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The blood-brain barrier (BBB) restricts development of drug delivery systems for
brain, which hinders the potential applications of numerous pharmaceutical
agents for treating central nervous system (CNS) diseases. A number of drug
delivery systems have been developed to enhance the capacity of drugs to cross
BBB. A detailed introduction of the structure and function of BBBwas given based
on the mechanism of BBB, while comparing with the pathological changes of
BBB in neurodegenerative diseases (NDDs), including activation of endothelial
cells, the loose of tight junction and increase of BBB permeability. The liposomes,
polymer nanoparticles and other novelty approaches for treating NDDs were
summarized. Here, we provide a novel perspective to classify the strategies of
drug delivery system as passive targeting and active targeting according to their
mechanisms. The potential of clinical translational for drug delivery systems in
NDDs was explored and underscored the imperative of safety and verification
through clinical trials. In summary, this review proposed current developments of
drug delivery systems and discussing the potentials of drug delivery systems in
clinical translational which bring new breakthroughs for treating NDDs.
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1 Introduction

Neurodegenerative diseases (NDDs) are a group of chronic progressive conditions
characterized by the gradual deterioration for the structure and function of neural cells in
the central nervous system (CNS) (Wilson et al., 2023). These diseases have complex
pathological mechanisms involving the gradual loss of neurons, imbalances in
neurotransmitters, and neuroinflammation, among other factors (Dileep et al., 2023).
They primarily include Alzheimer’s disease (AD) (Miller et al., 2022), Parkinson’s disease
(PD) (Gan et al., 2025), amyotrophic lateral sclerosis (Wilkins et al., 2024), and
Huntington’s disease (Aviner et al., 2024). Among these, AD is the most common
NDDs, characterized by memory impairment, cognitive decline, and behavioral
changes, significantly impacting patients’ quality of life (Jack, 2022). PD primarily
manifests as motor dysfunction, such as tremors, muscle rigidity, and bradykinesia,
causing significant inconvenience to patients’ daily lives (Paul et al., 2023). These
diseases not only impose heavy economic and psychological burdens on patients and
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their families but also place enormous strain on societal healthcare
resources. The incidence of NDDs worldwide is on the rise, with
projections indicating that by 2050, the number of AD patients and
PD patients will also increase significantly (Su et al., 2025; Nichols
et al., 2019; Ahmadi-Abhari et al., 2017). Therefore, in-depth
research into the pathogenesis of NDDs and the development of
effective treatment approaches have become a global hotspot and
challenge in medical research.

The blood-brain barrier (BBB) is an important physiological
barrier of the CNS, composed of cerebral capillary endothelial
cells, tight junctions, basement membranes and pericytes. Its
main function is to maintain the stability of the internal
environment of CNS, preventing harmful substances from
entering the brain, and regulating the transportation of
nutrients (Ayloo and Gu, 2019; Banks, 2016). The presence of
BBB is crucial for protecting the brain from external toxins and
pathogens, but it also as a challenge for drug delivery to treat
NDDs. More than 98% of small-molecule drugs and nearly 100%
of large-molecule drugs (e.g., proteins, antibodies, and gene
therapy drugs) exhibit low efficiency penetrating the BBB,
resulting in the drug concentration in the brain being much
lower than the therapeutic level (Pandit et al., 2020a; Banks,
2016). In addition, patients with NDDs often experience BBB
dysfunction, such as disrupted tight junctions (Shi et al., 2025)
and intensified inflammatory responses (Wei et al., 2024), which
further limit the efficiency of drug delivery. The change of the
BBB permeability is closely related to the progress of NDDs.
However, there are currently no established solutions for
effectively enhancing drug penetration through the BBB.

Traditional drug delivery methods, such as systemic
administration, often require high doses to achieve effective
concentrations in the brain, which not only increases the
drug’s toxic side effects but also limits its clinical application.
Hence, developing novel drug delivery strategies to enhance drug
BBB penetration capacity and brain distribution efficiency has
become a key breakthrough in the treatment of NDDs. In recent
years, with the interdisciplinary development of nanotechnology,
biotechnology, and other fields, various innovative drug delivery
strategies have emerged, bringing new hope for the treatments of
NDDs (Tang et al., 2025; Ji et al., 2024; Wang H. et al., 2025).
These strategies not only enhance drug BBB penetration but also
offer advantages such as target delivery and good
biocompatibility, potentially playing a significant role in future
clinical treatments. However, these strategies are still not
available for clinical treatments and face numerous challenges,
such as the stability of drug delivery systems, long-term safety,
and the feasibility of clinical translation. Thus, conducting in-
depth researches into the mechanisms of action of these
strategies, optimizing their design and preparation processes,
and validating their safety and efficacy through clinical trials are
currently important directions in the research of
neurodegenerative disease treatment. This review provides a
systematic overview of the latest research advances in drug
delivery strategies that penetrate the BBB, conducting an in-
depth analysis of the mechanisms, advantages, and challenges of
various strategies, and exploring their potential applications in
the treatment of NDDs. The aim is to provide a reference for
related research and to promote the development of this field.

2 Blood-brain barrier

2.1 Structure and function of BBB

BBB plays a crucial role in preserving the internal environment
of CNS (Shi et al., 2025; Upton et al., 2022). Its selective barrier
function is contingent on the collaborative effects of brain
microvascular endothelial cells, a basement membrane, pericytes,
and astrocytes (Figure 1A; Pandit et al., 2020a). Among them, brain
microvascular endothelial cells serve as the core functional units of
BBB (Langen et al., 2019). They form the basis of a physical barrier
through tight junctions constructed by proteins such as claudins and
occludins, directly restricting the free diffusion of polar molecules
and macromolecular substances. In the meanwhile, they achieve the
uptake of essential nutrients and clearance of exogenous substances
via carrier proteins (e.g., glucose transporter, GLUT) and efflux
pumps (e.g., P-glycoprotein, P-gP) on the cell membrane, realizing
regulation of transmembrane transport processes. The basement
membrane, as a structural support for endothelial cells, is composed
of components such as collagen and laminin. It is responsible for
maintaining the mechanical integrity of the vascular wall, regulating
barrier stability through dynamic interactions with endothelial cells
and pericytes, and providing a medium for intercellular signal
transmission. Pericytes are located on the outer side of
endothelial cells and secrete signaling factors, such as vascular
endothelial growth factor and transforming growth factor-beta.
These factors are important in the dynamic regulation of
endothelial tight junction integrity and permeability.
Furthermore, pericytes are involved in the processes of
angiogenesis and vascular maturation (Rustenhoven et al., 2017).
Astrocytes’ end feet, which extensively cover the surface of blood
vessels, promote endothelial cell differentiation and enhance tight
junction stability by releasing growth factors such as brain derived
neurotrophic factor. They also indirectly regulate nutrient transport
efficiency by sensing metabolic demands in the brain, further
strengthening barrier function (Zhao et al., 2015).

The structural characteristics of BBB give it the ability to prevent
harmful substances from invading the brain and allow essential
nutrients to pass through. Due to the compact nature of BBB,
paracellular transportation of molecules is significantly restricted.
The predominant mechanisms of drug and essential molecule entry
into the brain include passive diffusion, efflux pumps, carrier-
mediated transport, receptor-mediated transcytosis (RMT), cell-
mediated transcytosis and adsorptive-mediated transcytosis
(AMT, Figure 1B) (Liu et al., 2025). Passive diffusion is defined
as the movement of lipophilic small molecules (e.g., alcohol, steroid
hormones, dexamethasone) along a concentration gradient, devoid
of energy, and exhibiting non-saturability. The efficiency of the
process is associated with various factors, including molecular
weight (<500 Da), lipophilicity (LogP>2), the number of
hydrogen bonds formed (<6), and polar surface area (PSA<60 to
70 square angstroms) (Hladky and Barrand, 2018; Zha et al., 2024).
Paracellular diffusion is restricted by tight junctions, while
transcellular diffusion depends on molecular permeability.
Adenosine triphosphate (ATP)-binding cassette superfamily
efflux transporters, including P-gp and multidrug resistance-
associated protein family, expressed by BBB endothelial cells
which facilitate the expulsion of drugs from these cells, leading to
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impeding their entry into the brain (Lopez-Mitjavila et al., 2025;
Balzer et al., 2022). These transporters are localized to the basolateral
and luminal sides of the cell membrane based on substrate
differences.

Carrier-mediated transcellular transport is a process that utilizes
highly selective transporters (gucose transporter 1 and L-type amino
acid transporter 1, LAT1) to facilitate the movement of nutrients
such as glucose and amino acids, as well as drugs with structural
similarities (Zhou et al., 2020; Arora et al., 2020). A subset of these
processes is contingent upon ATP for the purpose of energy supply
and is executed in an inverse concentration gradient. RMT relies on
specific receptors on the lumen side of cerebral capillary endothelial
cells (Zhang et al., 2020). These receptors include insulin receptors,
transferrin receptors, and so on (Fan et al., 2018). The selective
uptake of specific macromolecules was improved through receptor
reuptake mechanisms RMT, vesicle transport mechanisms and a
series of ligand-receptor binding events. AMT is initiated by
electrostatic interactions between positive charges of the
macromolecule and the anionic components of endothelial cell
membrane. The transportation of polycationic proteins, cell-

penetrating peptides, and related molecules occurs through this
pathway (Muniswamy et al., 2019; Oka et al., 2023). Cell-mediated
transcytosis is a pathway that has been discovered in recent years. A
recent study has devised a hybrid system of “Trojan horse”-like
nanocapsules conjugated with Th17 cells, which can be injected
intravenously and cross the BBB to target the inflammatory lesions
of multiple sclerosis (MS). Under the stimulation of reactive oxygen
species (ROS), it releases trans-differentiation inducers to induce the
in situ trans-differentiation of Th17 cells into Treg cells for the
treatment of MS (Shi et al., 2023). This mechanism has been
investigated and implemented in the domain of drug delivery for
inflammation-related neurological diseases.

2.2 Pathological changes of BBB in NDDs

Disruptions in the BBB typically occur in conjunction with and
contribute to the progression of NDDs, and various vascular
problems are often closely linked to neurodegenerative changes
(Figure 2; Zhao et al., 2015; Omar et al., 2025). In AD, when the

FIGURE 1
(A) The structure of the BBB. The BBB is mainly composed of brain microvascular endothelial cells, pericytes, astrocyte end feet, and basement
membranes. Brain microvascular endothelial cells form a continuous barrier structure through tight junctions, which are composed of proteins such as
Claudin, Occludin, junctional adhesion molecule (JAM) and adhesion junction (AJ), and restrict the free permeability of substances. (B) Diagram
illustrating various mechanisms for crossing the BBB, including (i) passive diffusion (ii) efflux pumps, (iii) carrier-mediated transcytosis, (iv) receptor-
mediated transcytosis, (v) cell-mediated transcytosis, and (vi) adsorptive-mediated transcytosis.
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function of the BBB is impaired, neurotoxic proteins such as beta-
amyloid peptide (Aβ) and Tau protein cannot be effectively cleared
and will accumulate in the cerebral blood vessels and brain
parenchyma, accelerating neuronal damage and
neurodegeneration (Lee et al., 2022; Feng et al., 2020; Kaji et al.,
2024). The process can be improved by targeting RMT strategies.
Low-density lipoprotein receptor-associated protein 1 (LRP1) and
other receptors on the surface of BBB endothelial cells facilitate
delivery of nanocarriers carrying antibodies to the brain through
transendocytosis to enhance clearance of toxic proteins.
Downregulation of LRP1 in the damaged BBB may necessitate
pretreatment with drugs to restore function and delivery
efficiency. Similarly, abnormal aggregated proteins such as α-
synuclein (α-SYN) cannot be cleared or transported in time due
to abnormal BBB function, and then deposit in the brain, exerting
toxic effects on nerve cells and promoting the progression of the PD
(García-Revilla et al., 2023; Wang H. et al., 2025; Chu et al., 2024).
Dysregulation of the inflammatory response is also an important
feature of NDDs (Zhang W. et al., 2023). BBB endothelial cells can
be activated, leading to increased anionic components (like heparin
proteoglycans) on their surfaces. These changes can be used to create
multi-cationic delivery vehicles (like nanoparticles modified with
cationic peptides), which can deliver AMT-mediated α-SYN

scavengers or anti-inflammatory drugs via electrostatic
interactions. However, the activation of endothelial cells may also
lead to less-specific distribution of the delivery vector (Arora
et al., 2024).

The opening of the BBB occurs in the early stage of the MS, and
peripheral immune activation precedes pathological immune
activation in the CNS. The CNS is entered by immune cells, such
as lymphocytes, through the damaged BBB, and inflammatory
mediators, such as cytokines, are released. An inflammatory
response is triggered, and further damage is caused to neurons
and myelin sheaths (Zierfuss et al., 2024; Hermans et al., 2022;
Qu et al., 2024). The infiltration of peripheral immune cells and
inflammatory mediators into the brain tissue is caused by the
destruction of BBB, which intensifies the neuroinflammatory
response. And then, the inflammation makes the BBB worse, and
it is like a vicious cycle where the neuronal damage gets worse and
worse (Chou et al., 2023; Heneka et al., 2025; Wang S. et al., 2024;
Schneeberger et al., 2025; Chu et al., 2024). Research has
demonstrated that α-SYN stimulates microglia through the
engagement of multiple pattern recognition receptors, including
Toll-like and Fcγ receptors. When α-SYN aggregation is recognized
by these receptors, the NF-κB pathway is activated, which leads to
the release of pro-inflammatory cytokines, promoting further

FIGURE 2
Mechanisms of neurodegeneration associated with blood vessels. When the endothelial cells and pericytes of the BBB are damaged, red blood cells
leak and release hemoglobin, generating ROS. Fibrinogen leakage activatesmicroglia. Barrier dysfunction leads to the accumulation of thrombin, albumin
and autoantibodies, causing plasmin activation, changes in extracellular matrix (ECM) and edema. The above-mentioned events finally damage
the oxygen (O2) supply to neurons, affect the functions of astrocytes, oligodendrocytes and neurons, and promote the progression of
neurological diseases.
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neuroinflammation (Wang et al., 2023). During this process,
molecules like intercellular cell adhesion molecule-1 and vascular
cell adhesion molecule-1 increase on inflamed endothelial cells’
surfaces, and can be taken in by cell-mediated transocytosis
(Wang et al., 2022). Endothelial cells’ tight junctions may also be
loosened, increasing the exposure of transporters like LAT1 in
vector-mediated transcellular transport. Drug molecules designed
to resemble amino acids linked to inflammation can enhance
delivery through LAT1 (Sun et al., 2022; Shi and Yong, 2025).
Inflamed endothelial cells may also have changes in the expression
or distribution of receptors, e.g., insulin receptors, which can affect
RMT. Therefore, the selection of targeted ligands needs to be
adjusted according to the changes in receptors in the
inflammatory environment (Omar et al., 2025; Varatharaj and
Galea, 2017; Wei et al., 2024).

The enhanced state of oxidative stress, coupled with the
inadequate regulatory impact of BBBs on oxidative stress, allows
harmful free radicals and oxidative stress factors to penetrate the
brain more easily (Plascencia-Villa and Perry, 2023). This results in
increased oxidative damage to neurons, impaired neuronal function,
and the progression of the disease (Dash et al., 2025; Liu et al., 2024).
Oxidative stress products, which include reactive oxygen species
resulting from mitochondrial dysfunction, can accumulate in the
brain and potentially damage nerve cells. The accumulation has the
potential to influence the blocking and clearance functions of the
brain barrier, and can interfere with the synthesis, release, and
reuptake of neurotransmitters, resulting in abnormal neurological
functions (Xi et al., 2025; Song N. et al., 2025). Abnormal cerebral
circulation is also an important pathological feature of NDDs
(Sweeney et al., 2018). In addition, impaired function of vascular
endothelial cells can lead to increased vascular permeability and
abnormal vasoconstriction function, affecting the blood supply to
the brain and aggravating nerve damage (Feng et al., 2025). Recent
studies have shown that during aging and the occurrence of NDDs,
the glycocalyx layer on the surface of brain endothelial cells becomes
disordered, especially the abnormal glycoproteins in the mucin
domain, which can lead to a decline in barrier function and even
induce cerebral hemorrhage, making it easier for neurotoxic
substances and inflammatory factors to enter the brain and
exacerbating nerve damage (Shi et al., 2025). Briefly, the BBB can
be damaged by various factors, which disrupts permeability and
complicates drug delivery control. Meanwhile, abnormal immune
responses reduce its effectiveness, making the treatment of
NDDs difficult.

3 Types and applications of drug
delivery systems for the BBB

The treatment of CNS diseases has been hindered by the BBB.
In order to effectively overcome this obstacle, scientists have
developed a variety of advanced materials and delivery systems in
recent years. The objective of these developments is to enhance
the targeting and delivery efficiency of drugs in the brain and to
achieve effective cross-BBB drug delivery. This section will
provide a detailed introduction to the types of major drug
delivery systems and their applications in the treatment of
CNS diseases.

3.1 Liposomes

Liposomes are biocompatible and biodegradable nanoparticles
that can encapsulate a variety of drugs and release them controllably
(Zhang et al., 2025). Through specific changes and modifications,
liposomes can be engineered to cross the BBB and reach target areas
in the brain with precision, facilitating efficient drug delivery (Zhang
et al., 2019; Erel-Akbaba et al., 2025). In the Figure 3A, a novel cell
membrane coating was developed by hybridizing platelets and
chemokine receptor 2 cells, Multitarget therapy was achieved by
loading two drugs onto liposomes with different mechanisms of
action. An experimental transgenic mouse model of familial AD
reduced amyloid plaque deposition, neuroinflammation, and
cognitive impairment when hybrid cell membrane liposomes
were loaded with drugs (Lin et al., 2024). The delivery of
monoclonal antibodies into neurons is enhanced by brain-
targeted liposomes (BTL), enabling intracellular and extracellular
treatments for PD brains. The modified BTL was loaded with a
monoclonal antibody called SynO4, which inhibits α-SYN
aggregation. The findings demonstrated that 100 nm BTL
traversed the human BBB model and was absorbed by primary
neurons. SynO4 binds to its target neurons, reducing α-SYN
aggregation and strengthening neuronal viability. In vivo, BTL
treatment improves mouse motor function and learning ability,
with a favorable safety profile (Sela et al., 2023). Combining
transcranial focused ultrasound, intravesical microbubbles (MBs),
and calcium phosphate lipid nanoparticles to deliver superoxide
dismutase 1 (SOD1) antisense oligonucleotide to the brains of
amyotrophic lateral sclerosis transgenic mice significantly
enhanced delivery efficiency. Treatment resulted in decreased
SOD1 expression, increased motor neurons, and a short-lived,
undamaged BBB opening with reasonable tolerance (Ediriweera
et al., 2025). Liposome drug carriers have been demonstrated to
enhance their penetration ability across the BBB via surface
modification techniques, such as PEGylation or ligand
modification. The double-layer structure of the film has been
shown to effectively package drugs, prolong circulation time, and
improve their stability. The ability of liposomes to be absorbed by
brain endothelial cells through receptor-mediated endocytosis
facilitates efficient drug delivery, reduces drug distribution in
non-target tissues, minimizes adverse effects, and offers an
effective and safe approach to treat NDDs.

3.2 Polymer nanoparticles

A polymer nanoparticle as a drug carrier must be designed with
the appropriate materials. These nanoparticles need to be
multifunctional to ensure drug delivery to the target organs. The
physical and chemical properties of nanoparticles’ affect their
behavior in the body, including interactions with biological
processes (Li et al., 2021; Wu et al., 2025). Therefore, an in-depth
study of the relationship between nanoparticle properties and
diseases is crucial for optimizing drug delivery systems
performance. In general, polymer drug carriers fall into two types:
natural and synthetic. Natural polymers, such as chitosan and
sodium alginate, are widely used due to their excellent
biocompatibility and biodegradability. Synthetic polymers, such as
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poly (lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG),
are favored for their adjustable physicochemical properties and
controllable drug release characteristics (Katila et al., 2022).
Selecting the appropriate polymer materials can enhance drug
stability and delivery efficiency, reduce immune responses and
side effects, and improve therapeutic effects. For the multi-target
treatment of AD, an oral, brain-targeted nanoparticle containing
fingolimod (FTY) is constructed with a PLGA-PEG skeleton. It is
surface-modified with mannose, combined with a glucose control
strategy, and its hydrophilic and electronegative properties enable
penetration of the mucus barrier. The mannose ligand gives it

targeting ability. Blood glucose control allows nanoparticles to
bypass the BBB through GLUT 1 (Figure 3B). The FTY regulates
microglia polarity, shifting them from a pro-inflammatory M1 state
to an anti-inflammatory M2 state once released. This process
normalizes activated astrocytes, enhances Aβ clearance, and
alleviates oxidative stress and neuroinflammation (Lei et al.,
2024). In particular, it demonstrates that polymer nanoparticles
with tailored physicochemical properties, such as size, shape, and
surface charge, can efficiently cross the BBB. By combining their
multiple functions, these drugs can deliver targeted drugs and sustain
release, resulting in improved efficacy and reduced side effects.

FIGURE 3
(A) A behavioral study on 5xFAD mice treated with different liposomes was conducted. The image shows representative trajectories of the seven
groups in theNOR test and the recognition index (Lin et al., 2024). (n = 6–8, *p < 0.05, ***p < 0.001, ns p > 0.05). Copyright © 2024 The Authors. Advanced
Science published by Wiley-VCH GmbH. (B) In vitro fluorescence imaging of the main organs (heart, liver, spleen, lung, kidney) and brain of FAD4T
transgenic mice 6 h after oral administration of different fluorescent nanoparticles. (a) 28% PEGNPs, (b) 50%ManNPs, and (c) 50%Man NPs with Glu
control (Lei et al., 2024). Copyright © 2024, American Chemical Society. (C) Immunofluorescence images of mouse hippocampus and cortex. Images
show amyloid plaques (orange) and microglia (green) in the hippocampus and cortex, as well as NeuN (red) in the hippocampus of AD mice treated with
PBS, TL, TSL, or TSEL. The bottom row of each image displays an enlarged view of the area indicated by the white box in the upper image (Jiang et al.,
2024). Copyright © 2024, American Chemical Society.

Frontiers in Drug Delivery frontiersin.org06

Zhang et al. 10.3389/fddev.2025.1644633

https://www.frontiersin.org/journals/drug-delivery
https://www.frontiersin.org
https://doi.org/10.3389/fddev.2025.1644633


3.3 Exosomes

Exosomes are natural, small, cell-secreted vesicles that can pass
through biological barriers. Unlike synthetic carriers, they are less
likely to trigger immune responses. This makes them promising
nanocarriers for therapeutic biomolecules (Kalluri and LeBleu, 2020;
Rehman et al., 2023). To load proteins into exosomes, the cargo
proteins need to be fused with the exosome-labeled proteins. Then,
after reaching the target location, the cargo protein must be
separated from the exosome marker protein to enter the recipient
cell and function (Wang et al., 2025a). Almost all cells can secrete
exosomes, including immune cells, nerve cells, stem cells, etc.
Exosomes from different sources vary in composition and
function. For instance, exosomes derived from mesenchymal
stem cells have immunomodulatory and neuroprotective effects
(Zhang G. et al., 2023), while those from nerve cells are closely
related to neural signal transmission and synaptic function (Wu
et al., 2023b). These characteristics give exosomes unique advantages
in the treatment of NDDs. Exosomes can carry therapeutic
substances such as small molecule drugs, nucleic acids (such as
siRNA and miRNA) (Seyedaghamiri et al., 2023; Yuyama et al.,
2024; Dar et al., 2021). For example, exosomes engineered to have
multiple targeting capabilities (RPDA@Rb-A) were developed by
combining brain microvascular endothelial cells and macrophage
membranes with polydopamine nanoparticles, resveratrol, and Aβ-
targeting aptamers. This combination is intended to intervene in Aβ
clearance and regulate microglial dysfunction. It has demonstrated
that RPDA@Rb-A degraded Aβ aggregates via local heating induced
by a near-infrared laser, alleviated neurotoxicity, reduced Aβ load,
and effectively inhibited microglial activation (Du et al., 2025). The
ROS-responsive biomimetic exosome-liposome hybrid nanovesicle
(TSEL) can modulate the function of microglia and interfere with
the synthesis and metabolism of Aβ. Figure 3C shows that,
compared to PBS-treated mice, TSEL-treated mice have
significantly fewer Aβ plaques in the cortex and hippocampus,
promoting Aβ phagocytosis by microglia. Furthermore, TSEL
treatment results in the greatest increase in neuronal nuclei
antigen (NeuN). These results demonstrate that TSEL can
improve cognitive deficits in APP/PS1 mice by acting
synergistically with two genetic drugs to regulate the phenotype
of activated microglia, reduce Aβ accumulation, and prevent the re-
triggering of neuroinflammation (Jiang et al., 2024). In addition,
exosomes can also serve as a medium for intercellular
communication, transmitting bioactive molecules and regulating
the functions of diseased cells, providing new ideas for the
treatment of NDDs.

3.4 Viral vectors

Viral vectors serve as a type of delivery system that possesses
natural transmembrane transport capabilities, and they have
demonstrated potentials in achieving brain-targeted drug delivery
across BBB by emulating the natural infection mechanisms of
viruses (He et al., 2025; Wang et al., 2025b). These vectors are
able to penetrate biological barriers through receptor-mediated
endocytosis on the surface of host cells. The delivery efficiency of
these vectors is contingent upon the specific interactions between

surface antigens and BBB endothelial cell receptors. The
employment of genetic engineering technology to direct the
modification of viral capsid proteins can result in a substantial
enhancement of selectivity for target cells within the brain,
accompanied by a concomitant reduction in off-target effects on
non-target organs. For example, engineered adeno-associated virus
vectors can target molecules, such as transferrin receptors, which are
expressed in high quantities on the surface of brain microvascular
endothelial cells. These receptors initiate receptor-mediated
endocytosis and transendocytosis processes, facilitating the
efficient transportation of therapeutic genes, including
neuroprotective factors and enzymes, to the parenchymal cells
within the brain (Huang et al., 2024a). BBB is a physiological
barrier to restrict the delivery of mRNA to neurons in the brain.
But extracellular vesicles containing retrovirus-like capsid mRNA
produced by engineered white blood cells can enhance mRNA
delivery and neuronal uptake, and cross BBB using innate
adhesion molecules and recruited proteins. In a mouse model of
neuroinflammation, these extracellular vesicles can help neurons
take in more mRNA (Gu W. et al., 2024). However, this system
continues to confront challenges related to immunogenicity, vector
capacity limitations, and long-term safety concerns. Repeated
administration of the substance may elicit a host immune
response, leading to the clearance of the vector. The applications
of viral vectors in crossing BBB have gradually advanced from basic
research to preclinical validation. The combined applications of viral
vectors with other delivery strategies, such as nano-vector coating to
reduce immunogenicity, offering new strategies to treat
neurodegenerative diseases.

3.5 Focused ultrasound (FUS)

FUS represents a non-invasive physical regulation method that
provides an innovative approach for the reversible opening of the
BBB and brain drug delivery through the synergistic effect with
intravenous MBs (Rezai Ali et al., 2024; Memari et al., 2024). The
mechanism could be explained by the activation of MB for
ultrasonic energy (Li et al., 2023). The application of low-
frequency ultrasound initiates periodic oscillations (stable
cavitation) within the blood vessels, resulting in the generation of
mechanical stress. The transmission of this stress to the endothelial
cells of brain microvascular results in the temporary release of tight
junctions (Kwak et al., 2024). It has the capacity to upregulate
integrated membrane proteins, including caveolin-1 to enhance
vesicle-mediated transcellular transport (Pandit et al., 2020b).
And it also could regulate down P-gp to reduce drug efflux
(Aryal et al., 2017). MB endure inertial cavitation under
hypersonic pressures, forming shock waves and micro-jets. These
phenomena temporarily compromise cell membranes and enhance
the permeation of pharmaceutical agents. In addition, the local
thermal effect surrounding the MB may indirectly enhance
permeability by altering the characteristics of the endothelial cell
membrane (Klotz et al., 2010). The combined impacts of the
aforementioned mechanical and thermal mechanisms achieve
local, transient and controllable permeability regulation of BBB.

Due to high spatiotemporal specificity, non-invasiveness and
repeatability, FUS is frequently employed in conjunction with nano-
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delivery systems to enhance the efficacy of drug delivery in NDDs.
Ediriweera et al. found that combining transcranial focused
ultrasound and calcium phosphate lipid nanoparticles can
significantly boost the delivery of SOD1 antisense
oligonucleotides to the brains of transgenic mice with
amyotrophic lateral sclerosis (Ediriweera et al., 2025). This
approach reduces the abnormal expression level of SOD1 in the
mouse brain, retains the number of motor neurons and limits the
open state of BBB. The animal model tolerates the treatment well
and shows no signs of neurotoxicity. The study suggests that FUS-
mediated BBB opening can create a “spatiotemporal window” for
nanocarriers such as liposomes and polymer nanoparticles to
traverse barriers, increasing local drug targeting and reducing off-
target effects caused by systemic administration. However, this
technology has a limited focused area and is not very adaptable,
such as the MB have a brief half-life and are unstable (Zhang et al.,
2016). Thus, comprehensive understanding of ultrasound, MB, and
tissue response, along with optimized regulation of cavitation effects,
will enhance the safety and efficacy of the technology, facilitating its
integration into brain disease treatment.

3.6 Intranasal delivery

The intranasal delivery of pharmaceuticals has developed as a
significant approach for transcending BBB and achieving targeted
brain delivery (Shen et al., 2025; Agrawal et al., 2018). This method
utilizes the anatomical and structural characteristics that exist
between the nasal cavity and the CNS to facilitate drug delivery
to brain. The drug generally be delivered through two distinct
pathways. In the intracellular pathway, drugs deposited in the
olfactory epithelium can be transported along the nerves to the
olfactory bulb (Sasaki et al., 2023). In the extracellular pathway,
drugs enter the cerebrospinal fluid through the paracellular space of
the nasal epithelial cells and subsequently diffuse into the
subarachnoid space of the brain via the perineural space
(Pardeshi and Belgamwar, 2013). Furthermore, drug can be
absorbed through the nasal blood vessels, subsequently entering
the brain via the systemic circulation. This process has the potential
to mitigate the systemic toxic and side effects which are associated
with systemic administration, circumvent the initial hepatic
metabolism, diminish the accumulation of drugs in non-target
tissues, and concurrently augment the targeted enrichment level
in the brain (Huang et al., 2024b).

In intranasal drug delivery systems, nanocarriers such as
polymers, liposomes, and micelles have been utilized extensively
(Wang et al., 2019). Polymer nanoparticles have garnered significant
attention due to their inherent safety, their ability to encapsulate
drugs with high efficiency, and their versatile structural tunability
(Jia et al., 2025a). The presence of mucosal adhesion properties can
prolong retention time in nasal cavity to reduce mucociliary
clearance. A system based on exosome has been demonstrated to
facilitate the delivery of neuroprotective peptides and nucleic acids
to brain lesion areas, which could be contributed to its natural
biocompatibility and barrier penetration ability. In models of AD, it
has been observed to modulate microglia phenotype and facilitate
Aβ clearance (Xu et al., 2025). Notably, the delivery efficiency of
intranasal formulations is determined by the physicochemical

properties of drugs and the characteristics of nanocarriers. The
passive diffusion and absorption of lipophilic small molecules by the
olfactory epithelium is well-documented, while the necessity of
modifying nanocarriers for epithelial barrier breakthrough is
well-established for drugs. The nanoscale size and negative
charge of lipid nanoparticles facilitate their transportation
through olfaction and the trigeminal nerve (Jia et al., 2025b).
Viscosity-control strategies enhance naso-brain delivery efficacy
(Yue et al., 2025). Although intranasal administration has
advantages, its clinical application still faces challenges. The nasal
cavity’s enzymes and mucociliary clearance affect drug stability, and
the dosage is limited. Cationic carriers enhance mucosal adhesion,
but pose risks of systemic and local toxicity. Exploration of how the
intranasal delivery system interacts with the nasal mucosa and
neural pathways will improve the therapeutic effect of NDDs.

4 Strategies for drug delivery systems to
cross the BBB

4.1 Passive targeting strategy

Passive strategies for BBB penetration constitute a form of non-
specific transport. This category does not rely on specific targeting
molecules, instead primarily leveraging the physiological
characteristics or pathological states of the BBB, or achieve cross-
barrier transport by optimizing the physicochemical properties of
the carrier (Table 1). During the pathological process of NDDs such
as AD, PD, and MS, the tight junctions of the BBB gradually loosen
due to chronic inflammation, oxidative stress and other factors, and
the permeability abnormally increases. Drugs or nanocapsules can
passively diffuse into the brain parenchyma through open
paracellular pathways. For instance, in the acute phase of MS,
inflammatory factors (such as tumor necrosis factor-α and
interleukin-1β) can disrupt the tight junction proteins between
endothelial cells (such as claudin-5 and occludin), causing the
local opening of the BBB. Anti-inflammatory drugs can thereby
non-specifically penetrate into demyelinating lesions (Zierfuss et al.,
2024). In addition, by optimizing the physical properties of drug
delivery nanoparticles (Figure 4A), including size, shape and surface
charge, nanoparticles can more effectively cross the BBB through
passive transport mechanisms, thereby improving the distribution
and efficacy of drugs in the brain (Nance et al., 2012; Wu et al., 2025;
Wen et al., 2023). Smaller nanoparticles (typically less than 100 nm)
are more likely to pass through the BBB because they are more easily
taken up by brain endothelial cells (Cruz et al., 2016). In addition,
nanoparticle shape also affects their behavior in the BBB. Spherical
nanoparticles usually have superior biocompatibility and lower
immunogenicity, while rod-shaped or flaky nanoparticles may
have higher cellular uptake efficiency (Banerjee et al., 2016;
Nowak et al., 2020). Nanoparticle surface charge is equally
relevant. There is a higher rate of cellular uptake of positively
charged nanoparticles, but they may cause a stronger immune
response as well. Negatively charged nanoparticles, on the other
hand, have better stability and lower immunogenicity (Chen et al.,
2024; Wang et al., 2025c). Nano-carriers with surface-modified
neutral or weak anionic groups (such as nanoparticles coated
with hyaluronic acid) can reduce non-specific binding to blood
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TABLE 1 Typical strategies for drug delivery across the BBB.

Strategy Type Mechanism Advantages Limitations Materials/
techniques

Specificities Experimental
Models

References

Passive transport Physicochemical-
dependent

Dependent on BBB disruption
(e.g., pathological permeability)
or carrier properties (small size,
lipophilicity) for passive
diffusion.

Simple preparation, low
cost; suitable for BBB-
damaged models.

Limited to pathological
conditions; high off-
target toxicity.

Unmodified nanoparticles
(<100 nm), liposomes
(relying on BBB leakage),
lipophilic small molecules.

— Glioblastoma mice,
stroke models

Cruz et al. (2016),
Nowak et al. (2020),
Chen et al. (2024)

Active targeting Ligand-mediated
targeting

Specific binding of ligands to
high-expression BBB receptors,
triggering receptor-mediated
endocytosis.

Independent of BBB
integrity; high specificity,
reduced off-target
distribution.

Dependent on high
receptor expression;
potential immune
responses.

Antibody-based: AAV capsid
targeting hTfR

hTfR, LRP-1, LfR. AD model mice, MS
model mice, monkeys

Huang et al. (2024a)

Fc fragment BBB transport
vehicle (hTfR)

Kariolis et al. (2020)

Peptide-based: Angiopep-2
modified nanoparticles
(LRP-1).

Katila et al. (2022)

Small molecule-based:
Lactoferrin-modified PLGA
nanoparticles (LfR)

Zhao et al. (2024)

Physicochemical
optimization
(Auxiliary)

— Enhances stability/circulation
(e.g., PEGylation) or endosome
escape (e.g., pH-sensitive
materials).

Improves delivery
efficiency of passive/active
strategies.

Excessive modification
may affect ligand-
receptor binding.

PEGylated liposomes — AD model Gu et al. (2024b)

porous coordination
network-224 nanoparticles

Glioblastoma Cao et al. (2022)

AAV: adeno-associated virus, hTfR: the human transferrin receptor, LRP-1: low-density lipoprotein receptor-related protein 1, LfR: lactoferrin receptor.
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components and enter the brain parenchyma through adsorption-
mediated endocytosis. They are particularly effective in NDDs with
mild BBB damage, such as PD.

Further optimization of physicochemical properties of drug
carriers or molecules can enhance their penetration of the BBB
through surface or chemical modification. Among them, surface
modification can increase contact probability with the BBB by
prolonging the circulation time, improving penetration efficiency
through passive diffusion. PEGylation reduces their clearance rate in
the blood, prolongs circulation time, and reduces non-specific
adsorption (Chen et al., 2024; Gu Z. et al., 2024). For example, to
facilitate the delivery of the drug to the brain, ATX was encapsulated
with liposomes and then conjugated with PEG to produce liposome
nanoparticles (PEG-ATX@NPs). PEG-ATX@NPs have been
demonstrated to reduce Aβ neurotoxicity by degrading FA
in vitro and reducing FA-induced Aβ assembly. Chemical
modification, by contrast, focuses on enhancing transmembrane
properties. Given the high lipophilicity of the BBB’s endothelial cells,
chemical modification primarily enhances passive diffusion by
improving the lipid solubility of carriers or drugs (Zhou et al.,

2018; Hajal et al., 2021). Therefore, researchers have explored a
variety of lipid-based drug delivery systems to enhance BBB
permeability while considering the biodegradability of the
materials. This is crucial for controlling the rate of drug release
from nanoparticles and the pharmacokinetics of drugs (Wang et al.,
2025c). Fatty acid esterification augments transmembrane diffusion
by leveraging the BBB’s lipid bilayer structure, thereby improving
brain permeability (Xue et al., 2025; Wang Y. et al., 2025). However,
passive strategies are primarily applicable when the BBB is
pathologically damaged, and their non-specific nature may cause
systemic vascular permeability to increase, leading to toxic side
effects in peripheral tissues.

4.2 Active targeting strategy

The active targeting strategy does not rely on the inherent
transport mechanisms of the BBB, but instead actively regulates
or enhances specific transport pathways through targeted design,
thereby improving the efficiency and specificity of drug delivery to

FIGURE 4
(A) The size, shape, chemical modification, and surface charge of nanoparticles all affect their ability to penetrate the BBB. Particles with small size,
rod-shaped structures, lipophilic properties, or positive surface charge are conducive to crossing endothelial junctions. (B) Ligands include antibodies,
transferrin, insulin, and peptides. Chemical groups include polyethylene glycol (PEG) and surfactants. These surface-functionalized groups promote the
entry of carriers through the BBB and their absorption by the brain. Carriers modified with ligands can be recognized by cell surface receptors such
as transferrin receptor (TfR), low-density lipoprotein receptor-related protein 1 (LRP-1), and insulin receptor (IR). This recognition promotes transcellular
transport of the carriers, while chemical groups (e.g., PEG) enhance stability, prolong circulation time, or reduce non-specific interactions.
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the brain (Table 1). Its core lies in leveraging highly expressed
specific receptors on BBB endothelial cells to trigger energy-
dependent active transport by ligand-receptor recognition, thus
overcoming the constraints of an intact BBB (Figure 4B).

4.2.1 Ligand-mediated targeted modification
Ligand-mediated targeting relies on specific interactions

between ligands and receptors on the BBB, triggering receptor-
mediated endocytosis or transport to enhance brain delivery. This
strategy leverages high-expression receptors on BBB endothelial
cells to improve targeting efficiency and reduce non-specific
distribution (Li and Kataoka, 2021). Common ligands include
antibodies, peptides, and small molecules, with key targeting
receptors such as transferrin receptor (TfR), lactoferrin receptor
(LfR) and LRP-1 (Huang et al., 2024a; Cao et al., 2022; Sagare et al.,
2012) As a type of immunoglobulin that can specifically bind to
antigens/receptors, antibody ligands, with their extremely high
affinity and targeting specificity, have become the most
commonly used method in the active targeting of BBB. TfR and
insulin receptor, which are highly expressed in BBB endothelial cells,
are typical targets. Tf antibodies or transferrin-modified carriers
(e.g., liposomes, nanoparticles) specifically bind to TfR, enabling
receptor-mediated endocytosis to cross the BBB (Song M.-s. et al.,
2025; Kariolis et al., 2020). A microglial exosome-Tf-liposome
hybrid carrier delivers berberine and palmatine to the brain. Tf-
modification facilitates BBB penetration, while berberine inhibits β-
secretase and palmatine regulates NF-κB signaling, improving
cognitive dysfunction in AD models (Zhou et al., 2025). Peptide
ligands composed of short-chain amino acids have advantages such
as small molecular weight (<5 kDa), high biocompatibility, and ease
of chemical synthesis/modification, making them particularly
suitable for penetrating the tight structure of BBB endothelial
cells. For instance, peptides targeting LRP-1 (e.g., Angiopep-2)
mimic endogenous peptide sequences to bind specifically to
receptors, facilitating receptor-mediated endocytosis across the
BBB (Zhao et al., 2024; Martikainen et al., 2024; Yoshioka
et al., 2025).

Small molecule ligands form specific binding with BBB receptors
through chemical structures, featuring high stability, easy batch
synthesis and low cost. Unlike antibody-based targeting, they are
particularly suitable for chemical coupling with nanocarriers.
Lactoferrin (Lf), a natural ligand of LfR, enables modified
nanoparticles to increase the intracranial concentration of anti-
inflammatory drugs in the MS model. Moreover, due to the high
specificity of Lf and LfR, its penetration into the normal BBB area is
extremely low (Zierfuss et al., 2024). A lipid nanocomposite
modified with apolipoprotein A-I, its mimetic peptide 4F, and
angioendothelin-2 crosses the BBB, targets microglia, eliminates
amyloid-β, and inhibits tau phosphorylation, which significantly
improves AD pathology (Han et al., 2022).

4.2.2 Chemical coupling and functional
optimization of ligands

The targeting effect of ligands not only depends on their type,
but also on the coupling mode with the carrier and functional
optimization (Wang C. et al., 2024). Fixing ligands to the surface of
carriers through chemical coupling is a key technology to enhance
targeting efficiency. The core lies in strengthening the binding ability

of carriers to BBB endothelial cells while ensuring the activity of
ligands. The selection of coupling methods, the retention of ligand
activity, and the coordinated optimization of carrier functions
directly affect the final effect of active targeting. The chemical
coupling of ligands and carriers needs to take into account both
the stability of the bond and the biological activity of the ligands. The
appropriate method should be selected based on the type of ligand
(such as antibodies, peptides) and the characteristics of the carrier
material (Wu et al., 2019). The use of flexible connection tools such
as PEG can reduce steric hindrance. For instance, PEG-coupled Tf
enhanced liposomes’ ability to cross the BBB, which to some extent
could be attributed to the reduction of steric hindrance by PEG. This
improved interaction with the highly expressed transferrin receptor
on the blood-brain barrier in PD (Sela et al., 2023). Although these
strategies enhance the delivery of drugs to the brain through ligand-
receptor interactions, they have limitations, such as dependence on
high receptor expression and the potential for immune responses or
receptor downregulation. Existing solutions include developing
multi-ligand collaborative targeting to enhance binding efficiency
and using low immunogenic ligands to reduce immune responses.
Other solutions involve allosteric targeting and stimulus-responsive
release techniques.

5 Clinical translational analysis

Preclinical studies use rodent models, such as mice and rats, and
non-human primates, including rhesus monkeys and Beagle dogs, to
assess the penetration efficiency of BBB, the targeting ability of
vectors, and the efficacy of these vectors (Deo et al., 2013). In the
course of the clinical trial stage, a multitude of vectors have been
investigated. Doxorubicin liposomes were previously included in the
phase I clinical trial of glioma (Barenholz, 2012). However, the trial
was terminated due to the tumour suppression rate falling short of
the stipulated endpoint. The preliminary phase of clinical trials has
demonstrated the safety of intranasal administration of allogenic
human adipose mesenchymal stromal cells-derived exosome in the
treatment of AD. The clinical trial (NCT04388982) for the treatment
of AD with exosome nasal spray has enrolled nine patients,
completed administration and follow-up, and no serious adverse
events occurred (Xinyi et al., 2023). Nevertheless, it is imperative to
acknowledge that transferrin-coated liposomes are currently in the
preclinical phase of research.

Despite the advances made by the aforementioned carriers in the
realm of clinical research, the lack of clinical approval for
nanocarriers can be attributed to several fundamental issues. The
divergent structures of the BBB in rodents and humans complicate
the extrapolation of preclinical data to humans (Hoshi et al., 2013).
It has been demonstrated that both large-scale production and
stability are susceptible to disruption due to bottlenecks. The
fluidity of liposome membranes and the composition of exosome
surface proteins are affected by multiple factors and do not meet the
standards for clinical batch production. However, the dearth of
long-term safety data and the elusive nature of the metabolic
pathways of nanoparticles in the brain represent significant
obstacles (Zhao et al., 2018). The potential neurotoxic risks
associated with this process have not yet been ruled out. The
regulatory and evaluation system is deficient, and there is an
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absence of unified clinical endpoint indicators (Younis et al., 2022).
In summary, the clinical transformation of delivery systems must
address species differences, production process limitations, and
regulatory barriers. Cross-scale model validation and the
establishment of a standardized evaluation system are necessary
to facilitate the transition of these models from laboratory to
clinical settings.

6 Conclusion and prospect

At present, various drug delivery systems such as liposomes,
nanoparticles, exosomes and viral vectors have made certain
progress in penetrating the BBB for NDDs through strategies
such as surface modification and structural modification. The
modified vectors can cross the BBB by means of mechanisms
such as receptor-mediated endocytosis and adsorption-mediated
endocytosis, achieving precise drug delivery to the lesion areas of the
brain and demonstrating potential therapeutic effects in the
treatment and research of diseases such as AD and PD. However,
as previously noted, these systems face persistent challenges. Such as
the poor stability of liposomes and limited drug loading capacity;
The long-term safety and in vivo metabolic processes of
nanoparticles remain unclear. The preparation process for
exosomes is complex and costly. Furthermore, the pathological
mechanisms of different NDDs vary significantly, and a single
delivery strategy is difficult to meet the therapeutic needs of all
diseases. In the future, further in-depth research is needed on the
physiological characteristics and regulatory mechanisms of the BBB
to develop safe, and promote targeted efficiency drug delivery
systems. At the same time, by integrating multi-disciplinary
technologies, an organic combination of drug delivery and
disease-specific treatment can be achieved, promoting substantive
breakthroughs in neurodegenerative disease treatment.
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