uveitis by EAU Pluronic F127 surface
coating and corticosteroid

drug

Luo et al. (2019)

Polymeric implant (PVA and
silicone)

Size 2 mm, long cylinders,
300 μm in diameter

Fluocinolone
acetonide (FA)

Retinal degeneration FA as corticosteroid drug Glybina et al.
(2009), Glybina
et al. (2010)

Rapamycin-loaded PCL-
micelles

Size 40nm, sphere, surface
charge of −0.89 mV

Rapamycin EAU Rapamycin as
immunosuppressant drug

Wu et al. (2016)

HA-coated PLGA
nanoparticle

Size 173–200 nm, negative
surface charge, hydrophilicity

increased by using HA

Lutein AMD Lutein as antioxidant drug
and HA coating

Chittasupho et al.
(2019)

Double-headed polyester
nanoparticles using gambogic
acid (GA)–coupled PLGA

(PLGA-GA2-CUR)

Size 250 nm, double-headed
nanoparticle, hydrophobic

Curcumin (CUR) Acute intraocular
inflammation by EAU

Curcumin as anti-
inflammatory drug

Ganugula et al.
(2020)

DuraSite/synthetic polymer of
cross-linked PAA

(Bromfenac)

Adjusted to a viscosity of
1100–1900 cP, pH 6–6.6,

osmolality 260–340 mOsm/kg,
suitable for dispensing in the eye

1% azithromycin or
0.6% besifloxacin

Post cataract surgery
inflammation and pain

Antibiotic drugs Bowman et al.
(2009), Trattler and
Hosseini (2017)

NCT01576952

Dexamethasone-PAMAM
dendrimer conjugates (DEX/

PAMAM)

Size ~145 nm, surface charge
~ −50 mV

Dexamethasone Ocular diseases affecting
retina such as AMD, DR,

and glaucoma

Dexamethasone as
corticosteroid drug

Yavuz et al. (2016)

Hydroxyl-terminated
PAMAM dendrimer-drug
conjugate nanodevices

Size ~3–10 nm, PMMA
with −OH terminal groups, non-

cytotoxic

FA Retinal
neuroinflammation in
AMD and retinitis

pigmentosa

FA as corticosteroid drug Iezzi et al. (2012)

Pilocarpine-loaded hCe
Chitosan/ZM nanoparticle

Size less than 70 nm, positive
surface charge of 5–20 mV

Pilocarpine Glaucoma Pilocarpine drug to reduce
IOP and cerium oxide
nanoparticles with anti-
inflammatory effects

Luo et al. (2020)

Lipoidal–chitosan–poly (ε-
caprolactone) nano system

(DSPC-chit-PCL NS)

Size ~140.7 nm, surface charge of
~ +55 mV

Indomethacin Inflammatory disorder
in the posterior part of

the eye

Use of DSPC lipid and
indomethacin drug

du Toit et al. (2013)

Betamethasone phosphate/
PEG-PLA nanoparticle

Size ~120 nm Betamethasone
phosphate

Uveitis by EAU Betamethasone as steroid
drug and use of PEG surface

coating

Sakai et al. (2006),
Sakai et al. (2011)

Gold nanoparticle (AuNP) Size ~25 nm No drug LPS-induced uveitis
model

Inherent anti-inflammatory
properties of AuNP by
downregulating the

TLR4 and NF-κB pathways

Pereira et al. (2012)

VIP-loaded pegylated
liposome

Size 300–600 nm VIP EAU VIP as immunosuppressant Lajavardi et al.
(2007)

Cy A-loaded hyaluronic acid-
coated PCL/benzalkonium
chloride (BKC) nanospheres

Size over 200–300 nm Cy A Immune-mediated
corneal disease

HA reduced the BKC
cytotoxicity and Cy A as

inhibitor of IL-2
proinflammatory cytokine

Yenice et al. (2008)

(Continued on following page)
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used as amodel antigen. It arrived in two forms: soluble and particulate,
and it was passively absorbed on the surface of latex (polystyrene)
particles with a size of 460 nm. The authors demonstrated that
particulate antigens can stimulate APCs, increasing IL12 production
and Th1 activation, whereas soluble antigens activate the ACAID
pathway, increasing IL10 production and Th2 regulatory cells
(D’Orazio et al., 2001).

3.2.1.2 Chemical structure
Another factor that may affect whether the response of the

innate immune system is pro- or anti-inflammatory, as previously

mentioned, is the intrinsic chemical structure of the nanoparticle.
Natural biomaterials such as gelatin (Vandervoort and Ludwig,
2004; Mathurm and Gilhotra, 2011), chitosan (Marõ´a et al.,
2003; Enríquez de Salamanca et al., 2006; Tsukamoto et al., 2013;
Li et al., 2009; Aşık et al., 2013), collagen (Luis et al., 2016; Simpson
et al., 2021; Song et al., 2021), albumin (Zimmer et al., 1994; Tiwari
et al., 2021), alginate (Shafie and Fayek, 2013; Kostenko et al., 2022),
and HA (de La Fuente et al., 2008; Yenice et al., 2008; Rayahin et al.,
2015; Gebe et al., 2017; Guter and Breunig, 2017; Casey-Power et al.,
2022) are frequently used as anti-inflammatory agents in eye
treatment because they do not cause an inflammatory response

TABLE 1 (Continued) Summary of different micro/nano particles used in the immunomodulation of ocular disorders.

Material Physicochemical
properties

Anti-
inflammatory

cargo

Ocular disease Anti-inflammatory
agent

Ref.

siRNA targeting VEGF
nanoball (PEI/HA)

Size 260 nm, surface charge
of −41 mV

siRNA anti-VEGF Ocular
neovascularization

siRNA to inhibit the VEGF
expression

Ryoo et al. (2017)

K5 plasmid-loaded PLGA/
chitosan NP

Size 260 nm, surface charge of
8.4 mV

Expression plasmid of
plasminogen Kringle

5 (K5)

Retinal inflammation K5 plasmid to downregulate
the VEGF expression

Park et al. (2009)

IL10 mRNA-loaded SLN/
polymeric ligands of dextran
and HA/1%PVA as eye drop

Size between 94 and 348 nm,
positive surface charge between

26 and 45 mV

IL10 mRNA Corneal inflammation IL10 mRNA as anti-
inflammatory cytokine

expression agent

Gómez-Aguado
et al. (2021)

FIGURE 3
Design parameters of implants and injectable depots for various ocular applications and key features for desired therapeutic outcomes (Created in
BioRender.com).
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from the innate immune system (Sharma et al., 2016). They come in
the form of nanoparticles, nano emulsions, nano capsules,
liposomes, and lipid nanoparticles. Although these biomaterials
have been used in numerous previous studies as carriers to
support drug release, enhance ocular penetration, lengthen ocular
retention, and improve ocular bioavailability, future research could
focus on the materials’ interaction with ocular innate immune cells
to suppress the inflammatory phase of macrophages, without the use
of steroid drugs.

Chitosan, a common nanomaterial in ocular research, has been
proven in several studies to exhibit minimal immunogenicity for
innate immune cells, as previously stated. Chitosan is bioadhesive,
can enhance ocular penetration, and does not cause an
inflammatory response, according to several experiments (Marõ´a
et al., 2003; Enríquez de Salamanca et al., 2006). Furthermore, HA as
a nanoparticle or coating of polymeric nanoparticles has shown
substantial potential in reprogramming ocular innate immune cells
(Yenice et al., 2008; Guter and Breunig, 2017; You et al., 2020). A
higher HA molecular weight, as previously noted, may trigger an
anti-inflammatory response of innate immune cells (Casey-Power
et al., 2022).

On the other hand, PLGA (Casey et al., 2019; Ganugula et al.,
2020; Luo et al., 2020), PLA (Sakai et al., 2006; Sakai et al., 2011),
poly-caprolactone (PCL) (Yenice et al., 2008; du Toit et al., 2013),
polyacrylic acid (PAA) (Trattler and Hosseini, 2017), and poly
(amidoamine) (PAMAM) (Iezzi et al., 2012; Yavuz et al., 2016)
are the most commonly used synthetic biomaterials as carriers of
anti-inflammatorymedications in ophthalmic therapy. According to
Casey et al. (2019), PLGA and PLA particles have broad-acting
mechanisms that inhibit TLR signaling by programming innate
immune cells, and they exhibit inherent immunomodulatory
properties depending on their physiochemical properties. The
authors declared that more research into the inherent
immunomodulatory properties of polymer-based particles is
necessary since they have the potential to treat a wide range of
human disorders via abnormal TLR activation (Casey et al., 2019).
Similar to natural biomaterials, they come in form of dendrimers,
nano capsules, and nano emulsions. Nevertheless, the fact that they
degrade in vivo raises further questions regarding their
immunogenicity, and more research is required to ascertain how
different types of materials impact immunity. For instance, in order
to prevent the development of experimental autoimmune uveitis
(EAU), Wu et al. created PCL-micelles loaded with rapamycin that
were 40 nm in size, spherical in form, and with −0.89 mV charge
(Wu et al., 2016). Another study aimed to reduce uveitis
inflammation by employing PLGA nanoparticles (210 nm)
containing dexamethasone (Luo et al., 2019). The cytotoxicity of
several materials, including PLGA, PCL, and PEG-PLGA, toward
the retinal cell line (ARPE-19) was also tested by Lin et al. The
authors found that PEG-PLGA had the lowest cytotoxicity over
6 days, in comparison to the other materials, which exhibited
different cytotoxicities (Lin et al., 2016). Another group claimed
that surface modification of synthetic polymers reduces their
cytotoxicity and subsequent immune responses since HA-coating
on PLGA nanoparticles did not exhibit any cytotoxic impact on RPE
cells (Chittasupho et al., 2019).

Aside from these two groups, there are other nanomaterials with
inherent immunosuppressive functions (anti-inflammatory, anti-

angiogenesis, anti-bacterial, and anti-oxidative stress) that have been
shown to influence ocular inflammation, including cerium oxide
NPs for AMD treatment (Tisi et al., 2019; Luo et al., 2020), gold NPs
for uveitis and AMD (Pereira et al., 2012; Singh et al., 2020), and
silver NPs for fungal keratitis (Shi et al., 2021). For instance, Pereira
et al. (2012) studied the inflammatory response of gold nanoparticles
(AuNP) in endotoxin-induced uveitis and showed that the topical
use of AuNP reduces inflammation by downregulating the
TLR4 and NF-κ B pathways. Another example is cerium oxide
nanoparticles (nanoceria), which exhibit inherent
immunomodulatory, antioxidant, and anti-inflammatory effects
on innate immune cells such as macrophages. These effects can
increase the production of anti-inflammatory cytokines while
decreasing the release of pro-inflammatory cytokines (Hirst et al.,
2009; Schanen et al., 2013; Eitan et al., 2015; Domala et al., 2019;
Mitarotonda et al., 2022). Luo et al. (2020) designed antioxidant and
anti-inflammatory hollow nanoparticles that deliver anti-glaucoma
pilocarpine drugs in a sustained manner for 7 days, as compared to
typical eye drops with just 4 h moderate efficacy for glaucoma
therapy. The authors chose ceria nanoparticles because of their
intrinsic antioxidant, anti-inflammatory, and anti-angiogenesis
capabilities. Following that, the authors exploited surface dual
crosslinking to simultaneously target ciliary body tissue (through
a non-xanthine adenosine receptor antagonist (ZM241385)) and
increase corneal epithelium penetration (by chitosan). The authors
studied the anti-inflammatory properties of nanoparticles by
measuring IL6 and MCP-1 levels and showed that by increasing
the chitosan coating amount on the surface of ceria NPs, IL6 and
monocyte chemoattractant protein-1 (MCP-1) production slightly
increased. The authors showed that materials with dual functions,
such as chitosan and ZM, may serve as antioxidants and anti-
inflammatory agents, reducing inflammatory cytokines such as
IL6 and MCP-1, when applied to the surface of ceria NPs.
However, it should be noted that these metallic materials have
the potential to form reactive oxygen species (ROS), which can
sometimes lead to cytotoxicity in the eye (e.g., ZnO and Fe
nanoparticles) (Zhu et al., 2019).

3.2.1.3 Shape
The shape of the material and the way it affects how

nanomaterials interact with innate immune cells is another
crucial factor. There is no assurance that the innate immune
system will not react negatively to the nanoparticles.
Nanoparticle size and shape have the potential to stimulate
macrophages to phagocytose and to consume and frustrate them,
causing them to secrete an increasing amount of pro-inflammatory
cytokines, eventually causing chronic inflammation, or even to
stimulate DCs to mature and activate T cells (Bartneck et al.,
2010; Niikura et al., 2013; Andorko and Jewell, 2017). According
to Bartneck et al., macrophage absorption of gold nanorods is higher
than that of nanospheres via the macropinocytosis process;
nanorods elicited a stronger inflammatory response in vivo even
after surface modification with polyethylene oxide (PEO) (Bartneck
et al., 2010; Andorko and Jewell, 2017). Another intriguing work by
Niikura et al. (2013) reported that the size and shape of gold
nanoparticles (AuNPs) in vitro and in vivo may be used to tailor
the responses of innate immune cells such as macrophages and DCs.
Cells exposed to rod-shaped nanoparticles released cytokines via
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pro-inflammatory inflammasome pathways, such as IL-1 β and
IL18. Cells treated with cubical and spherical nanoparticles
produced TNF-α, IL6, and IL12 through various cytokine
pathways (Niikura et al., 2013). The stiffness and aspect ratio of
the nanoparticle increase as the shape of the particle changes from
spherical to rod-shaped, cubical, hexagonal, or any other shape, and,
as a result, macrophages trigging and the inflammatory response
also increase based on the potential membrane damage by stiff
particles in phagocytic cells (Woźniak et al., 2017; Li et al., 2021). In
addition, it has been demonstrated in ocular studies that
nanoparticles with a larger aspect ratio, such as those in the
shape of fibers, carbon nanotubes, or 2D nanomaterial sharp
sheets, are cytotoxic to eye tissue (Zhu et al., 2019).

3.2.1.4 Surface charge
Another crucial factor is surface charge, which is particularly

important for nanoparticles due to concerns regarding delivery,
corona protein aggregation, and stability. Researchers have
discovered that nanoparticles with a charge lower
than −30 mV may have an anti-inflammatory impact on the
immune system. A higher amount of negatively charged
particles causes a lower immunogenic response and they may
be immunosuppressive (Andorko and Jewell, 2017; Li H. et al.,
2022; Wen et al., 2016; Getts et al., 2014). Despite the fact that
positively charged particles may be more easily taken up by cells
than negatively charged particles, they will indeed be more
cytotoxic and trigger an inflammatory response in the cells
(Zhu et al., 2019). Similarly, our group noted that surface
charge plays an important role in the biodistribution of
nanoparticles, while simultaneously triggering an
immunogenic response (Huang and Chau, 2019a).

Yavuaz et al. used −50 mV negatively charged dexamethasone-
PAMAM dendrimer conjugates for various ocular diseases affecting
retinae such as AMD, DR, and glaucoma. The authors demonstrated
that these dendrimers can effectively permeate to the back of the eye
and release anti-inflammatory drugs in a sustained manner;
however, the clearance time was quick. The authors suggested
that the use of cationic dendrimers to determine the impact of
surface charge on clearance time be taken into account (Yavuz et al.,
2016). Additional information on the immunological characteristics
of various engineered nanomaterials is discussed in the review of
Dobrovolskaia (Dobrovolskaia and McNeil, 2007). Generation
3.5 PAMAM conjugated to glucosamine-negative dendrimers is
one example that can inhibit human macrophages and DCs’
proinflammatory response and is immunosuppressive (Shaunak
et al., 2004).

Lipid-based nanomaterials are another category of
nanoparticles that have been widely used for ocular
treatment, based on their controllable surface charge,
especially as non-viral gene delivery systems. Due to their
tendency to disassemble and aggregate, these materials are
less stable in the eye compared to polymeric nanoparticles
(Huang and Chau, 2019a). Lipid-based nanoparticles (LNPs)
encapsulated with the model drug small interfering RNA
(siRNA) were studied by our group to determine the impact
of charge on intraocular distribution. We discovered that LNPs
with neutral or negative charges exhibit problems with rapid
clearance, whereas LNPs with a positive charge of 35 mV can

diffuse through the retina and deliver the siRNA (Huang and
Chau, 2019a; Huang and Chau, 2019b; Huang and Chau, 2021).
In a different study conducted by our group, we found that
siRNA-encapsulated LNPs with a positive surface charge of
+33 mV did not cause activation of microglia cells or an
inflammatory response (Xiaonan, 2020).

The particle clearance time and immunogenic reactions should
be taken into account in ocular studies. The circulation and
retention period of nanoparticles inside the eye can be prolonged
by adopting a stealth technique that coats the nanoparticles with a
hydrophilic substance called PEG. One example of this use is the
systemic administration of PEG-stealth-PLA nanoparticles
encapsulated with betamethasone for targeting the inflamed uvea
and retina in a rat with EAU. The authors demonstrated that these
stealth NPs reduced inflammation by the first day after
administration, and their effects remained for 2 weeks. This
period was significantly greater than their earlier experiment,
which employed betamethasone/PLA NPs alone, which presented
quick systemic phagocytosis clearance (Sakai et al., 2006; Sakai et al.,
2011).

In order to inhibit the TLR-mediated innate immune pathway,
Casey et al. (2019) used cargo-free nanoparticles of PLA and PLGA
with different coatings of poly (ethylene-alt-maleic anhydride)
(PEMA) and poly (vinyl alcohol) (PVA), different molecular
weights, and different charges. The authors demonstrated that
the PEMA coating caused a larger immunosuppression effect
compared with the PVA coating. (Figure 4). The downregulation
of pro-inflammatory cytokines and the suppression of TLR-
mediated inflammation were accomplished by altering the
physicochemical characteristics of the nanomaterials, such as the
charge, molecular weight, and polymer composition.

FIGURE 4
The effect of different nanoparticle design parameters on
immune system response. Nanoparticles’ size, shape, surface charge,
and chemical structure can lead to immunogenic or
immunosuppressive responses from innate immune cells (from
top to bottom: neutrophils, macrophages, microglia, and dendritic
cells) (Created in BioRender.com).
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3.2.2 Immunomodulatory cargoes for nanoparticle
Using nanoparticles is the most common method for treating

challenging ocular disorders related to the posterior part of the eye.
By penetrating beyond ocular barriers, they can reach and distribute
in the posterior segment. Based on the importance of chronic
inflammatory diseases affecting the posterior region of the eye
(e.g., glaucoma, AMD, and DR), the most common
immunomodulatory cargoes used in nanoparticles are discussed
in the following section. In light of this information, more efficient
treatment strategies for chronic inflammatory eye disorders may be
suggested, taking into account these potential cargoes and
understanding the criteria for designing immunomodulatory
nanoparticles.

3.2.2.1 Steroids
The most common immunosuppressive agents are steroids.

They have been used in a large number of commercial anti-
inflammatory ocular drugs such as Bromfenac and INVELTYS™,
both of which contain cross-linked PAA or chitosan polymer; they
are widely used for treating post-ocular surgery inflammation,
reducing post-surgery pain, and DED (Bowman et al., 2009;
Schopf et al., 2015; Trattler and Hosseini, 2017; Kim et al., 2018;
Gupta and Venkateswaran, 2021). Steroidal immunosuppressants
have several drawbacks; they require high administration dosages,
frequent injections in chronic ocular inflammatory diseases that lead
to defects in the innate immune system, and other long-term side
effects such as cataracts and IOP in the eye. By using
immunomodulatory biomaterials as carriers instead of traditional
inert carriers and alternative immunosuppressive drugs instead of
steroids, such as anti-inflammatory cytokines, anti-inflammatory
peptides, and nucleic acids, it is possible to overcome these problems
in the eye.

3.2.2.2 Biomolecules (proteins and peptides)
Another type of cargo used in ocular immunomodulatory

treatment includes biomolecules such as proteins and peptides.
However, there are drawbacks to employing these cargoes, for
example, cytokine’s short half-life and biomolecules’ poor ocular
bioavailability. Different immunosuppressive biomolecules such as
TGF-β, α-melanocyte-stimulating hormone, and VIP are produced
in the eye to retain its homeostasis and immune-privilege
mechanism (Lajavardi et al., 2007). Each of these biomolecules,
in an inflammatory state, may act as a possible immunosuppressant
payload, restoring homeostasis. Several studies have used VIP as an
immunosuppressant for the treatment of ocular inflammatory
diseases (Lajavardi et al., 2007; Taylor, 2007). In uveitis, VIP-
encapsulated liposome nanoparticles regulate macrophages and
dendritic cells immune responses (Camelo et al., 2009). By
combining VIP with liposome nanoparticles, the slow release of
VIP effectively reduced the degree of uveitis and pro-inflammatory
cytokines and prevented retinal damage (Camelo et al., 2009).
Another immunomodulatory peptide from fungi, cyclosporine A
(Cy A), is being investigated as an immunosuppressant for
inflammatory ocular conditions because it suppresses the
proinflammatory cytokine IL2 (Nussenblatt and Palestine, 1986;
Serda et al., 1990; Gupta and Sahu, 2001; Rumelt et al., 2002;
Lallemand et al., 2003; Yenice et al., 2008). A study by Yenice
et al. (2008) investigated the bioavailability of Cy A in the cornea

with regard to HA-coated PCL nanoparticles. In this respect,
regulatory cytokines, and their prolonged release in the site of
inflammation, may treat ocular inflammatory diseases by
polarizing innate immune cells in an anti-inflammatory manner.
IL4, IL13, and IL10 are the most frequently mentioned anti-
inflammatory cytokines that are used as immunomodulatory
payloads for the innate immune response and M2 polarization
(Reeves et al., 2015; Schirmer et al., 2016; Cha et al., 2017;
Riabov et al., 2017; He et al., 2019; Li et al., 2021).

As previously mentioned, TNF-α is a pro-inflammatory
cytokine that is produced in large amounts in inflammatory
conditions; thus, blocking its receptor may be a promising way to
suppress inflammation. For instance, Woo Ji et al. developed a TNF-
α blocker HL036 peptide for the topical treatment of dry eye, and
showed that it could effectively eliminate TNF-α on the ocular
surface and suppress inflammation by lowering the IFN-γ, IL6, and
IL21 proinflammatory cytokines (Ji et al., 2013).

A recent study was conducted on the dynamics of microglia
polarization and their regulation by an anti-inflammatory mixture
of cytokines IL4/IL13 or the antitumor agent bicyclic nojirimycin
derivative (1R)-1-dodecylsulfinyl-5N,6O-
oxomethylidenenojirimycin (R-DS-ONJ) in a mouse DR model.
The authors reported that using M2 cytokines or R-DS-ONJ as a
modulating agent in the environment of activated microglia cells
reduced retinal degeneration and inflammatory progression both
in vitro and in vivo (Arroba et al., 1862). Further research can be
conducted in this area to determine if inflammatory microglia
targeting can be used as a therapeutic method to postpone or
stop the impairment of visual function in DR.

3.2.2.3 Nucleic acids
Gene therapy for ocular inflammation may be an excellent

option, even in clinical trials, and may use DNA, RNA, aptamers,
and oligonucleotides. The stability of nucleic acid and the efficiency
of its targeted delivery to minimize off-target effects are two
challenges in this approach (Guzman-Aranguez et al., 2013;
Raghunath and Perumal, 2015).

Viral and non-viral vectors are the two main types of nucleic
acid delivery methods. Although viral vectors have been widely used
as nucleic acid delivery methods, their immunogenicity, which may
result in inflammation by inducing an immune response, is a major
concern when employing them in clinical studies (Bordet and
Behar-Cohen, 2019). These viruses include adenoviruses (AVs),
adeno-associated viruses (AAVs), and lentiviruses. AAVs have
been used in several studies on ocular gene therapy and chronic
ocular disorders, although it has been demonstrated that they
produce a mild immune response (Timmers et al., 2020). The
first FDA-approved ocular gene therapy product, Luxturna®, also
used an AAV2 vector and targeted diseases caused by the mutation
of RPE65 genes such as retinitis pigmentosa (Russell et al., 2017). In
this way, the type of vector, route of administration, and viral dosage
cause different immune responses. For instance, the intravitreal
route showed a higher immune response in comparison to other
routes, and subretinal injection showed a lower immune response
(Wasnik and Thool, 2022). An interesting study on the
immunomodulation of uveitis by gene therapy is the use of a
mutant serotype 8 adeno-associated virus (AAV8) (Y733F)-
chicken β-actin (CBA)-MIF vector to express the macrophage
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migration inhibitory factor (MIF), which is an important cytokine
for regulating macrophage function and T cell activation (Yang
et al., 2016). It has been shown that MIF is critical for modulating
ocular inflammation in EAU, linked to the Notch signaling pathway;
this may be a promising therapeutic approach for uveitis.

Recently, Gilger and Hirsch (2022) reviewed the potential of
using the human leukocyte antigen G (HLA-G) gene in AAV
vectors for ocular inflammatory treatments. HLA-G is an
important anti-inflammatory agent that can suppress the
inflammatory function of innate immune cells such as
neutrophils, dendritic cells, macrophages, and natural killer
cells. The authors stated that, based on the anti-vascular
performance of the HLA-G, it could be a great target for the
treatment of different ocular diseases including corneal
inflammation, corneal graft rejection, DED, uveitis, AMD, and
DR (Gilger and Hirsch, 2022).

Nevertheless, based on concerns regarding the immunogenicity
of viral vectors (Bordet and Behar-Cohen, 2019), non-viral vectors
(with low immunogenic risk) are alternatives for gene therapy,
especially in immunomodulatory approaches. LNPs, nano
polymers, and self-assembly peptides with nucleic acid are the
most common non-viral delivery systems in this area. There are
several studies and clinical trials on ocular gene therapy for
immunomodulatory approaches using siRNA, miRNA, mRNA,
DNA, and plasmid DNA (Ghoraba et al., 2022).

The use of siRNA in different ocular inflammatory diseases was
reported for silencing different innate immune cell-mediated
inflammatory genes (Guzman-Aranguez et al., 2013). For
instance, SYL040012 (bamosiran) is a commercial siRNA topical
drug used to suppress the β-Adrenergic Receptor 2 as well as to
lower intraocular pressure in glaucoma (Pintor, 2012; Bordet and
Behar-Cohen, 2019; Ghoraba et al., 2022). For treating
neovascularization-related disorders such as retinopathy and
AMD, an important key regulatory agent is VEGF. Inhibition of
VEGF was achieved by using recombinant AAV-mediated soluble
VEGF receptor 1 (sFlt-1) expression (Bainbridge et al., 2002; Rota
et al., 2004; Shen et al., 2006) or siRNA-targeting VEGF (Reich et al.,
2003; Jiang et al., 2009; Ashikari et al., 2010). It was shown that
neovascularization was reduced in the retina and choroidal,
respectively. Interestingly, Ryoo et al. (2017) developed a novel
siRNA-based anti-VEGF nanoball that was composed of siRNA-
targeting VEGF as the core hydrogel with a coating of branched PEI
andHA, achieved by applying an electrical force, for the treatment of
choroidal neovascularization in AMD. The authors demonstrated
excellent therapeutic results over 2 weeks as a result of intravitreal
injection and targeting efficiency in the sub-retinal space via
CD44 receptor endocytosis. AAV-mediated gene delivery of
pigment epithelium derived factor (PEDF) reduced
neovascularization in the choroid (Mori et al., 2002). The
potential role of RTP801 in retinopathy was also studied, and the
results indicated that by inhibition of its expression, the
development of retinopathy was significantly reduced (Brafman
et al., 2004).

miRNA is also used for regulating inflammatory-mediated
genes in different diseases in the eye (Raghunath and Perumal,
2015). For instance, in AMD treatment, it has been shown that the
upregulation of miR-9, miR-125b, miR-146a, and miR-155, alone
or in combination, regulates the innate immune system and

inflammation signals via the NF-κ B or other pathogen
pathways (Li et al., 2011; Lukiw et al., 2012; Kutty et al., 2013;
Raghunath and Perumal, 2015; Pogue and Lukiw, 2018). In an
interesting work by Zou et al., the impact of miRNA on uveitis
treatment was studied. The authors demonstrated that transfecting
the DCs using miR-155 inhibits the expression of pro-
inflammatory cytokines such as IL6 and IL-1 β, and increases
the production of the anti-inflammatory IL10 cytokine (Zhou
et al., 2012). Park et al. (2009) showed that using the expression
plasmid of plasminogen Kringle 5 (K5) encapsulated in PLGA/
chitosan nanoparticles has the potential to treat retinal
inflammation in DR by downregulating retinal VEGF
expression and the anti-inflammatory effect (Diebold and
Calonge, 2010). Our group’s review study and research on
effective siRNA delivery systems for ocular therapy provides
more information regarding nucleic acid ocular delivery cargoes
(Huang and Chau, 2019a; Huang and Chau, 2019b; Huang and
Chau, 2021).

Messenger RNA (mRNA) is another type of nucleic acid that has
been widely used in gene therapy. It allows faster protein translation
as it does not require trafficking of the cargo to the cell nucleus in
comparison to DNA. A primary anti-inflammatory cytokine is IL10,
and delivery of the IL10 gene to the disorders causing ocular
inflammation may be an effective therapy. To treat ocular
inflammation, one method employed is to distribute IL10 mRNA
using solid lipid nanoparticles (SLN) and various polymeric ligands
such as dextran or HA for long-term stability (Gómez-Aguado et al.,
2021). In this study, the authors used mRNA and plasmid DNA
(pDNA) for de novo production of IL10 and showed that the mRNA
systems induced a higher expression of IL10 in corneal epithelial
cells than pDNA systems, and that they suppress corneal
inflammation.

3.3 Hybrid systems of biomaterial carriers
and different cargoes

New drug delivery systems that combine several drug delivery
techniques such as hydrogel and nano systems, have shown
intriguing results in recent years, leading to the development of
more intelligent and controlled drug delivery systems. In ophthalmic
drug delivery systems, it is important to reduce side effects and
increase treatment efficiency and bioavailability by minimal
injection or surgery in the eye (Sharma et al., 2016). One
example of these hybrid scaffolds is provided by du Toit et al.
(2013). The hybrid system employed was an indomethacin anti-
inflammatory non-steroidal drug encapsulated in a lipoidal-
chitosan-PCL nano system with a size of 140.7 nm and a positive
surface charge for targeting the inflammatory disorder in the
posterior part of the eye. The authors demonstrated that, in
comparison to the chitosan-PCL nano system alone, the
composite lipoidal nano system suppressed the inflammation by
decreasing the amount of NF-κ B and by enhancing the
inflammatory cellular uptake of the drug. Gomes do Santos et al.
also developed a hybrid system comprising antisense TGF-β
2 phosphorothioate oligonucleotides/PEI nanoparticle that was
encapsulated in PLGA microspheres, namely, “Trojan”
microspheres. The authors stated that this “Trojan” system could
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prevent post-surgery fibrosis for 42 days (Gomes dos Santos et al.,
2006). The DNA/PLGA hybrid hydrogel (HDNA), which is used to
sustain the release of water-insoluble anti-inflammatory drugs such
as dexamethasone, is another example of these systems. In animal
models of allergic conjunctivitis, once-daily topical treatment using
this porous hybrid structure outperformed multiple treatments
using commercial dexamethasone drops (Ren et al., 2019).

4 Conclusion

In ocular inflammatory illnesses, innate immune cells play a key
role in removing the inflammatory pathogen or infection and
subsequent regeneration of the inflamed region by homeostatic
action and fibrosis development. Since the eye is extremely
sensitive to inflammation and injury, it is critical to maintain its
homeostasis and to avoid any chronic or harmful inflammation that
can lead to ocular disorders such as DED, uveitis, glaucoma, AMD,
as well as any other chronic inflammation that can result in eye
tissue degeneration and blindness. Further research regarding the
eye’s immunological response is required for designing tolerogenic
biomaterials that act as intraocular lenses, cellular scaffolds,
therapeutic molecule depots, or carriers of gene therapies. The
discussion presented in this article sheds light on the potential
use of biomaterials to direct immune responses toward favorable
treatment outcomes.

Biomaterials can be utilized as manipulating agents for
interacting with ocular innate immune cells and directing pro- or
anti-inflammatory responses by using them either cargo-less or
cargo-loaded. In this review, we discussed several physiochemical
features of biomaterials such as mechanical strength, size, shape,
charge, wettability, and biodegradability, as well as how each of these
factors might program the fate of the innate immune cells’ phase by
inhibiting or inducing special receptors and signaling pathways.
These physiochemical parameters also affect the biodistribution and
the interaction between the target cells and the cargoes. While
previous efforts have focused on the intended action of the
carrier, the influence of these parameters on the immune
response has been neglected. They are often “discovered” as a
surprise or treated as an unexpected side effect.

However, one of the most difficult issues to address is
determining how to identify the influence of each physiochemical
feature on the underlying biomaterial-related immune response and
what cross-talks exist between them. More study and deeper
understanding are required to determine the precise cell-
biomaterial interaction mechanism by combining these

physiochemical features and determining the effect of combining
them on innate immune system programming. In the future,
machine learning and artificial intelligence (AI) will be useful to
forecast the ocular innate immune system’s reaction to a given
biomaterial with defined features. A combination of gene therapies
and immunomodulatory biomaterials carriers could be also a
promising method for programming targeted overacting pro-
inflammatory innate immune cells in a downregulating manner
to retain their anti-inflammatory action, without side-effects on
other immune cells’ fighting action.

Overall, there is significant therapeutic potential in ocular
inflammatory diseases by focusing on triggering the anti-
inflammatory phase of ocular-activated innate immune cells and
providing homeostasis and tissue regeneration signals to the eye via
immunomodulatory biomaterials that can sustain the release of
novel therapeutic agents such as nucleic acids, biomolecules, or
MSCs for an extended period of time with only one administration.
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Glossary

NTs Neutrophils

MG Microglia

Mφs Macrophages

DCs Dendritic Cells

cDC conventional DC

pDC plasmacytoid DC

MSCs Mesenchymal stem cells

BM-MSCs Bone marrow-derived MSCs

LCs Langerhans cells

AM-MSCs Adipose tissue-derived MSCs

LSCs Limbal epithelial stem cells

APCs Antigen-presenting cells

ECM Extracellular matrix

AMD Age-related macular degeneration

DED Dry eye disease

DR Diabetic retinopathy

EAU Experimental autoimmune uveitis

OHT Ocular hypertension

IOP Intraocular pressure

RP Retinitis pigmentosa

RGCs Retinal ganglion cells

MGD Meibomian gland dysfunction

DAMP Danger-associated molecular pattern

PAMP Pathogen-associated molecular pattern

NETs Neutrophil extracellular traps

ACAID Anterior chamber-associated immune deviation

ADP/ATP Adenosine di/tri-phosphate

NF-κB Nuclear factor kappa B

IOL Intraocular lens

FA Fluocinolone acetonide

FBR Foreign body response

HLA-G Human leukocyte antigen G

HMGB1 High mobility group protein B1

LPS Lipopolysaccharides

IDO Indoleamine 2, 3-dioxygenase

PEDF Pigment epithelium derived factor

PRR Pattern-recognition receptors

LAIR-1 Leukocyte-associated immunoglobulin-like receptor-1

RANTES Regulated upon activation, normal T cell expressed and
secreted

Ly6C Lymphocyte antigen 6 complex

OVA Ovalbumin

HA Hyaluronate

GelMA Methacrylate-gelatin

AVs Adenoviruses

AAVs Adeno-associated viruses

mRNA Messenger RNA

miRNA Micro RNA

siRNA small interfering RNA

pDNA Plasmid DNA

NPs Nanoparticles

MPs Microparticles

LNPs Lipid-based nanoparticles

SLN Solid lipid nanoparticles

AuNPs Gold nanoparticle

AI Artificial intelligence

AM Amniotic membrane

AIM2 Absent in melanoma 2

TNF-⍺ Tumor necrosis factor-alpha

IFN-γ Interferon gamma

TGF-β Transforming growth factor-β
iNOS inducible nitric oxide synthase

IL- Interleukin-

P2Y12 P2 purinergic receptor

Caspase-1 Cysteine-aspartic acid protease-1

Iba-1 Ionized calcium-binding adapter molecule 1

APTES Aminopropyltriethoxylsilane

ARG Arginase

ILM Internal limiting membrane

MCP-1 Monocyte chemoattractant protein-1

IgG Immunoglobulin G

CCL- C-C motif chemokine ligand

CCR- C-C chemokine receptor

CD- Cluster of differentiation

CD200R Cluster of differentiation-200 receptor

MHCII Major histocompatibility complex class II

CNTF Ciliary neurotrophic factor

CNV Choroidal neovascularization

COX- Cyclooxygenase

CR2-fH Complement receptor 2 and factor H

CXCL- C-X-C motif chemokine ligand

Cy A Cyclosporine A

PD-L1 Programmed cell death-ligand 1

NLR Nod-like receptors

VEGF Vascular endothelial growth factor

TLR- Toll-like receptor

ROS Reactive oxygen species

TRPV Transient receptor potential vanilloid

K 5 Kringle 5

VIP Vasoactive intestinal peptide

LBL Layer-by-layer
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Siglec-H Sialic acid binding immunoglobulin-like lectin H

MIF Migration inhibitory factor

MMP Matrix metalloproteinase

MyD88 Myeloid differentiation primary response 88

PCO Posterior capsular opacification

RGD Arginyl-glycyl-aspartic acid

PAA Polyacrylic acid

PAMAM Poly (amidoamine)

mPEG-PLGA-BOX Methoxy-poly (ethylene glycol)-block-poly
(lactic-co-glycolic acid)

PBT Polybutylene terephthalate

PCL Poly-caprolactone

PEG Polyethylene glycol

PEI Polyethylenimine

PEMA Poly (ethylene-alt-maleic anhydride)

PEO Polyethylene oxide

PHEMA Poly (2-hydroxyethyl methacrylate)

PLA Polylactic acid

PLGA Poly(lactide-co-glycolide)

PMMA Poly (methyl methacrylate)

PVA Poly (vinyl alcohol)
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