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Enzymatic oxidation or autooxidation of esterified polyunsaturated fatty acids

(PUFA) residues within phospholipids in cell membranes or circulating

lipoprotein particles leads to the formation of a broad range of oxidized

phospholipid (OxPL) species. Chronically elevated OxPL levels present in

circulation and atherosclerotic plaques are thought to induce

proinflammatory and injurious effects on blood- and vessel wall cells.

However, analysis of the structure-activity relationship also identified specific

OxPL products exhibiting prominent anti-inflammatory, pro-survival and barrier

protective properties. This minireview will briefly summarize rapidly

accumulating evidence pointing to the importance of OxPLs in pathology,

where they can play multiple roles of biomarkers, drug targets and drug leads.
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Introduction

Membrane PLs contain the major cellular pool of PUFAs, which can be oxidized

enzymatically or non-enzymatically thus producing biologically active oxidized

phospholipids (OxPLs, Figure 1) (Hajeyah et al., 2020; Spickett, 2020). During the last

two decades OxPLs have been extensively characterized as drivers of pathology inmultiple
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inflammatory and metabolic conditions. This minireview will

focus on the emerging role of OxPLs in medicine and

pharmacology, where they are increasingly recognized as

disease markers, drug targets and drug leads.

Oxidized phospholipids as
biomarkers of chronic vascular
disease and acute inflammation

Oxidative stress is a major mechanism underlying

atherogenesis and cardiovascular disease. OxPLs represent a

group of oxidation-generated lipids, some of which can

covalently bind to proteins and form so-called oxidation-

specific epitopes recognized by the innate and adaptive

immunity. Such molecules accumulate in OxLDL and

atherosclerotic plaques (Gugiu et al., 2008; Gonen et al., 2019)

and stimulate chronic inflammation and deposition of lipids

(Podrez et al., 2007; Bartolini Gritti and Binder, 2016). OxPLs are

especially abundant in circulating apoB-100-containing

lipoproteins LDL and Lp(a), where they are present both as

free lipids and covalent complexes with apoB or apo(a)

(Leibundgut et al., 2013). An established immune assay for

circulating OxPLs is based on a monoclonal antibody E06,

which recognizes oxidized phosphatidylcholine. Levels of

OxPLs are normalized to the apoB-100 and therefore the

readout is referred to as an OxPL-apoB ratio (Tsimikas et al.,

2005). Multiple clinical association studies using the OxPL-apoB

assay have shown correlation of OxPL-apoB levels with the

progression, acute cardiovascular events, and efficiency of

therapy of cardiovascular disease (Taleb et al., 2011; Byun

et al., 2015; Capoulade et al., 2015; Byun et al., 2017). In

addition, generation of OxPL products has been reported in

various non-infectious (Philippova et al., 2019; Ademowo et al.,

FIGURE 1
Generation of OxPLs. Direct oxidation of PUFA-containing phospholipids either via enzymatic (12/15-lipoxygenase, 12/15-LOX) or non-
enzymatic (ROS- or RNS-mediated) reactions represents the major way of formation of OxPLs (left part). Alternatively, free, unesterified PUFAs (e.g.,
arachidonic acid) can be directly oxidized by lipoxygenases (5- or 12/15-LOX) or cycloxygenases (COX-1 or COX-2) and then esterified to a lyso-PL
with generation of OxPLs (right part). Only few examples of possible OxPL structures are shown.
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TABLE 1 Role of elevated OxPL products in various inflammatory diseases in humans and rodent models.

Type of
inflammatory
condition

Model OxPL compound Value References

Atherosclerosis
and CAD

Human plasma and
atheroscle-rotic plaques

OxPC OxPC are associated with progression of the
cardiovascular disease and its complications

Gugiu et al. (2008), Taleb et al.
(2011), Byun et al. (2015),
Capoulade et al. (2015), Byun et al.
(2017), Gonen et al. (2019)

Mice OxPC, POVPC Antibodies scavenging OxPC lead to inhibition of
development of atherosclerotic events:

Tsimikas et al. (2011), Que et al.
(2018), Cherepanova et al. (2020),
Gao et al. (2020)- Lesser cholesterol accumulation in mice vessels

- Less aorta calcification

- Lower phagocytic activity of macrophages

Mice OxPC, POVPC Antibodies scavenging OxPC lead to impaired
inflammatory status

Que et al. (2018), Yeang et al.
(2019), Cherepanova et al. (2020)

- Inhibition of OxPL-induced IL-1ß and TNFα
- Increased expression of inflammation suppressors

Ischemia-reperfusion
injury

Rat cardio-myocytes; ex
vivo model using rat hearts;
rats

Different molecular
species: OxPC, OxPE,
OxPS

Antibodies scavenging OxPC Yeang et al. (2019), Bagchi et al.
(2020), Solati et al. (2021),
Stamenkovic et al. (2021), Ma et al.
(2022)

- Ameliorate cell death in cardiomyocytes under
ischemia-reperfusion stress conditions

- Reduce myocardial ischemia-reperfusion injury

Coagulation Mouse models of
hyperlipidemia; human
plasma

Short-chain and long-
chain OxPLs

Platelet hyperactivity and accelerated thrombosis
caused by OxPLs

Podrez et al. (2002), Podrez et al.
(2007), Zimman and Podrez
(2010), Biswas et al. (2017)

Inflammatory pain Mice OxPC Antibodies scavenging OxPC lead to lower
nociception caused by OxPLs

Mohammadi et al. (2018)

Steatohepatitis and
fibrosis models

Mice OxPC Antibodies scavenging OxPC reduce hepatic
cholesterol and triglycerides

Imai et al. (2008)

Mice OxPC, various
molecular species
identified by LC-
MS/MS

Scavenging OxPLs by expressed specific antibodies
prevents the progression of steatohepatitis to
fibrosis

Upchurch et al. (2022)

Osteoporosis Mice; rats OxPC Antibodies scavenging OxPC attenuate bone loss Ambrogini et al. (2018), Palmieri
et al. (2021)

Acute lung injury Human plasma OxPC SARS-CoV-2 infection is accompanied by elevated
OxPLs in plasma

Akpinar et al. (2021)

Mice OxPC Accumulation of OxPC is linked to a pro-
inflammatory state induced by H5N1 avian flu,
SARS, or intratracheal instillation of hydrochloric
acid

Imai et al. (2008)

Mice Short-chain OxPC Exacerbating acute lung injury in the aging lungs Ke et al. (2019)

Mice Hydroperoxides of PC Vascular damage during lung ischemia reperfusion
injury via formation of OxPLs

Li et al. (2022)

Mice Epoxidized PLs as a
source of epoxy fatty
acids

Epoxy-fatty acids released from PLs or applied
exogenously induce vascular remodeling and
alleviation of pulmonary hypertension

Moriyama et al. (2022)

Parkinson, Alzheimer,
Huntington diseases

Neuronal cells; human
plasma; cell-free
experiments; cells, ex vivo
brain slices from rats;
mouse models

PONPC,
hydroperoxide of PC,
POVPC, oxidized
cardiolipins

- Level of POVPC is higher in plasma of Alzheimer
patients.

Mahalka et al. (2011), Artyukhova
et al. (2019), Ademowo et al.
(2020a), Ademowo et al. (2020b),
Angelova et al. (2020), Espinosa
et al. (2022)

- POVPC induces loss of GSH and a mitochondrial
bioenergetic deficit in neuronal cells.

- Accelerated amyloidogenesis induced by PONPC
or lipid bilayers contained hydroperoxide PCs.

Prevention of lipid peroxidation:

- Lowers calcium influx

- Diminishes neuronal death induced by α-
synuclein aggregates

(Continued on following page)
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TABLE 1 (Continued) Role of elevated OxPL products in various inflammatory diseases in humans and rodent models.

Type of
inflammatory
condition

Model OxPL compound Value References

Rheumatoid arthritis Mice OxPC Antibodies scavenging OxPC or antioxidants
preventing PL oxidation/ferroptosis hampers
progression of rheumatoid arthritis

Oehler et al. (2017), Jhun et al.
(2020)

Multiple sclerosis Mice; human brains OxPC Microglia mediate clearance of OxPC as the driver
of neurodegeneration

Qin et al. (2007), Dong et al.
(2021)

Type-2 diabetes Human serum Monohydroxides of
OxPC

Long chain OxPCs are slightly elevated in patients
with insulin resistance as compared to the control
individuals

Godzien et al. (2019)

Zebra fish model Hydroperoxides of PC
and PE

Accumulation of OxPLs is observed in this model Chen et al. (2018)

Traumatic brain
injury

Human, mouse or rat brains Peroxidized PEs, PSs
and cardiolipins

- Oxidized PEs drive ferroptosis in cells upon brain
trauma

Bayir et al. (2007), Kagan et al.
(2017), Wenzel et al. (2017)

- Oxidized PSs mediate efferocytosis and injury
resolution

- Oxidized cardiolipins induce apoptosis after brain
trauma

Renal failure Mice; human urine cell
pellets

PC- and cardiolipin
hydroperoxides

Excessive lipid peroxidation leads to renal failure Skouta et al. (2014), Friedmann
Angeli et al. (2014), Wenzel et al.
(2017)

Allergy, asthma,
pulmonary
hypertension

Mouse and human mast
cells; mice

PLs containing epoxy
fatty acids

Peroxidized phospholipids with epoxy-fatty acids
are responsible for development of allergy and
asthma signs

Shimanaka et al. (2017),
Moriyama et al. (2022)

Aging Rats; mice Short-chain OxPLs,
long-chain OxPLs

- Age-related increase in OxPLs was paralleled to rat
memory impairment

Liu et al. (2013), Ke et al. (2019),
Lubec et al. (2019), Narzt et al.
(2022), Pairojana et al. (2022)- Aged rats have less peroxiredoxin 6, which has a

dual PL hydroperoxide reductive and
phospholipase A2 cleaving activities, and have
impaired spatial memory and abnormal synaptic
plasticity

- Peroxiredoxin 6 deficient mice exhibited anxiety-
like behavior, enhanced contextual fear memory,
and impaired spatial memory

- Elevated in plasma levels of short-chain OxPLs
augment pre-existing pro-inflammatory events

UV-light exposure Human skin explants;
mouse skin; keratinocytes

PE hydroperoxides,
oxidized cardiolipins

UVB-light induces skin damage Vats et al. (2021)

Human skin; keratino-
cytes; mice

Short-chain OxPLs UVB-light induces systemic immunosuppression
through formation of short-chain OxPLs

Sahu et al. (2012)

Cancer Cancer cell lines POVPC Metastatic potential of cancer cells is increased Seok et al. (2021)

Radio-and
chemotherapy

Human subjects; cells; mice Short-chain OxPLs - Radiation and chemotherapy generate short-chain
OxPLs

Sahu et al. (2015), Sahu et al.
(2016)

- OxPLs formed promote treatment failure
(augment tumor growth and modulate immune
responses in hosts)

Acute alcohol
exposure

Keratinocytes; human and
murine skin ex vivo models;
rats

Short-chain OxPLs Alcohol consumption leads to generation of
OxPLs and:

Yang et al. (2010),
Latchoumycandane et al. (2014),
Harrison et al. (2018), Appolonia
et al. (2022)

- Amplify the systemic immunosuppression

- Induce skin damage when combined with UV-
light exposure

- Induces kidney injury
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2020a; Solati et al., 2021) and infectious (Imai et al., 2008; Matt

et al., 2015) diseases including COVID-19 (Akpinar et al., 2021).

Importantly, several disease associations mentioned above have

been independently confirmed by mass spectrometry-based

methods, although such studies are relatively scarce in

comparison to immune methods. An advantage of mass

spectrometry is the ability to quantify different classes of

OxPLs. Available publications on the clinical measurements of

different classes and molecular species of OxPLs by ELISA or

mass spectrometry are summarized in the Table 1.

Open question: How direct is the
relation between circulating levels of
OxPLs and their pathological impact?

It is incorrect to limit the analysis of OxPLs solely with

quantification of their circulating concentrations because the

pathological impact depends on the balance of plasma

concentrations and activity of protective mechanisms. We

have developed an antibody-based in vitro test showing that

human plasma contains components that either degrade or

physically mask OxPLs thus potentially preventing interaction

of OxPLs with cellular targets (Bochkov et al., 2016). This

“masking” assay demonstrated a significant negative

correlation between the masking capacity and atherosclerosis

risk factors such as age, smoking, hypertension and family

history of CAD (Bochkov et al., 2016). Furthermore, masking

capacity negatively correlated with the presence of cardiovascular

disease and acute events. In other words, cardiovascular risk

burden in patients is accompanied with a weaker masking

activity for circulating OxPLs, which can promote disease

progression. Further work is needed to establish if a

combination of the OxPL-apoB and masking assays can

increase their diagnostic power.

Oxidized phospholipids as potential
drug targets

The interest to OxPLs is not limited by their role as oxidative

stress biomarkers. A large body of data suggests that OxPLs are

likely to be active drivers of disease. By analogy with the effects of

protein modifications on protein functions, one can say that

oxidation induces a gain of function changes in PLs because

OxPLs can trigger biological effects that cannot be induced by

their non-oxidized precursors. Multiple (patho)physiological

activities of OxPLs have been described including those

related to innate and acquired immunity, blood clotting,

atheroma formation, pain control, etc. (Bochkov et al., 2010;

Karki and Birukov, 2021; Zhivaki and Kagan, 2022).

Animal models confirmed the importance of OxPLs in

conditions of acute and chronic inflammation such as

atherosclerosis (Que et al., 2018), nonalcoholic fatty liver

disease (Sun et al., 2020; Upchurch et al. 2022), ischemia-

reperfusion injury (Yeang et al., 2019) and osteoporosis

(Ambrogini et al., 2018). In combination with human disease

association data descried above, these results strongly support the

causative involvement of OxPLs in the disease pathogenesis.

Therefore, it is tempting to speculate that therapy directed at

the neutralization of toxic and pro-inflammatory effects of

OxPLs may help to cure human disease.

There are several experimental approaches targeting OxPLs

in vivo. In addition to passive immunization with antibodies to

OxPLs (Oehler et al., 2017), titers of natural anti-OxPL

antibodies can be elevated by the immunization with

Streptococcus pneumonia (Binder et al., 2003). Another

approach is the use of anti-inflammatory and anti-atherogenic

apoAI-mimetic peptides, which have high affinity to OxPLs and

can inhibit their negative effects (Van Lenten et al., 2008; Getz

and Reardon, 2011; Oehler et al., 2017). Furthermore, a major

part of OxPCs in circulation is bound to Lp(a) and is responsible

for pro-inflammatory properties of this lipoprotein (Bergmark

et al., 2008; Scipione et al., 2015). Recent clinical trials show that

circulating levels of Lp(a) and associated OxPLs can be effectively

reduced by RNA-based approaches (Tsimikas et al., 2021).

Another promising strategy is a reduction of the pro-

inflammatory activities of truncated OxPLs by removing their

oxidized acyl chains by administration of a highly conserved host

lipase, acyloxyacyl hydrolase (AOAH) (Zou et al., 2021) or

platelet-activating factor (PAF) acetylhydrolases (PAF-AHs)

(McIntyre, 2012). Last but not least, it is known that pro-

inflammatory signaling pathways induced by OxPLs at least

partially differ from the pathways activated by classical

inflammatory mediators such as TNFα, IL-1β, etc. (Bochkov
et al., 2002a; Gargalovic et al., 2006). Thus, selective targeting of

OxPLs-induced signal transduction potentially can prevent

negative effects of OxPLs without impairing the normal

inflammatory signaling.

Oxidized phospholipids as potential
drug leads

Well-investigated families of lipid mediators, e.g.,

prostanoids, induce variable and often functionally opposite

effects mediated by different receptors expressed in different

cell types. In full agreement with this mode of action, under

different biological conditions OxPLs can be either toxic and pro-

inflammatory, or they can exhibit protective effects (Figure 2). It

has been shown that OxPLs inhibit activation of Toll-like

receptor 4 (TLR4) (Bochkov et al., 2002b), well recognized for

its role in triggering sepsis. The effect of OxPLs in vivowas strong

enough to protect animals from lethal doses of LPS (Bochkov

et al., 2002b). An important anti-LPS mechanism is the mutually

exclusive binding (antagonism) of OxPLs with TLR4 and its
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accessory proteins MD-2, CD14 and LBP (Bochkov et al., 2002b;

Erridge et al., 2006).

Another potentially beneficial property of OxPLs is their

ability to enhance the lung endothelial barrier under basal

conditions and after treatment with pathological stimuli such

as bacteria, edemagenic bioactive peptides, inflammatory

cytokines (TNFα, IL-6) and pathologic mechanical forces

(Nonas et al., 2008; Karki and Birukov, 2020). These barrier-

protective properties may be beneficial in treatment of sepsis-

associated inflammation and its frequent

complication—pulmonary edema. As compared to other

molecules enhancing lung barrier, such as prostaglandins E2,

and I2, the barrier-enhancing action of OxPAPC continues for

significantly longer time. The efficiency of OxPLs in the

prevention of sepsis and lung edema in animal models, as

well as underlying molecular mechanisms, have been reviewed

recently (Karki and Birukov, 2021).

The data presented above show that non-truncated OxPLs

exhibit a unique combination of beneficial properties. They

inhibit inflammation induced by bacteria, and at the same time

act as long-acting enhancers of endothelial lung barrier. Such a

combination may be especially beneficial for treatment of ARDS,

where both bacterial inflammation and lung edema play an

important role (Karki and Birukov, 2021). However, in vivo

FIGURE 2
Structure and biological activity of alkyl-amide OxPLs. Fatty acid residues are linked via an sn-1 ether or an sn-2 amide bond of alkyl-amide
OxPLs respectivelly, which simplifies their synthesis (upper panel). Alkyl-amide OxPLs inhibit LPS-induced inflammation (middle panel) and enhance
lung endothelial barrier (lower panel) in vitro and in vivo (Oskolkova et al., 2021).
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application of OxPLs is complicated by rapid degradation of diacyl

OxPLs by phospholipases A1/A2. To improve pharmacokinetics, we

have synthesized OxPLs in which fatty acid residues are bound with

glycerol via an alkyl and an amide bonds. These bonds are not non-

physiological: a large proportion of cellular phospholipids contains

sn-1 alkyl bond, while an amide bond is typical for sphingolipids,

which are also abundant in cells. We found that alkyl-amide OxPLs

had good solubility, improved in vivo stability and demonstrated

anti-LPS and barrier protective effects that were similar to the action

of diacyl OxPAPC in vitro and in animal models (Figure 2). Thus,

alkyl-amide OxPLs represent an improved hit for further

development of a drug with polypharmacological activity

simultaneously protecting against bacterial sepsis and pulmonary

edema.

Given the deleterious effects of chronically elevated OxPLs in

cardiovascular pathologies, could modified OxPLs still be

beneficial for treatment of patients with pre-existing condition

(hyperlipidemia, atherosclerosis, diabetes) suffering from ARDS

and other inflammatory syndromes? Both sepsis and lung edema

are acute conditions and require short-term application of

OxPLs. Therefore, it is unlikely that treatment of such

patients with OxPLs-based drugs for hours or days could

aggravate concomitant chronic pathologies such as

atherosclerosis, which develop during decades.

Conclusion

Similar to other families of lipid mediators, OxPLs may serve

as biomarkers of oxidative stress and cardiovascular pathology.

Furthermore, OxPLs induce chronic pathological effects, which

may be a target for pharmacological neutralization. On the other

hand, OxPLs are pharmacological lead structures demonstrating

a unique combination of TLR-inhibitory and lung barrier-

protective properties. This combination ideally fits for a short-

term therapy of systemic inflammation and lung edema. In

summary, available data characterize OxPLs as promising

structures for further biological analysis and justify their

further pharmacological development.
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