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Gene therapy, a pivotal cornerstone in biomedical research, has emerged as a
transformative approach for addressing a wide spectrum of dermatologic
conditions, including hereditary disorders, chronic wounds, and immune
related skin diseases. The skin, with its expansive surface area and
regenerative capacity, serves as an ideal platform for localized gene delivery.
However, conventional gene therapy strategies face critical limitations, such as
high costs, suboptimal transfection efficiency, immunogenicity, and off-target
effects. In this context, gene hydrogels have emerged as an innovative paradigm,
offering tailored physicochemical and biological functionalities to overcome
these challenges. Gene hydrogels are distinguished by their tunable
morphologies (e.g., particulate or bulk gel configurations), which enable
precise control over therapeutic release kinetics and spatial distribution. Their
three-dimensional polymeric networks recapitulate the extracellular matrix,
functioning as bioactive scaffolds that enhance tissue regeneration, facilitate
cell migration, and accelerate wound healing. By integrating stimuli-responsive
polymers, these hydrogels achieve spatiotemporal control of gene delivery,
improving target specificity while minimizing systemic exposure. Furthermore,
their inherent biocompatibility and biodegradability mitigate immunogenic risks
and prevent long-term residue accumulation, addressing pivotal safety concerns
in clinical translation. This review systematically examines the multifaceted
advantages of gene hydrogels, including their ability to bypass the stratum
corneum barrier, protect genetic payloads from enzymatic degradation, and
sustain localized therapeutic effects over extended periods. Recent
advancements in “smart” hydrogels, responsive to pathological cues such as
pH fluctuations or matrix metalloproteinase overexpression, further underscore
their potential in personalized medicine. By synergizing material science with
gene-editing technologies, gene hydrogels represent a revolutionary leap toward
precision dermatologic therapies. Future challenges, such as scalable
manufacturing and dynamic regulatory mechanisms, are critically analyzed
alongside opportunities in intelligent material design and interdisciplinary
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innovation. This comprehensive analysis positions gene hydrogels as a cornerstone
for next-generation dermatologic therapeutics, bridging the gap between
laboratory innovation and clinical impact.
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1 Introduction

1.1 Gene delivery as a promising
therapeutic approach

The skin is a dynamic defense system with a complex structure,
primarily composed of keratinocytes in the epidermis that form the
outermost protective layer through tight junctions and
corneodesmosomes (Søgaar et al., 2021). This intricate
architecture poses challenges to the penetration of
macromolecular therapeutics (Subramanian et al., 2024),
including nucleic acid-based agents such as plasmid DNA,
mRNA, and CRISPR ribonucleoproteins (Zhang W. et al., 2024).
The stratum corneum, characterized by its hydrophilic nature and
anionic surface charge, further impedes passive diffusion of cationic
delivery carriers, such as polyethyleneimine (PEI) and liposomes
(Singh et al., 2022). Additionally, cutaneous nucleases and proteases
rapidly degrade unprotected genetic payloads, with naked mRNA
exhibiting a half-life of less than 30 min on the skin surface (Chen
et al., 2022).

Current gene delivery systems, including viral and non-viral
vectors, have demonstrated notable mechanistic advantages but
are also confronted with significant technological limitations. Viral
vectors, particularly γ-retroviral vectors (RVs) and self-
inactivating lentiviral (SIN-LV) platforms, have demonstrated
notable clinical efficacy. Pioneering work by Siprashvili et al.
(2016) established proof-of-concept through successful
epidermal regeneration using RV-transduced autologous
keratinocyte grafts in junctional epidermolysis bullosa patients.
Subsequent clinical translation was evidenced in two registered
trials (NCT02493816, NCT02810951) employing SIN-LV-
mediated COL7A1 transduction in patient-derived fibroblasts,
which achieved durable type VII collagen restoration via
intradermal transplantation. (Lwin et al., 2019). Recent
preclinical advances by Donadon et al. (2019) demonstrated the
therapeutic potential of adeno-associated virus serotype 9 (AAV9)
vectors through SPINK5 gene delivery in a Netherton syndrome
murine model, resulting in functional recovery of epidermal
barrier integrity. Nevertheless, critical challenges persist across
viral vector platforms, including host immune responses, potential
insertional oncogenesis, limited transgene cargo capacity, and
inefficient in vivo delivery kinetics - factors that collectively
impede broad clinical implementation (Bae and Park, 2020;
Rubin, 2020; Wang et al., 2022; Woodworth, 2020).

Concurrently, non-viral vector systems have garnered
significant scientific interest as versatile alternatives for cutaneous
gene therapy applications. Polyethylenimine (PEI)-based
architectures maintain their status as gold-standard polymeric
vectors, with extensive preclinical characterization of their nucleic

acid complexation dynamics and endosomal escape mechanisms
(Søgaar et al., 2021). Recent technological innovations have
propelled lipid-based platforms to clinical relevance: Eden et al.
(Subramanian et al., 2024) demonstrated that locally administered
LNP-encapsulated mRNA induced tumor-specific T-cell responses
in a Phase I clinical trial (NCT04882718). Complementing this, Hsu
et al. (Zhang W. et al., 2024) developed ionizable lipid nanoparticles
capable of sustained COL7A1 mRNA delivery, achieving durable
type VII collagen restoration (4 weeks) in patient-derived
keratinocyte cultures. Comparative analyses reveal that non-viral
systems demonstrate distinct advantages over viral counterparts,
including enhanced biocompatibility, cost-effective manufacturing
workflows, expanded genetic cargo capacity (>20 kb), and precise
dose modulation capabilities (Singh et al., 2022; Sun et al., 2023).
However, persistent translational barriers persist, particularly
heterogeneous transfection efficiency and inadequate stratum
corneum penetration kinetics, underscoring the need for rigorous
clinical optimization to achieve therapeutic equivalence with viral
platforms (Chen et al., 2022).

Currently, the development of gene therapy products has
encountered significant challenges, primarily due to the lack of
safe and efficient delivery systems and the urgent need for
minimally invasive administration routes (Søgaar et al., 2021). In
most laboratory and preclinical studies, genetic materials are
typically dissolved in alkaline buffer solutions and directly
applied to the skin without any formulation additives
(Subramanian et al., 2024; Zhang W. et al., 2024; Singh et al.,
2022; Sun et al., 2023; Blair et al., 2020). However, this
conventional approach presents several critical limitations: (i)
inadequate control over drug pharmacokinetics, (ii) occurrence of
acute toxicity, (iii) poor tissue retention of therapeutic agents, (iv)
suboptimal therapeutic outcomes, and (v) inconsistent translation
from preclinical to clinical results. These limitations underscore the
critical necessity of developing advanced drug delivery systems
tailored for gene therapy. To address these challenges, a
hydrogel-based gene delivery platform has emerged as a novel
therapeutic strategy in dermatology. By synergistically integrating
advancements in material science and gene-editing technologies,
this innovative platform is poised to establish a transformative
roadmap for next-generation personalized dermatological
treatments. In the following sections, we systematically analyze
the unique advantages of hydrogels as gene carriers, including
their tunable physicochemical properties, sustained release
kinetics, and enhanced biocompatibility. Furthermore, we
critically evaluate their therapeutic potential in overcoming
current limitations of cutaneous gene delivery, such as stratum
corneum penetration barriers and nuclease-mediated payload
degradation. These insights provide a foundation for developing
innovative solutions to advance precision medicine in dermatology.
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1.2 Gene hydrogel: an innovative challenge
in gene delivery

In recent years, gene delivery systems for dermatological
applications have advanced rapidly, with hydrogels emerging as a
promising solution to the challenges posed by the skin barrier.
Hydrogels are three-dimensional, cross-linked polymeric networks
that provide a unique platform for encapsulating genetic payloads
(Sun et al., 2023). They enable sustained release through controlled
diffusion, matrix expansion, or degradation kinetics, thereby
circumventing the rapid clearance of free carriers and offering
enhanced protection against enzymatic degradation and oxidative
stress (Zhao et al., 2022).

Hydrogels address key challenges in gene delivery through dual
functionality. Microneedle-incorporated formulations mechanically
breach the stratum corneum to establish intradermal drug depots,
while viscoelastic hydrogel dressings enhance follicular and
transappendageal delivery via conformal skin adhesion (Zeng
et al., 2021). Additionally, hydrogels fabricated from
biocompatible materials such as hyaluronic acid and collagen
possess intrinsic anti-inflammatory properties, which can reduce
immune recognition and minimize adverse immune responses (Lu
et al., 2023). As shown in Table 1, these attributes position hydrogels
as a superior alternative to traditional free carriers (Bischof and
Hierl, 2024).

Through continuous optimization, hydrogel-mediated gene
delivery has transformative potential for advancing precision
medicine in dermatology. By overcoming the limitations of free
carriers, such as short retention time, off-target effects, and immune
activation, hydrogels are expected to expand beyond the treatment
of rare skin diseases to applications in wound healing and immune-
mediated conditions. This innovative approach not only enhances
delivery precision but also reduces the need for frequent re-dosing,
setting a new standard for cutting-edge dermatological therapies.

While previous reviews have thoroughly addressed hydrogel-
based gene delivery in regenerative medicine and the broader scope
of polymeric carriers for local nucleic acid delivery (Carballo-
Pedrares et al., 2020; Fliervoet et al., 2018), this review
distinguishes itself by offering three distinct contributions. First,
it focuses exclusively on dermatological applications, providing an
in-depth analysis of gene hydrogel platforms for hereditary skin
diseases (e.g., epidermolysis bullosa), chronic wounds, and immune-
mediated disorders (e.g., atopic dermatitis and psoriasis). Unlike
reviews that cover regenerative contexts such as bone or neural

tissue repair (Carballo-Pedrares et al., 2020), this review is dedicated
to the skin’s unique barriers (e.g., stratum corneum) and disease-
specific microenvironments. Second, it integrates both viral and
non-viral vector systems within hydrogel platforms, whereas prior
studies often focus solely on non-viral approaches (Carballo-
Pedrares et al., 2020). Third, it positions gene hydrogels not
merely as delivery vehicles but as bioactive platforms that
synergize material properties (e.g., three-dimensional extracellular
matrix mimicry, stimuli-responsiveness) with gene therapy
precision—a dimension less emphasized in general nucleic acid
delivery reviews (Fliervoet et al., 2018).

2 Overview of hydrogel as gene carrier

2.1 Classification and structure of hydrogels

Hydrogels represent a class of three-dimensional (3D)
polymeric networks formed by crosslinked hydrophilic
macromolecules capable of absorbing substantial amounts of
aqueous fluid while resisting dissolution. This unique property
arises from their ability to retain water within the interstitial
spaces of their porous architecture (Cao et al., 2021).
Classification of hydrogels is multifaceted, encompassing
criteria such as origin (natural, synthetic, or hybrid),
physicochemical properties (e.g., mechanical strength, swelling
ratio), ionic characteristics (anionic, cationic, or neutral side
groups), crosslinking mechanisms (chemical covalent bonds
vs. physical interactions), and responsiveness to stimuli (e.g.,
pH, temperature, enzymatic activity) (Sun et al., 2021; Chai
et al., 2017).

Hydrogels are synthesized through crosslinking of hydrophilic
polymer chains composed of covalently bonded monomeric repeat
units. During fabrication, gene-loaded nanoparticles are
homogenously dispersed within the hydrosol (pre-crosslinked
precursor solution). Subsequent polymerization triggers covalent
bond formation between adjacent polymer chains, transforming the
hydrosol into a stable gene-embedded hydrogel featuring a three-
dimensional entangled network (Figure 1a). This process
concurrently creates interconnected micropores (10–500 nm
diameter) through controlled interchain spacing, a structural
optimization that balances osmotic swelling forces with elastic
recoil to recapitulate native extracellular matrix (ECM)
biomechanical properties (Mastr et al., 2020; Fang et al., 2020).

TABLE 1 Challenges of free carriers and hydrogels in the field of gene delivery.

Challenge Free vectors Gene hydrogels

Stratum corneum
penetration

Passive diffusion, insufficient efficiency Microneedle-assisted + adhesion penetration, high efficiency

Enzymatic degradation Nucleic acids are susceptible to rapid degradation by DNase/
RNase

Network isolation protection with extended half-life

Immune activation High risk of TLR/complement pathway activation Physical barrier + anti-inflammatory material, reduced inflammatory factors

Targeting Systemic exposure, significant off-target effects Local sustained release + environmental response, Excellent target cell delivery
efficiency

Repeat dosing requirements Frequent injections (e.g., once a day) A single application lasts for more than 7 days
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In biomedical engineering, hydrogels have emerged as
indispensable platforms for drug delivery, regenerative medicine,
and wound management. The high porosity inherent to hydrogels

facilitates cell infiltration into their interior and enables three-
dimensional migration and proliferation. This porous architecture
provides the necessary physical framework for cells to interact with

FIGURE 1
Gene hydrogels mediated gene delivery processes for enhanced gene transfection efficacy and safety. (a) Schematic illustration of the preparation
of gene hydrogels. (b) Schematic representation illustrates cell migration as they enter the interior of the gene hydrogel (Zhang et al., 2024b). (c)
Schematic illustration of local treatment of skin diseases with gene hydrogels (Zhang et al., 2023).
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receptor-binding ligands presented on the hydrogel surface,
establish cell-cell junctions, and enhance adhesion. These
combined processes subsequently promote robust cell migration
(Figure 1b). 26 For subsequent applications of functionalized
particles, surface modification is a crucial step, such as the
introduction of biofunctional molecules and targeting ligands, to
improve their adsorption and endocytosis efficiency in target cells.
Gene hydrogels, characterized by shear-thinning and injectable
properties, offer versatile delivery options, including use as
dressings or injections for localized administration. As
demonstrated in Figure 1c, nanoparticles can directly target
diseased cells through these hydrogels.

Recent innovations focus on “smart” hydrogels engineered to
release genetic payloads (e.g., siRNA, mRNA) in response to
pathological stimuli such as dysregulated pH or matrix

metalloproteinase (MMP) overexpression. (Cao et al., 2021; Mo
et al., 2021; Shan and Wu, 2024). These advancements position
hydrogels as next-generation vehicles for spatiotemporally
controlled gene therapy, with transformative potential in
precision medicine. In conclusion, the developed gene hydrogels
are user-friendly, easy to prepare, and biodegradable, and their
ability to be directly incubated with cells facilitates in vitro
evaluation.

2.2 Preparation methods of gene hydrogel

In recent years, gene hydrogels have garnered significant
attention in the field of controlled drug delivery systems due to
their excellent biocompatibility, high capacity for therapeutic

FIGURE 2
Overview of the different technologies available for gene hydrogels fabrication. (a)Gene hydrogels fabrication via fragmentation. (b)Gene hydrogels
fabrication using a batch emulsion. (c)Gene hydrogels fabrication using in-air microfluidics. (d) The example of microgel fabrication using a microfluidic
emulsion. (e) Gene hydrogels fabrication via precipitation polymerization. (f) An overview of gene hydrogels fabrication using electrohydrodynamic
spraying (Daly, 2023).
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molecules, and the slow diffusion characteristics of their elastic
networks (Hirsch et al., 2020; Mohamed et al., 2020). Currently,
several hydrogel manufacturing techniques are available, including
mechanical disruption or stirring (Lacroix et al., 2022), batch
emulsification (Lacroix et al., 2022; Guerzoni et al., 2017),
microfluidic emulsification (Nakajima et al., 2016), air
microfluidics (Chen et al., 2021; Cha et al., 2014), precipitation
polymerization (Bustamante-T et al., 2022), and electrospraying (de
Rutte et al., 2019).

Mechanically induced physical fragmentation methods have
emerged as a preferred strategy for industrial-scale production
due to their operational simplicity and high yield. For instance,
extruding pre-crosslinked bulk hydrogels through metallic sieves
(Figure 2a) enables rapid production of microparticles with
dimensions dictated by the sieve pore geometry. (Lee et al.,
2018). Similarly, high-speed shear devices (e.g., homogenizers)
can dynamically fragment macroscopic hydrogels into micron-
scale particles. (Wolff et al., 2020). However, these techniques
exhibit limited capability in controlling particle morphology,
often yielding irregularly shaped products, thereby restricting
their application in precision drug delivery systems.

Traditional batch emulsification disperses hydrogel precursor
solutions into an oil phase under agitation to form droplets
(Figure 2b), followed by droplet solidification via photothermal
triggering or crosslinker diffusion (Muir et al., 2021). While this
method is readily scalable, it suffers from broad droplet size
distributions (polydispersity index >0.2), necessitating post-
sieving steps to improve uniformity (Widener et al., 2022).

To address oil residue challenges, emerging in-air microfluidics
utilizes high-velocity collisions of two liquid streams (containing the
precursor and crosslinker) in a gaseous phase (Figure 2c), directly
generating monodisperse droplets for in situ crosslinking
(Kamperman et al., 2018). Recent studies demonstrate that this
approach achieves production rates 10–100 times faster than
conventional microfluidic chips while eliminating the need for
complex washing procedures, offering a cleaner workflow for cell
encapsulation applications (Visser et al., 2018).

Microfluidic technology enables precise control of multiphase
fluids within microchannels (e.g., flow-focusing or co-flow
configurations), allowing the fabrication of gene hydrogels with
uniform particle sizes (polydispersity index <0.05) (Figure 2d).
(Chen et al., 2024) For instance, linear modulation of particle
diameters within the 50–500 μm range can be achieved by
adjusting the oil-to-aqueous phase flow rate ratios or capillary
dimensions. Notably, the viscosity of the precursor solution must
be compatible with the microfluidic chip’s channel dimensions to
prevent channel clogging (Mohamed et al., 2020; Chen et al., 2021).
Furthermore, parallelized chip designs have successfully enhanced
production rates to the gram-per-hour scale, significantly advancing
their potential for clinical translation (de Rutte et al., 2019).

Another limitation of emulsions is the presence of oil, which can
be challenging to fully remove from final products. To overcome
this, oil-free all aqueous two-phase systems can also be employed for
gene hydrogels fabrication (Wang et al., 2023).A commonmethod is
to form gene hydrogel by precipitation polymerization.

This method involves dissolving monomers, crosslinkers, and
initiators in a suitable solvent, followed by polymerization initiated
by thermal activation or UV irradiation (Nakano et al., 2020). As

polymer chains undergo self-assembly and crosslinking, colloidal
particles nucleate and grow until reaching a critical size, after which
they precipitate (Figure 2e). (Chen et al., 2024) Although particle
size can be modulated by adjusting solvent polarity or monomer
concentration, the harsh chemical environment of the reaction
system (e.g., free radicals, elevated temperatures) limits its
applicability in encapsulating sensitive biomolecules (Hirsch
et al., 2020; Jiang et al., 2021).

Electrospraying employs a high-voltage electric field to
overcome droplet surface tension, atomizing the precursor
solution into charged microdroplets (Figure 2f), which are
collected in a crosslinker-containing bath for instantaneous
solidification (Xin et al., 2019). For example, sodium alginate
solutions can be electrosprayed into a CaCl2 bath to form cell-
encapsulating microgels (Correia et al., 2019). A key challenge lies in
the specialized equipment requirements and the need to optimize
the interplay between electric field strength and solution
conductivity (Gansa et al., 2018).

It is evident that different preparation methods influence the
structure and function of gene hydrogel particles, and the selection
of an appropriate manufacturing process can enhance the efficacy of
hydrogels in gene delivery. It should be noted that each of the
manufacturing methods discussed has been used to produce
microgels with sufficient sterility for cell culture and bioprinting
applications, and they have shown good potential for gene delivery
in dermatological applications (Qazi et al., 2022; Mendes
et al., 2021).

3 Treatment of hereditary skin diseases
with gene hydrogels

3.1 Overview of hereditary skin diseases

Hereditary skin diseases are a type of genetic disorder caused by
genetic mutations, mainly manifested as abnormalities in skin
structure and function. This type of disease usually has genetic
susceptibility and is more common in families. Common hereditary
skin diseases include but are not limited to epidermolysis bullosa
(EB), hereditary vitiligo, keratosis, congenital ichthyosis, and
hereditary hemangioma (Yu et al., 2022). Among these, EB serves
as a representative condition for understanding the challenges and
opportunities in genetic dermatological therapies.

Epidermolysis bullosa (EB) is a heterogeneous group of
inherited blistering disorders characterized by skin fragility (Zeng
et al., 2021; Zeng et al., 2019; Has et al., 2018; Rashidghamat and
McGrath, 2017). Since its initial clinical classification in 1962, EB has
been subdivided into four main types along with numerous rare and
less-common subtypes (Rashidghamat andMcGrath, 2017). Among
these, recessive dystrophic epidermolysis bullosa (RDEB) stands as a
representative monogenic inherited skin fragility disorder within the
EB family. Genetically, RDEB is induced by biallelic single-gene loss-
of-function mutations in the COL7A1 gene, which encodes the skin
structural protein type VII collagen (C7). It is well-established that
both human keratinocytes and dermal fibroblasts are capable of
secreting C7. C7 serves as the principal component of anchoring
fibrils (AFs) and furnishes the primary structural connection
between the basal membrane zone (BMZ) and the papillary
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dermis layer of the skin, playing a crucial connecting role at the
dermal-epidermal junction. The involvement of this structural
protein can give rise to the formation of cracks or blisters
beneath the dense plate of the BMZ.

In addition to chronic and recurrent wounds, tissue fibrosis,
severe pain, and frequent growth impairments, RDEB patients are
confronted with an extremely high risk of developing invasive
squamous cell carcinoma. This is attributed to chronic
remodeling and enhanced cell proliferation at the lesion site
(Castelo et al., 2019). At present, the cure of RDEB still faces
significant challenges. Although significant progress has been
made in related treatment methods in previous research and
practice, such as the use of lentivirus and gamma retroviral
vectors to supplement the COL7A1 gene in keratinocytes and
fibroblasts; The use of allogeneic fibroblasts, mesenchymal
stromal cells (MSCs), bone marrow transplantation (BMT) (Riedl
et al., 2022) and other methods has not yet achieved the ideal effect
of completely curing RDEB. This underscores the urgent need for
innovative therapeutic strategies, such as localized gene delivery via
hydrogels, to address the structural and functional defects caused by
COL7A1 mutations.

3.2 Application of gene hydrogels in
hereditary skin diseases

Gene hydrogels represent a groundbreaking solution for
overcoming the challenges of genetic therapies in hereditary skin
diseases. These hydrogels enable localized delivery of genetic
material to compromised skin, leveraging the altered skin barrier
observed in many genetic dermatoses (Hou et al., 2023; Chen et al.,
2023; El Yacoubi and Chbicheb, 2023). Abnormalities in genes
encoding epidermal cell components, extracellular lipid matrices,
or cell-cell/cell-matrix interactions can increase skin permeability,
facilitating the transport of larger molecules, such as gene editors,
without requiring external barrier breach (Popp et al., 2024;
Tartaglia et al., 2021).

One of the key obstacles to RDEB gene therapy is the large size of
the COL7A1 gene, which encodes type VII collagen and spans
8833 nucleotides (Yu et al., 2022). This size poses significant
challenges for efficient gene delivery, particularly through
traditional viral vectors, due to payload limitations and reduced
transduction efficiency. Despite these challenges, preclinical studies
have explored innovative approaches, such as direct intradermal
injection of lentiviral vectors expressing C7 or topical delivery of
recombinant C7 protein (Castelo et al., 2019; Riedl et al., 2022).

The inherent biocompatibility and minimally invasive nature of
hydrogels make them an ideal platform for direct gene therapy
application in open wounds of patients with recessive dystrophic
epidermolysis bullosa (RDEB). By circumventing the need to breach
the intact epidermal barrier, hydrogel-mediated delivery enables
localized transfection of dermal cells, stimulating fibroblast-derived
type VII collagen (C7) secretion and subsequent anchoring fibril
(AF) regeneration to facilitate dermo-epidermal reattachment
(Figure 3). A notable advancement in this field is Vyjuvek™
(bercolagene telserpavec), the first FDA-approved in vivo
localized gene therapy for hereditary skin disorders (Guide et al.,
2022). This breakthrough formulation employs a low-

immunogenicity herpes simplex virus type 1 (HSV-1) vector
(KB103) encoding COL7A1, which is admixed with a hydrogel
excipient and topically applied to DEB lesions. Clinical validation
through Phase I/II trials (NCT03536143, NCT04491604)
demonstrated sustained C7 restoration while minimizing systemic
vector dissemination through controlled release kinetics (Guide
et al., 2022; Gurevich et al., 2022).

Beyond viral vectors, hydrogel systems have been successfully
adapted for non-viral gene delivery. Zhang et al. achieved efficient
GFP transfection in Hela cells using polyethyleneimine (PEI)-DNA
complexes encapsulated within thermoresponsive hydrogels (Zhang
et al., 2024a). Similarly, agarose hydrogel-mediated plasmid delivery
extended transgene expression duration by 3-fold compared to
aqueous injections through enhanced local retention and reduced
nuclease degradation (Wu et al., 2023). The utilization of hydrogels
as a delivery medium for gene therapy represents a significant
advancement over traditional methods such as DNA injection in
solution. Hydrogels not only enhance the retention of plasmid DNA
at the injection site, thereby prolonging gene expression, but also
offer several additional benefits, including improved patient
convenience and a reduced risk of injection-related infections
(Chamorro et al., 2013). Moreover, gene hydrogels exhibit
numerous advantages when compared with other gene therapy
products. These benefits include the avoidance of first-pass
effects, prevention of wound dressing adhesion, provision of a
moist and protective microenvironment that is conducive to
wound healing, and alleviation of adverse reactions such as
gastrointestinal discomfort (Gurevich et al., 2022).

Following successful application in recessive dystrophic
epidermolysis (RDEB), the therapeutic efficacy of gene hydrogels
in the treatment of hereditary dermatoses has been thoroughly
validated. Their capacity to efficiently and safely deliver the
COL7A1 gene has significantly enhanced skin integrity while
minimizing adverse effects. Despite these notable advancements,
gene hydrogels still encounter several challenges that require
attention for clinical translation. Efforts to optimize delivery
systems should prioritize the incorporation of protective agents
to enhance nucleic acid stability. Comprehensive evaluations of
the off-target effects of gene editing tools and the potential
chronic immune responses induced by hydrogel implantation are
essential to ensure safety and efficacy. Additionally, the development
of precision targeting mechanisms and customizable gene
expression profiles tailored to diverse therapeutic needs remains a
critical area of investigation. Nonetheless, gene hydrogels present a
promising platform for gene delivery, owing to their
biocompatibility and sustained-release properties. In the
following section, we will investigate the potential application of
gene hydrogels in skin wound healing, highlighting their broader
therapeutic potential in dermatological treatments.

4 Treatment of wound healing with
gene hydrogels

4.1 The physiological of wound healing

Skin wound healing is a dynamic, multi-phase process that
restores tissue integrity through coordinated cellular and
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molecular interactions (Peña and Martin, 2024). Acute wound
healing typically progresses through four overlapping stages:
hemostasis, inflammation, proliferation, and remodeling (Sorg
and Sorg, 2023). During hemostasis, platelets aggregate at the
injury site, forming a fibrin clot that acts as a provisional matrix
while releasing growth factors (e.g., PDGF, TGF-β) to recruit
immune cells (Freedman et al., 2023). The subsequent immune
phase (24–72 h post-injury) involves neutrophils clearing debris and
macrophages polarizing from pro-immune (M1) to anti-immune
(M2) phenotypes, resolving inflammation and initiating tissue
repair (Novak and Koh, 2013). In the proliferative phase
(3–21 days), keratinocytes migrate across the wound bed via
integrin-mediated interactions with the extracellular matrix
(ECM) (Santoro and Gaudino, 2005), while fibroblasts synthesize
collagen-rich granulation tissue under the regulation of TGF-β and
VEGF (Yao et al., 2024), Finally, remodeling (weeks to years)
ensures ECM maturation through collagen crosslinking and
realignment mediated by matrix metalloproteinases (MMPs) and
tissue inhibitors of metalloproteinases (TIMPs) (Lin et al., 2023).

In contrast, chronic wounds (e.g., diabetic ulcers, venous leg
ulcers) fail to progress through these stages due to persistent
inflammation, hypoxia, or microbial biofilms (Talbott et al.,
2022). Prolonged M1 macrophage dominance perpetuates
oxidative stress and excessive protease activity (e.g., MMP-9),
degrading ECM components and growth factors (Mazurek et al.,
2022), Chronic hypoxia, often linked to microvascular dysfunction
in diabetes, impairs fibroblast proliferation and angiogenesis.
Additionally, senescent fibroblasts in aged or diabetic skin exhibit
reduced responsiveness to growth signals, further delaying re-
epithelialization (Demaria et al., 2017). Bacterial biofilms,
particularly Staphylococcus aureus and Pseudomonas aeruginosa,
exacerbate inflammation and resist immune clearance through
quorum sensing (Sharifiaghdam et al., 2022). In summary, skin
wound healing is a highly organized physiological process that
involves the synergistic effects of multiple cell types and
molecular mechanisms. A deeper understanding of this process
can help develop more effective wound treatment strategies.

4.2 Application of gene hydrogels in
wound treatment

Gene hydrogels represent a transformative approach to
enhancing skin wound healing by integrating the regenerative
properties of hydrogels with targeted gene delivery systems (Zhao
et al., 2017; Gong et al., 2013; Guo et al., 2013). Specifically, the
hydrogel matrix provides a porous structure and an appropriate
swelling ratio, which allows for the presence of oxygen, absorption of
exudates, and maintenance of a moist healing environment (Zhu
et al., 2025), thereby promoting wound healing (Elhabal et al., 2023).
Additionally, hydrogel adhesives can isolate external bacterial
clones, promote gas exchange, and inhibit the proliferation of
anaerobic bacteria (Yampolsky et al., 2024). Unlike traditional
wound dressings (e.g., gauze and cotton wool), hydrogel
dressings loaded with bioactive molecules exhibit ideal biological
activity by releasing encapsulated drugs from the hydrogel matrix
(Gopinath et al., 2004).

Compared with traditional hydrogel dressings that primarily
offer moisturizing and physical protection (Peng et al., 2022), gene
hydrogels address potential molecular pathological issues through
local nucleic acid delivery. These hydrogels can be modified to
release plasmid DNA, siRNA, or miRNA that regulate critical
healing pathways. These gene-modified hydrogels have been
demonstrated to significantly mitigate inflammatory responses
during wound healing, minimize drug-induced cytotoxicity to
host cells, and expedite tissue regeneration (Figure 4). (Elhabal
et al., 2023) For instance, the hydrogel loaded with plasmid DNA
encoding VEGF significantly enhanced angiogenesis by 2.5-fold by
sustaining the expression of growth factors from 7 days (free vector)
to 21 days (Lou et al., 2020). Similarly, chitosan hydrogels loaded
with miR-29b accelerated wound closure in diabetic mice by 40%
through collagen regulation (Kim et al., 2022).

The latest innovative hydrogels employ stimulus-responsive
polymers that react to changes in pH or enzyme activity at the
wound site to release therapeutic genes (Alkekhia et al., 2022).
Biocompatibility studies have demonstrated that even at high

FIGURE 3
Prospects for the application of gene hydrogel in the field of dermatology. RDEB is caused by COL7A1mutations that lead to blistering beneath the
lamina densa in BMZ. Keratinocytes and fibroblasts are main sources to secrete C7 which aggregates into AFs (Zeng et al., 2021).
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nucleic acid loading concentrations, the cytotoxicity of human skin
fibroblasts (HDFs) is minimal, supporting the potential for clinical
translation (Lee et al., 2021). However, optimizing transfection
efficiency without viral vectors remains a challenge. For example,
a positively charged hydrogel matrix modified with
polyethyleneimine (PEI) achieved 65% siRNA uptake in HDFs by
enhancing intracellular escape (Fattahi et al., 2024).

Despite the promising preclinical results, scaling up presents
challenges, including sterilization stability and cost-effective
manufacturing (Carballo-Pedrares et al., 2020). The imbalance
between the mechanical strength and degradation rate of existing
hydrogels may affect the long-term efficacy of wound healing. Future
research should focus on personalized hydrogel platforms to adapt gene
delivery profiles to individual wound microbiomes and healing
biomarkers. With continuous development, gene-activated hydrogels
have the potential to revolutionize chronic wound management by
providing precise treatment that meets the requirements of molecular
and structural healing (Carballo-Pedrares et al., 2020).

5 Treatment of immune related skin
diseases with gene hydrogels

5.1 Immune related skin diseases:
mechanisms and challenges

Immune related skin diseases constitute a growing global health
crisis, affecting approximately 20%–30% of the world’s population
(Hay et al., 2014). These conditions, characterized by dysregulated
interactions between innate and adaptive immunity, impose
profound physical, psychological, and economic burdens. Among

these diseases, atopic dermatitis (AD) and psoriasis (PsO) stand out
as archetypal disorders with distinct immunological mechanisms,
yet overlapping societal impacts.

Atopic dermatitis (AD) is the most common chronic pruritic
immune skin disease (Langan et al., 2020), characterized by
inflammation, impaired skin barrier function, and ecological
imbalance, leading to the formation of itchy and eczema areas
(Czarnowicki et al., 2019). Its pathogenesis depends on the Th2/
Th22 polarized immune axis, which damages the skin barrier and
maintains itching, exacerbating skin barrier dysfunction and promoting
ecological imbalance. Targeting these pathways by blocking IL-4
(Renert-Yuval and Guttman-Yassky, 2020), IL-13 (Renert-Yuval and
Guttman-Yassky, 2020), IL-31 (Thyssen and Schmid-Grendelmeier,
2023) and inhibiting Janus kinase activity (Thyssen and Thomsen) has
been shown to effectively improve the prognosis of AD patients.
Clinically, AD presents as a vicious pruritus-scratch cycle, with
lichenification and excoriations predominantly occurring in skin
folds (e.g., axillae, neck) – regions subject to complex and extensive
mechanical deformation (Bieber, 2022). Consequently, hydrogels
designed for this application must exhibit exceptional softness
combined with high tensile strength and toughness to withstand
these stresses. Secondly, unconscious scratching in AD patients
poses a risk of localized damage to the dressing, necessitating
intrinsic self-healing capabilities in the hydrogel material. Finally,
robust tissue adhesion is essential to ensure stable, long-term
adherence to the dynamic skin surface, eliminating the need for
supplementary fixation methods such as medical tapes or gauze.

Unlike AD, psoriasis (PsO) is a systemic IL-17/IL-23 driven
disease with a strong genetic component (HLA-C*06:02 confers
40%–50% heritability) (Nakats et al., 2016). Pathologically speaking,
IL-23 derived from dendritic cells activates Th17 cells to excessively

FIGURE 4
Schematic illustration of the involvement of gene therapy approaches in wound healing process. Gene therapy systems enhanced re-
epithelialization, cell attachment, genes linked to angiogenesis, collagen remodeling, cell differentiation, and cell migration.
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produce IL-17A and IL-22, leading to excessive proliferation of
keratinocytes through STAT3 and NF - κ B pathways, resulting in
typical psoriasis plaques: well-defined mica scale erythema lesions
(Figure 5). (Hawkes et al., 2017) In addition to skin involvement,
30% of psoriasis patients also develop psoriatic arthritis (PsA)
(Ogdie et al., 2015). Moreover, psoriasis patients are more than
three times more likely to suffer from depression and anxiety than
normal individuals, mainly due to the itching, pain, and social
stigma associated with chronic plaques or psoriasis vulgaris
caused by a combination of genetic susceptibility and
environmental factors such as streptococcal infection, stress,
smoking, obesity, and alcohol consumption (Michalek et al., 2017).

Both AD and PsO highlight the importance of personalized
treatment approaches. JAK inhibitors (e.g., upadatinib for AD) and
IL-23p19 antagonists (e.g., risankizumab for PsO) have exhibited
potential in clinical trials for the targeted regulation of immune
pathways (Navarro-Triviño et al., 2023). Nevertheless, conventional
treatment methods, such as drug therapy (including topical and oral
medications) and physical therapy, while achieving certain
therapeutic effects, are also associated with several limitations.
These include adverse effects like skin atrophy, pigmentation,
and an elevated risk of skin cancer (Rahmatpour et al., 2023). To
overcome these challenges, gene hydrogel emerges as a promising
novel strategy for treating immune related skin diseases. It offers
several benefits in the treatment of immune related skin diseases,
including precise targeting, sustained drug release, excellent
biocompatibility, promotion of tissue repair, strong
controllability, and convenient local administration (Grän et al.,
2020; Jin et al., 2023; Zouboulis et al., 2022).

5.2 Research findings of gene hydrogels in
immune related skin diseases

Recent progress has positioned hydrogels as a revolutionary
platform for the treatment of chronic inflammatory skin diseases

such as atopic dermatitis (AD) and psoriasis. The inherent
moisturizing ability of hydrogel is used to solve the key AD
pathological problem of xerosis by maintaining 85%–92% skin
water within 24 h (Ha et al., 2022). Hydrogels also allow precise
control of drug release rate and duration. For example, MTX-NPs
loaded hydrogel showed 73% ± 1.21% continuous drug release
within 48 h, but for the treatment of AD/PsO, the release rate
and total amount may need to be adjusted according to the
condition (Asad et al., 2021).

AD, characterized by Th2-driven inflammation and skin barrier
dysfunction, necessitates hydrogels that simultaneously modulate
immunity and restore hydration. Some studies have shown that the
gene hydrogel containing anti RelA siRNA and functional peptide
has therapeutic effect in the model of atopic dermatitis (AD) in mice
(Kanazawa et al., 2015). After local application of hydrogel
containing functional peptide, siRNA is more widely delivered to
the application site of AD induced mouse ear skin than the
preparation without functional peptide, and can improve the ear
thickness and clinical skin severity of AD induced mice. Another
adhesive composite hydrogel patch is composed of poly (N-2,3-
dihydroxypropyl asparagine) (PDHPA), polyasparagine derivatives
and mesoporous silica nanoparticles (MSNs), because MSNs can
improve the mechanical properties, adhesion properties and self-
healing rate of hydrogels, and can load hydrophobic drugs such as
dexamethasone, successfully reducing the severity of atopic
dermatitis in the mouse model (Kim et al., 2023). Furthermore,
leveraging the observed vicious pruritus-scratch cycle in AD, Jia
et al. (2023) developed an innovative boronate-based hydrogel
dressing exhibiting adhesion, stretchability, and self-healing
properties. This hydrogel simultaneously encapsulated
polydopamine nanoparticles (PDA NPs) for reactive oxygen
species (ROS) scavenging and liposome-embedded hydrophobic
focal adhesion kinase inhibitor (FAKi-lipo) for FAK inhibition,
constituting a synergistic therapeutic strategy against AD. During
the experimental phase, mice were randomized into treatment
groups and subjected to different interventions. A sustained

FIGURE 5
Distinctive therapy of gene hydrogels as a topical therapeutic platform for inflammatory skin diseases. The development of a psoriasis plaque
involves the participation of plasmacytoid dendritic cells and type I interferons, which lead to a marked thickening of the epidermis. DC: dendritic cell.
Neu: neutrophil. Gene hydrogels feature tunable porosity, excellent adhesiveness, controlled drug delivery ability, and moisturizing capability (Cao
et al., 2024).
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allergen challenge and scratching behavior were recapitulated
through continuous application of 25 μM MC 903 combined
with mechanical stimulation. Following a 10-day treatment
regimen, immunohistochemical analysis revealed a striking
reduction in pFAK expression within the skin tissue of the
hydrogel-treated group. This finding demonstrates the effective
modulation of FAK phosphorylation in the skin achieved via
FAKi-lipo delivery mediated by the hydrogel. Moreover,
dermatitis severity scores indicated significant clinical
improvement in the hydrogel-treated group (3.14 ± 0.34)
compared to the ADscratch control group (9.29 ± 0.29). This
amelioration is likely attributable to the combined effects of ROS
scavenging by the hydrogel components and FAK inhibition,
collectively mitigating acute inflammation.

While AD is dominated by Th2-mediated inflammation,
psoriasis presents a distinct immunological landscape driven by
IL-17/IL-23 axis. This paradigm shift has inspired hydrogel designs
targeting keratinocyte hyperproliferation and pro-inflammatory
pathways. In this context, the hydrogel containing ZnO/Ag
nanoparticles and methotrexate (MTX) showed dual anti
proliferation and antioxidant effects, realizing the combined
multi-target treatment of psoriasis. ZnO/Ag nanoparticles can
reduce the innate cytokine profile by inactivating p65 in pro-
inflammatory macrophages, and eliminate the secretion of
adaptive cytokines in keratinocytes (KCs) by downregulating
ROS mediated STAT3 cyclin D1 signaling, thereby exhibiting self
therapeutic effects. Local application of the hydrogel on the mouse
model of imiquimod (IMQ) induced psoriasis can achieve better anti
psoriasis effect (Xu et al., 2022). Beyond synthetic nanoparticles,
natural product-based hydrogels have also demonstrated efficacy.
For instance, curcumin loaded hydrogel was applied to the model of
psoriasis induced by IMQ in mice. At 12 weeks, PCR showed that
compared with the normal mouse group, the mRNA levels of IL-1 β,
IL-6, IL-17F, IL-22, and IL-23 in the skin of the IMQ alone group
were significantly increased. Compared with IMQ alone group, the
mRNA levels of these six cytokines in curcumin gel group and
tacrolimus group were significantly reduced (p < 0.05) (Sun et al.,
2017). This has guiding significance for the treatment of diseases.

Moreover,a recent advance in hydrogel-based psoriasis therapy
is the SJMHE1-loaded hydrogel developed by Liu et al. (2025)
SJMHE1, a 24-amino-acid peptide derived from Schistosoma
japonicum egg and adult worm antigens, induces CD4+CD25+

regulatory T (Treg) cells and M2 macrophages in a TLR2-
dependent manner, thereby suppressing delayed-type
hypersensitivity (DTH). In their experimental design, Liu et al.
established an IMQ-induced murine psoriasis model and
randomized the mice into treatment groups. The vehicle control
group received no treatment, while the SJMHE1-gel group received a
daily topical dose of 20 μg SJMHE1 for 14 days. Histopathological
evaluation (H&E staining) post-treatment revealed significant
improvement in the SJMHE1-gel group, characterized by reduced
epidermal thickness, diminished parakeratosis and hyperkeratosis,
improved acanthosis, and decreased dermal inflammatory cell
infiltration. Furthermore, SJMHE1 treatment markedly reduced
the number of Ki67-positive cells, indicating inhibition of
aberrant keratinocyte proliferation and differentiation.
Immunohistochemical analysis demonstrated that SJMHE1-gel
therapy significantly downregulated IMQ-induced IL-17 mRNA

expression. Concurrently, Western blot analysis revealed elevated
expression of p-p65 and p-STAT3 in the control group, which was
substantially attenuated following SJMHE1 hydrogel treatment (Lim
et al., 2024). Collectively, these findings suggest that
SJMHE1 ameliorates psoriatic skin lesions by inhibiting the
activation of the NF-κB and STAT3 signaling pathways,
consequently suppressing pro-inflammatory cytokine secretion.

Although hydrogels may become a new generation of drugs for
the treatment of AD/PsO, there are still some problems to be solved
(Sun et al., 2017). The genetic heterogeneity between patients
requires carriers to have dynamic regulatory abilities, but current
technology has not yet achieved precise adaptation (Algahtani et al.,
2020). Materials with better biocompatibility and durability, such as
silk fibroin silk fibroin (SC), should be selected while ensuring
treatment effectiveness to reduce skin irritation and adverse
reactions. Design hydrogels that can accurately control drug
release according to disease status or external stimuli (such as
temperature, pH value, etc.). Combine nanotechnology, such as
nanoparticles, nano lotion, etc., to improve the skin permeability of
drugs. For example, curcumin is made into nano lotion and
converted into nano latex gel, which increases the penetration of
curcumin. The most important thing is that for AD/PsO patients
with different severity, the drug type, dosage and immune regulatory
components in the hydrogel should be properly adjusted to achieve
personalized treatment.

Building upon the challenges outlined for AD/PsO
therapy—including genetic heterogeneity, material
biocompatibility, and personalized dosage optimization—Table 2
consolidates key gene hydrogel systems across dermatological
applications. This synthesis distills material compositions, genetic
payloads, and preclinical outcomes, while highlighting shared
translational bottlenecks discussed throughout Sections 3–5. By
cross-referencing strategies for hereditary disorders, chronic
wounds, and immune-mediated diseases, the table not only
encapsulates technological innovations but also foregrounds
unmet needs in stimulus-responsive design and scalable
manufacturing.

6 Summary

6.1 Conclusion

This review uniquely advances the field by presenting the first
comprehensive synthesis of gene hydrogel applications in three key
dermatological domains: hereditary disorders, chronic wounds, and
immune-related diseases. Unlike prior reviews focusing on
regenerative medicine or generic nucleic acid delivery, we
highlight how gene hydrogels tackle skin-specific barriers—from
stratum corneum penetration to inflammation modulation. By
linking disease molecular pathologies to tailored hydrogel
strategies (e.g., pH-responsive release for psoriasis), this work
delivers unparalleled disease-focused depth.

Gene hydrogels, as an emerging class of gene delivery materials,
integrate the precision of gene therapy with the functional versatility
of hydrogels, offering transformative potential for treating
hereditary skin diseases, chronic wounds, and immune-mediated
dermatoses. However, their clinical translation faces critical
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challenges: inherent batch-to-batch variability in hydrogel synthesis
compromises manufacturing consistency and therapeutic
reproducibility; synthetic polymer components raise
immunogenicity risks, necessitating rigorous biocompatibility
evaluations; scalability limitations hinder large-scale production
of clinical-grade materials, particularly for personalized therapies;
balancing mechanical strength with controlled degradation kinetics
poses material performance trade-offs, risking premature
breakdown or reduced therapeutic durability; and genetic
heterogeneity among patients demands dynamically regulated
delivery systems, which current technologies inadequately
address. These multifaceted challenges underscore the urgent
need for optimization to advance gene hydrogels from bench
to bedside.

To address the aforementioned challenges, potential solutions
are as follows: (i) Implementing microfluidic-based synthesis
platforms (e.g., in-air microfluidics or parallelized chip designs)

enables precise control over hydrogel architecture, thereby
minimizing batch-to-batch physicochemical variability. (ii)
Developing bioinert hydrogel matrices from natural polymers
(e.g., silk fibroin, hyaluronic acid) or surface-modifying synthetic
polymers with anti-inflammatory moieties (e.g., arginine-glycine-
aspartic acid peptides) mitigates immune activation. (iii) Adopting
3D bioprinting or electrohydrodynamic spraying technologies
achieves high-throughput fabrication while ensuring structural
uniformity for scalable production. (iv) Engineering dynamic
covalent hydrogels (e.g., disulfide or imine bond crosslinking). to
carry gene payloads allows exploration of tunable degradation
kinetics that match tissue regeneration rates. (v) Integrating
single-cell sequencing and machine learning to design patient-
specific hydrogel formulations—such as core-shell particles co-
encapsulating gene editors and small-molecule
adjuvants—enables personalized regulation of therapeutic gene
expression, addressing interpatient genetic heterogeneity.

TABLE 2 Comparative overview of gene hydrogel systems for dermatological applications.

Application
domain

Gel/Polymer
type

Preparation
method

Genetic
material

Target
skin

condition

Key
outcomes/
Findings

Limitations/
Challenges

Ref.

Hereditary
Disorders

HSV-1 vector +
hydrogel excipient

Mixing with
hydrogel excipient

COL7A1 plasmid
(via HSV-1)

Recessive
dystrophic EB

(RDEB)

Sustained type VII
collagen restoration;
first FDA-approved
in vivo gene therapy

for EB

Potential host immune
response to HSV-1

vector; limited transgene
cargo capacity

Guide
et al.
(2022)

PEI-DNA +
thermoresponsive

hydrogel

Crosslinking with
temperature

GFP plasmid In vitro cell
transfection

Efficient transfection
in Hela cells;

prolonged transgene
expression vs.

aqueous solutions

PEI’s potential
cytotoxicity at high

concentrations; variable
transfection efficiency

Zhang
et al.

(2024b)

Agarose hydrogel Precipitation
polymerization

COL7A1 mRNA Patient-derived
keratinocytes

3-fold extended
expression duration;
reduced nuclease

degradation

Limited mechanical
strength; potential for
burst release at initial

stages

Wu et al.
(2023)

Chronic Wounds VEGF-loaded
hydrogel

Microfluidic
emulsification

VEGF plasmid Diabetic ulcers 2.5-fold enhanced
angiogenesis;

sustained growth
factor release

(21 days vs. 7 days)

Non-viral vector’s
transfection efficiency

lower than viral systems;
potential off-target

angiogenesis

Lou et al.
(2020)

Chitosan hydrogel Batch
emulsification

miR-29b Diabetic mouse
wounds

40% accelerated
wound closure via
collagen regulation

pH-dependent
degradation rate;

potential
immunostimulation in
chronic inflammation

Kim et al.
(2022)

PEI-modified
cationic hydrogel

Electrospraying siRNA Human skin
fibroblasts
(in vitro)

65% siRNA uptake
efficiency; improved
intracellular escape

Electrospraying
equipment complexity;
potential aggregation of
cationic polymers in vivo

Fattahi
et al.
(2024)

Immune-Related
Diseases

Anti-RelA siRNA +
functional peptide

hydrogel

Mechanical
disruption

Anti-RelA siRNA Atopic
dermatitis
(AD)

Reduced ear
thickness and

clinical severity in
AD mouse model;
enhanced siRNA

delivery

Heterogeneous particle
size from mechanical
fragmentation; limited
long-term stability

Kanazawa
et al.
(2015)

PDHPA-MSNs
composite hydrogel

In-air microfluidics Dexamethasone
(loaded in MSNs)

AD mouse
model

Improved
mechanical

properties; reduced
AD severity via ROS
scavenging and FAK

inhibition

MSN synthesis
complexity; potential
accumulation of

inorganic nanoparticles
in tissue

Kim et al.
(2023)
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6.2 Future perspectives

Beyond the aforementioned solutions for gene hydrogels, future
research may additionally focus on the following directions: (i)
Development of intelligent materials: Designing dynamic covalent
hydrogels or light/heat-responsive vectors to enable real-time
regulation of gene release. For instance, near-infrared-responsive
hydrogels can be combined with optogenetic technology to achieve
on-demand activation of therapeutic genes. (ii) Multidisciplinary
fusion innovation: Integrating single-cell sequencing and machine
learning to identify the optimal combinations of genetic materials.
Utilizing 3D bioprinting to construct patient-specific skin models
can guide the development of personalized treatment plans. (iii)
Upgrade of delivery systems: Developing core-shell structured
particle hydrogels to synchronously deliver gene drugs and small
molecule adjuvants (e.g., anti-fibrosis drugs), thereby enhancing
efficacy through multiple pathways. Gene hydrogels signify a
paradigm shift in skin disease treatment from “symptom control”
to “cause repair.”With the cross-integration of materials science and
gene editing technology, future breakthroughs are anticipated in the
intelligence, personalization, and multifunctionality of carriers.
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