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Heart failure (HF) with preserved ejection fraction (HFpEF) is a clinical syndrome

characterized by signs and symptoms of HF in the presence of a normal left

ventricular systolic function. Over the past decade, HFpEF has become

increasingly prevalent, accounting for greater than 50% of all clinical HF

presentations. HFpEF is a complex disease with heterogeneous clinical

presentations and multiple non-cardiac comorbidities, which frequently co-

exist and contribute to its pathophysiology. To date, only a handful of therapies

have been proven to improve, albeit marginally, the outcomes in HFpEF. The

development of effective therapeutic agents is in part hampered by the lack of

animal models that adequately recapitulate human HFpEF. Although numerous

pre-clinical models developed over the years have been labeled as “HFpEF”

specific, there has not been a consensus on the appropriate standards for pre-

clinical HFpEFmodels. Thus, the extent to which they truly mirror humanHFpEF

cannot be systematically validated. Recently, a new algorithm (H2FPEF) was

developed to standardize the clinical diagnosis of HFpEF. In this review, with the

aid of the clinical H2FPEF scoring system, we evaluate the clinical applicability

and translational values of various murine models of HFpEF.
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1 Introduction

Heart failure (HF) is a clinical syndrome characterized by a constellation of

symptoms including dyspnea, fluid retention and fatigue caused by cardiac

dysfunction (Klainer et al., 1965; McKee et al., 1971). Traditionally, the extent of

pump dysfunction is approximated by the percentage of blood volume ejected per beat

or ejection fraction (EF) (Sharma and Kass, 2014). Over the past decades, extensive

basic science studies and clinical research have focused on HF associated with

impaired left ventricular (LV) systolic function, characterized by a reduced EF,

also known as HF with reduced EF (HFrEF). These efforts led to the development

of several effective therapeutic regiments for HFrEF patients, culminating in the birth

of guideline-directed medical therapy (GDMT) (Heidenreich et al., 2022). However,

nearly 50% of patients with HF symptoms have a normal or preserved EF (HFpEF,

defined as EF ≥ 50%) (Gok et al., 2020; Nair, 2020) and the majority do not benefit
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from GDMT (Borlaug, 2020). These observations therefore

suggest HFrEF and HFpEF are in fact fundamentally distinct

with respect to their pathophysiology (Ferrari et al., 2015;

Borlaug, 2016) and animal models of HFrEF may not provide

clinically applicable insights into the pathogenesis of HFpEF.

1.1 Challenges in modeling HFpEF

Unlike HFrEF, HF in HFpEF patients usually does not

trace back to a primary injury of cardiomyocytes but rather a

plethora of extra-cardiac perturbations (Ho et al., 2016),

including obesity (Savji et al., 2018), diabetes (Lejeune

et al., 2021), aging and hypertension (Eaton et al., 2016) as

well as cardiac abnormalities, such as atrial fibrillation (Packer

et al., 2020). Because of the predominantly cardiac origin of

HFrEF pathogenesis, treatments aiming at optimizing cardio-

hemodynamic imbalance often bestow disease modifying

benefits for HFrEF patients. In contrast, the ill-defined

etiology of HFpEF has hampered the development of

HFpEF-specific drugs. Consequently, treatment of HFpEF

still mostly focuses on symptom reduction. The block in

bench-to-bedside translation may in part be due to a lack

of pre-clinical HFpEF models that adequately recapitulate

heterogeneity of the human condition.

1.2 Approach to validating HFpEF models

Although the complex etiologic and pathophysiologic paths

of HFpEF pathogenesis pose a great challenge to the development

of pre-clinical models, this process can be aided by a consensus

on what HFpEF features the animals should manifest. First, the

ejection fraction should be preserved. Second, clinical symptoms

of HFpEF should be present. While assessment of shortness of

breath and exercise intolerance in animal models may be less

straightforward than in humans, various measurable parameters

can provide a global impression if clinical symptoms of HFpEF

are present. These include assessing exercise capacity by

voluntary or forced exercise and pulmonary congestion by

post-mortem lung weights or pulmonary vasculature. Lastly, a

new diagnostic algorithm [H2FPEF score(Reddy et al., 2018)]

that defines the most relevant clinical features (obesity,

hypertension, atrial fibrillation, pulmonary hypertension, aging

and diastolic dysfunction) of HFpEF has been recently developed

(Figure 1). Such an approach simplifies and standardizes HFpEF

diagnosis, but it is not without controversy, garnering criticisms

ranging from oversimplification of disease heterogeneity to

misclassification particularly in patients with low H2FPEF

score(Ho et al., 2020; Churchill et al., 2021; Sanders-van Wijk

et al., 2021). Nevertheless, the H2FPEF scoring algorithm has

been validated in various patient cohorts(Packer et al., 2020;

Churchill et al., 2021; Faxen et al., 2021; Tada et al., 2021) and its

proven prognostic utility in human(Sueta et al., 2019; Parcha

et al., 2021) further suggests that it sufficiently identifies key

pathophysiologic determinants of HFpEF outcomes. Thus, the

H2FPEF scoring system may be adapted as a novel standard to

assess the clinical applicability and translational value of various

pre-clinical HFpEF models. In the following sections, we include

murine models that are presented as “HFpEF” in the literature or

used to evaluate therapeutic options in the pre-clinical phase. All

models are evaluated based on whether ejection fraction is

preserved, whether clinical signs and symptoms of HFpEF are

present, and scored in cardiac and extra-cardiac domains of the

HF2PEF scoring system (Table 1).

2 Single stressor models

For the past decades, pre-clinical models of HFpEF have

relied on single perturbations. Because of their limited

applicability to human HFpEF, it is perhaps not surprising

that therapeutic agents which were effective in these pre-

clinical models often failed in clinical trials. A few

unsuccessful attempts include angiotensin-converting enzyme

inhibitors, angiotensin receptor one blockers and

mineralocorticoid receptor antagonists (Khan et al., 2017; Lin

et al., 2022) as well as nitric oxide donors and cyclic guanosine

monophosphate stimulating therapies (Redfield et al., 2013;

Komajda et al., 2017; Borlaug et al., 2018), and angiotensin

FIGURE 1
H2FPEF scoring system used to validate murine models of
HFpEF. TheH2FPEF score(Reddy et al., 2018) combines clinical and
echocardiographic patient characteristics in the cardiac domain:
diastolic dysfunction (E/E′) and atrial fibrillation as well as
extra-cardiac domains: hypertension, aging (>60 years old),
obesity (BMI >30 kg/m2) and pulmonary hypertension (pulmonary
artery systolic pressure >35 mmHg). The score allocated to each
domain is denoted. A total score ≥6 correlates with a >90%
probability of HFpEF.
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TABLE 1 Evaluation of murine HFpEF models by H2FPEF score.

Stressor(s) Model Clinical signs of HFpEF H2FPEF score

Pulmonary
congestion

Exercise
intolerance

Obesity
(2)

Hypertension
(1)

Atrial
fibrillation
(3)

Pulmonary
hypertension
(1)

Old
age
(1)

Diastolic
dysfunction
(1)

Total
points

Hypertension ANG II infusion mice Yes Yes No Variable N/A N/A No Yes 1 to 2

Aldosterone uninephrectomy mice Yes Yes No Yes N/A N/A No Yes 2

DOCA-salt mice No Yes No Yes N/A N/A No Yes 2

Dahl salt-sensitive ratsa Yes Yes Yes Yes N/A N/A No Yes 4

SHR ratsa Yes Yes No Yes No Yes Yes Yes 4

Aging Aged mice Yes Yes No No No N/A Yes Yes 2

SAMP8 mice Yes No No No No N/A Yes Yes 2

Fischer 344 ratsa Yes Yes No No No Yes Yes Yes 3

Obesity and
diabetes

High fat and Western diet micea No No Yes No No N/A No variable 2 to 3

Leptin-deficient (ob/ob) mice No No Yes Variable No N/A No Yes 3 to 4

Leptin receptor-deficient (db/db) mice Yes Yes Yes Yes No N/A No Yes 5

ZSF1 rats Yes Yes Yes Yes No Yes No Yes 5

Multi-hit High fat diet and L-NAME mice Yes Yes Yes Yes No N/A No Yes 4

High fat diet, aging and ANG II infusion
mice

Yes Yes Yes Yes No N/A Yes Yes 5

High fat diet, aging and DOCA mice Yes Yes Yes Yes No N/A Yes Yes 5

aThese models develop left ventricular dilatation and reduce ejection fraction over time.
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receptor–neprilysin inhibitiors (Solomon et al., 2020; Wachter

et al., 2020). Thus, pre-clinical models with single stressor may

not represent a reliable platform for bench-to-bedside transition.

However, they should not be dismissed as artifactual as such

models often allow for detailed mechanistic studies on how each

stressor singly contributes to cardiac manifestation of human

HFpEF and may pave the way to the development of

combination therapies. In the section below, we discuss the

strengths and weaknesses of single-hit models of HFpEF with

special focus on the three most significant risk factors:

hypertension, aging and obesity.

2.1 Hypertension

Systemic hypertension is one of the most significant

comorbidities in HFpEF patients (Heidenreich et al., 2022). In

the past decades, animal studies have revealed a causal

relationship between elevated blood pressure and LV

structural alterations. Mechanistically, systemic hypertension

induces arterial stiffness, which disproportionately increases

afterload on the heart, leading to accelerated concentric LV

hypertrophy and fibrosis (Samson et al., 2016). These changes

may ultimately result in decreased diastolic as well as systolic

dysfunction (Valero-Munoz et al., 2017). However, despite high

prevalence of systemic hypertension in patients with HFpEF,

intensive blood pressure control only reduces HFpEF events but

does not alter disease outcomes (Upadhya et al., 2021).

Conceivably, elevated blood pressure may initially contribute

to the pathogenesis of HFpEF but subsequently play a less

significant role during disease propagation.

Small animal models of hypertension have many features of

human HFpEF and may help elucidate some aspects of HFpEF

pathogenesis. Although these models commonly do not

reproduce the slow onset of hypertension seen in patients

with HFpEF, the relatively rapid development of cardiac

phenotypes accelerates experiment turn-around. Below, we

evaluate the clinical applicability of various hypertension

induced HFpEF murine models using the H2FPEF scoring

system.

2.1.1 Angiotensin II infusion (H2FPEF score 1–2)
Chronic stimulation of angiotensin II (ANG II) receptor one

through an osmotic mini-pump has been a reliable model to

induce HF. Although the relevance of supraphysiologic levels of

ANGII in human diseases has been questioned, studies using this

model have revealed some unexpected functions of ANGII in

promoting HF. Notably, ANGII-induced left ventricular

hypertrophy and remodeling occurred both in the presence

(Ichihara et al., 2001) or absence (Matsumoto et al., 2013) of

hypertension, suggesting that hypertension may not be the

primary mechanism by which ANGII induces cardiac

remodeling. Supporting the involvement of hypertension-

independent factors, ANGII-induced cardiac hypertrophy is

strain dependent. Whereas C57BL/6 mice develop

compensatory concentric hypertrophy with diastolic

dysfunction and fibrosis, BALB/c mice show severe LV

dilation and systolic dysfunction (Peng et al., 2011), which is

uncommon in patients with HFpEF and more resembles dilated

cardiomyopathy. Nonetheless, pulmonary congestion developed

in both strains (Peng et al., 2011), as a likely consequence of

cardiac dysfunction but pulmonary hypertension has not been

reported in this model. Exercise intolerance is evident and

appears to be secondary to ANG II-induced skeletal muscle

atrophy and mitochondrial dysfunction (Kadoguchi et al.,

2015). Thus, the ANGII-infusion model recapitulates some

aspects of human HFpEF, but other critical risk factors and

comorbidities such as old age and obesity are neglected.

2.1.2 Aldosterone and salt infusion after
unilateral nephrectomy (H2FPEF score 2)

Initially described in rats, the combination of aldosterone

infusion, unilateral nephrectomy and 1% sodium chloride (NaCl)

loading induces blood pressure elevation, concentric LV

hypertrophy with diastolic dysfunction and pulmonary

congestion in both C57BL/6 and FB/N mice (Tanaka et al.,

2016; Valero-Munoz et al., 2016), although pulmonary

hypertension was not assessed. These mice also exhibited

exercise impairment (Wilson et al., 2009).Notably, the

circulating aldosterone levels (~6.5 ng/ml) in this model

(Tanaka et al., 2014) appear to be within the same order of

magnitude as human patients with acute HF (~18 ng/ml) (Girerd

et al., 2013). However, the effect of aging and obesity could not be

assessed in this model.

2.1.3 Deoxycorticosterone acetate (DOCA)-salt
administration (H2FPEF score 2)

This model was originally developed in 1969 to study

hypertension in rats (Willard, 1969) and involves

administration of DOCA for 4 weeks by intraperitoneal

injection or subcutaneous implant, followed by unilateral

nephrectomy and salt loading with 1% NaCl in drinking

water. While DOCA salt-treated mice develop cardiac

hypertrophy and fibrosis (Lovelock et al., 2012; Jeong et al.,

2013), blood pressure appears to be either unaffected or only

mildly elevated (Mohammed et al., 2010; Lovelock et al., 2012),

consistent with the idea that mineralocorticoid may promote LV

hypertrophy independent of increased afterload. Nevertheless,

diastolic dysfunction and fibrosis can be markedly exacerbated

with additional pressure overload via transverse-aortic

constriction (TAC) (Mohammed et al., 2010), suggesting that

mineralocorticoid and elevated afterload may synergistically

contribute to the pathophysiology. Furthermore, reduction of

nitric oxide production has also been demonstrated as a

pathogenic mechanism in this model (Silberman et al., 2010).

Exercise intolerance is evident in DOCA-salt mice after TAC
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(Methawasin et al., 2016). Pulmonary congestion, however, is not

seen in DOCA-salt-treated mice and the effect of aging and

obesity could not be assessed either.

2.1.4 Dahl salt-sensitive rats (H2FPEF score 4)
This strain of salt-sensitive Sprague-Dawley rats is only

genetically distinguishable from the salt-resistant Dahl rat

strain by a polymorphism in the renin gene (Rapp et al.,

1989). When placed on high salt diet, Dahl salt-sensitive rats

develop marked hypertension, concentric LV hypertrophy with

diastolic dysfunction, exercise intolerance (Guazzi et al., 2001)

and postmortem evidence of pulmonary congestion (Doi et al.,

2000; Omori et al., 2012), but pulmonary hypertension has not

been reported in this model. Notably, continued high salt diet

results in transition to LV systolic dysfunction and HFrEF at old

age (Doi et al., 2000), a phenotype infrequently observed in

human HFpEF patients. Additionally, the clinical applicability of

this model is further limited as markedly elevated (>170 mmHg)

systolic blood pressure often develops (Doi et al., 2000) compared

to moderate hypertension seen in HFpEF patients.

2.1.5 Spontaneous hypertensive rats (H2FPEF
score 4)

Originally used to model essential hypertension in human,

this inbred strain of rats develops concentric LV hypertrophy

with preserved systolic function (Pfeffer et al., 1979; Heyen

et al., 2002) and impaired exercise capacity (Campos et al.,

2020) in the first year of age. However, between 18 and

24 months of age, LVEF starts to decrease in some colonies

with signs of diastolic dysfunction and pulmonary congestion

(Pfeffer et al., 1979; Heyen et al., 2002) with evidence of

pulmonary hypertension (Aharinejad et al., 1996). Thus,

although the lengthy duration required for HF development

may mimic some aspects of human HFpEF which is prevalent

in the aging population, the transition to HFrEF (which is

rarely observed in HFpEF patients) significantly reduces the

clinical applicability of the spontaneous hypertensive rats

(SHR) model.

2.2 Aging

According to the Framingham Heart Study and Baltimore

Longitudinal Study on Aging, aging positively correlates with

prevalence of LV hypertrophy, even in the absence of

hypertension. Furthermore, diastolic function worsens with

age, likely due to increased stiffness of myocardium while the

LV systolic function remains intact at rest (Upadhya and

Kitzman, 2017). Additionally, endothelial dysfunction may

also lead to vascular-ventricular uncoupling and afterload

mismatch, collectively implying a causal role of aging in

HFpEF pathogenesis. The short life span of rodents makes

them more cost-effective to study than long-lived large

animals. Below, we summarize the strengths and weaknesses

of various aging rodent models with respect to their clinical

applicability in modeling human HFpEF.

2.2.1 Aged mice (H2FPEF score 2)
Natural aging in mice is associated with the development of

maladaptive cardiac changes, as is observed in humans. Starting

at an age of 24 months, C57BL/6 mice display several of the

HFpEF pathologies, including LV hypertrophy, diastolic

dysfunction (Dai et al., 2009; Roh et al., 2019), pulmonary

congestion and exercise intolerance (Roh et al., 2020).

However, pulmonary hypertension has not been reported.

Interestingly, blood pressure is not elevated in this model

(Roh et al., 2020), supporting the notion that aging may be an

independent risk factor for HFpEF. Notably, these phenotypes of

cardiac aging can be partially reversed with caloric restriction,

rapamycin treatment and exercise (Dai et al., 2014; Roh et al.,

2020). Other comorbidities such as obesity have not been

described in this model.

2.2.2 Accelerated senescence model (SAMP,
H2FPEF score 2)

The senescence accelerated prone (SAMP) strain was

generated by selective inbreeding of AKR/J mice (Takeda

et al., 1997). Starting at the age of 10 months, these mice

begin to display accelerated age-associated phenotypes seen in

aging disorders in humans (Karuppagounder et al., 2017).

Mutations in the DNA repair gene and alteration in oxidative

stress response appear to be the underlying mechanism of

accelerated senescence (Tanisawa et al., 2013). Male

SAMP8 mice develop LV hypertrophy with diastolic

dysfunction as early as 6 months of age (Reed et al., 2011).

Intriguingly, female mice retain normal diastolic function

compared to the control senescence-resistant strain

(Gevaert et al., 2017), a pattern contrary to the female-

skewed HFpEF prevalence in human (Scantlebury and

Borlaug, 2011). However, when fed with a high fat and

high salt diet, female SAMP8 mice also display features of

HFpEF with hypertension and pulmonary edema (Gevaert

et al., 2017), suggesting a potential synergy between metabolic

disturbance and female sex in driving HFpEF pathology.

Pulmonary hyptertension and exercise intolerance have not

been reported in these mice. Obesity has not been reported in

this model even with high fat diet. Thus, untreated

SAMP8 mice may represent a better model for studying

diastolic dysfunction than HFpEF.

2.2.3 Fischer 344 rats (H2FPEF score 3)
The aged Fischer 344 rats develop pathophysiology of

aging in various organs, including the heart (Horgan et al.,

2014). Starting at 22 months of age, Fischer 344 rats begin to

develop progressive LV diastolic function (Walker et al., 2006)

with evident pulmonary congestion and exercise intolerance at
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25 months of age (Choi et al., 2009). While severe pulmonary

hypertension is evident (Suen et al., 2019) by 28 months of age,

these animals also develop LV systolic dysfunction and

chamber dilation, which is infrequently seen in human

HFpEF (Walker et al., 2006), thus limiting the use of

Fischer 344 rats as an HFpEF model.

2.3 Obesity and diabetes

Being overweight has been identified as a major risk factor

for HFpEF in large outcome trials and registries (Haass et al.,

2011; Shah et al., 2016). Indeed, obesity induces LV

hypertrophy (Turkbey et al., 2010) and is associated with

worsened diastolic function (Bartkowiak et al., 2021).

Although increased adiposity appears to promote

inflammation, endothelial dysfunction and insulin

resistance, all of which are frequently seen in HFpEF

patients, the precise molecular mechanism by which obesity

leads to HFpEF remains unclear. Our understanding of the

role obesity plays in HFpEF pathogenesis is further

complicated by the paradoxical observation that among

symptomatic HFpEF patients, mortality in fact gradually

increases with both low and high BMI (Kenchaiah et al.,

2007), with the nadir of risk for all-cause mortality at a

BMI of 32–33 kg/m2 (Haass et al., 2011; Zhang et al., 2019).

Conceivably, unintentional weight loss, reflecting progressive

HF, may explain the increased mortality in patients with low

BMI (Huang et al., 2021). In contrast, intentional weight loss,

such as bariatric surgery, has been shown to decrease cardiac

hypertrophy and LV filling pressure and to improve diastolic

function, implying an active role of obesity in propagating

HFpEF (Ikonomidis et al., 2007). Thus, these data suggest that

obesity may play a causal and a less clearly defined

perpetuating role in HFpEF pathogenesis.

Diabetes is also frequently seen in HFpEF patients and is

associated with increased all-cause mortality (MacDonald et al.,

2008; Aguilar et al., 2010; Kristensen et al., 2017). Various

mechanisms of how diabetes promotes HFpEF have been

proposed, ranging from systemic effects, such as

neurohormonal, sympathetic and cytokine imbalance to

cardiac-specific effects, including interstitial fibrosis,

cardiomyocyte hypertrophy secondary to titin dysfunction

(Boudina and Abel, 2007; von Bibra et al., 2016). Although

diabetes appears to have a well-established role in HFpEF

development, less is known regarding its impact on

established HFpEF. Notably, while metformin has been

reported to improve HFpEF outcomes (Wang et al., 2021),

none of the other anti-diabetes medications have been shown

to confer survival benefits (Mgbemena et al., 2021) except for

SGLT2 inhibitors (whose cardioprotective effect is likely

independent of its anti-glycemic function(Anker et al., 2021;

Ebell, 2022)). Thus, these observations support diabetes as a risk

factor for HFpEF development but challenge the notion that

diabetes continues to play an active role in established HFpEF.

Although murine models of obesity and diabetes-induced

HFpEF closely resemble human phenotypes, they share several

limitations. First, these pre-clinical models often present with

fulminant hyperglycemia and insulin-resistance at young age,

which contrasts with the gradual disease progression seen in

human. Additionally, the early onset of morbid obesity and

severe hyperglyemia does not allow studies exploring the effect

of mild obesity in established HFpEF, which represents most

patient scenarios. Lastly, most murine models of obesity also

inevitably develop diabetes and thus limit the possibility to

investigate the exclusive role of obesity in HFpEF

pathogenesis. Below, we highlight the strengths and

weaknesses of each obesity/diabetes-induced HFpEF murine

model.

2.3.1 High fat/western diet (H2FPEF score 2–3)
Obesity is one the most significant comorbidities in

HFpEF patients and has been implicated in driving

HFpEF (Sorimachi et al., 2021; Withaar et al., 2021a). In

pre-clinical models, unhealthy food consumption is most

commonly modeled by a high fat diet with >60% of daily

caloric intake derived from fat, or a western diet consisted of

daily intake of 36% fat and 36% sucrose. Animals fed with

either diet consistently develop obesity with glucose

intolerance at a young age. These animals frequently

display cardiac phenotypes, including hypertrophy,

fibrosis and diastolic dysfunction (Christopher et al., 2010;

Leopoldo et al., 2010; Manrique et al., 2013; Carbone et al.,

2015; Huang et al., 2016), but may also develop systolic

dysfunction and reduced LVEF (Cheng et al., 2011).

Pulmonary congestion and exercise intolerance have not

been described in these models. Notably, some groups

report no cardiac phenotypes in mice fed with high-fat

diet (Brainard et al., 2013). The discrepancy between these

studies may be attributed to the difference in study duration,

caloric intake and the exact composition of the diet. Thus,

when fed with select diets, the diet-induced obesity model

may approximate human HFpEF.

2.3.2 ob/ob mice (H2FPEF score 3–4)
The leptin-deficient ob/obmice develop obesity and type II

diabetes secondary to hyperphagia, hyperglycemia and insulin

resistance (Ingalls et al., 1950; Lindstrom, 2007). ob/ob mice

display rapid weight gain within 2 weeks after birth and by

4 weeks of age, they develop marked hyperglycemia

(Westman, 1968; Lindstrom, 2007). Ensuing cardiac

dysfunction is characterized by LV hypertrophy with

diastolic dysfunction (Christoffersen et al., 2003) and

cardiac fibrosis (Manolescu et al., 2014). Notably, systolic

function remains unchanged (Christoffersen et al., 2003).

Hypertension has not been described. Although these mice
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develop exercise intolerance, this is likely attributed to excess

body weight (Pelleymounter et al., 1995) rather than cardiac

dysfunction as ob/ob mice do not display other overt HF

symptoms such as pulmonary congestion before their

premature death. While the ob/ob model appears to

phenotypically recapitulate several aspects of human

HFpEF, their clinical applicability is limited in two ways.

First, obese patients with leptin mutations are rare. Second,

the cardiomyocyte dysfunction in ob/ob mice is partially

attributed to the lack of leptin signaling in cardiomyocytes,

as administration of leptin to cardiomyocytes ex-vivo rescues

their pro-apoptotic phenotype (Trivedi et al., 2008) and

restores their contractility (Dong et al., 2006).

2.3.3 db/db mice (H2FPEF score 5)
The leptin receptor-deficient, or diabetic (db/db) mice

harbor a point mutation in the leptin receptor gene, altering

its sensitivity to leptin(Chen et al., 1996). These mice

spontaneously develop morbid obesity accompanied by

severe hyperglycemia secondary to type II diabetes (Chen

et al., 1996). Although db/db mice display insulin resistance

at younger age compared to humans, the late-stage

manifestation of insulin secretion defect well

approximates the pathogenesis of type II diabetes in

human, making db/db mice a valuable model in exploring

the combined contribution of obesity and type II diabetes to

HFpEF. Starting at 16 weeks of age, db/db mice begin to

develop LV hypertrophy (Barouch et al., 2003; Van den

Bergh et al., 2006) with histological evidence of

cardiomyocyte hypertrophy (Barouch et al., 2003) and

fibrosis (Plante et al., 2014). Notably, there is diastolic

dysfunction and pulmonary congestion with aging

(Papinska et al., 2016), paralleled by severely reduced

exercise capacity by 12 weeks (Ostler et al., 2014), while

LV systolic function remains preserved (Mori et al., 2014).

Spontaneous hypertension has also been reported (Habibi

et al., 2017; Sukumaran et al., 2017). Pulmonary

hypertension has not been described in this model.

Interestingly, the brain natriuretic peptide levels are

reduced, similar to obese HF patients where circulating

brain natriuretic peptide levels remain non-elevated given

the degree of HF (Wang et al., 2004). Together, these features

make the db/db mice an attractive model for studying

pathogenic mechanisms of HFpEF. One major deficiency

of this model is that obesity, type II diabetes and the

ensuing cardiac phenotypes develop rather early in life

compared to human patients.

2.3.4 Zucker fatty and spontaneously
hypertensive heart failure rats (H2FPEF score 5)

The Zucker fatty and spontaneously hypertensive heart

failure F1 hybrid (ZSF1) was developed from crossing rat

strains with two different leptin receptor mutations, of which

the male was derived from the SHR background. Between 10 and

20 weeks of age, ZSF1 rats develop HFpEF characterized by

hypertension, concentric LV hypertrophy, diastolic

dysfunction, pulmonary congestion, pulmonary hypertension

(Morales-Cano et al., 2019) and exercise intolerance (Schauer

et al., 2020) as well as obesity and insulin resistance (Griffin et al.,

2007; Mohanan et al., 2011; van Dijk et al., 2016). In addition to

cardiac phenotypes, the ZSF1 rats also develop chronic kidney

disease (Griffin et al., 2007), which is also frequently seen in

HFpEF patients. While the renal involvement makes it

challenging to assess the contribution of obesity and metabolic

disturbances per se to HFpEF pathogenesis, ZSF1 nevertheless

represents an attractive model of HFpEF.

3 Multi-hit models

The models described above are mostly unifactorial disease

models that predominantly rely on one perturbation to induce

HFpEF. Over the past few years, multifactorial pre-clinical models

that consider two or more perturbations to mimic human HFpEF

have been developed. Belowwe evaluate the strengths andweaknesses

of each multi-hit model, again using the H2FPEF scoring system.

3.1 High fat diet and L-NAME (H2FPEF
score 4)

In a recent report, Schiattarella et al. presented the first two-

hit mouse model that resembles human HFpEF (Schiattarella

et al., 2019). Briefly, C57BL/6Nmale mice were fed a high-fat diet

(60% of daily caloric intake from fat) and a constitutive nitric

oxide synthase inhibitor, L-NAME for 15 weeks. The

combination of treatments results in LV hypertrophy with

diastolic dysfunction, pulmonary congestion, exercise

intolerance, hypertension and obesity. However, pulmonary

hypertension was not reported. Importantly, high-fat diet or

L-NAME alone was insufficient to induce such phenotypes.

Mechanistically, the combination treatment appears to

promote the expression of inducible nitric oxide synthase

(iNOS) in cardiomyocytes, which in turn alters the misfolded

protein response cascade in a cardiomyocyte-intrinsic manner.

Notably, genetic or pharmacological inhibition of iNOS

ameliorates cardiac phenotypes without reducing

hyperglycemia or body weight. These findings seemingly

contradict recent randomized trials showing an improvement

in exercise tolerance in HFpEF patients following administration

of inorganic nitric oxide (Borlaug et al., 2016; Zamani et al., 2017;

Borlaug et al., 2018). However, these clinical studies have small

sample sizes with skewed patient ethnicity. Furthermore, the

rather immediate improvement following nitric oxide treatment

likely results from transient afterload reduction secondary to

vasodilation rather than reversal of cardiac remodeling. Overall,
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the two-hit mouse model well approximates human HFpEF and

provides a unique perspective on its pathogenesis.

3.2 High fat diet, aging and ANG II infusion
(H2FPEF score 5)

Recently, Withaar et al. developed a multifactorial HFpEF

mouse model, which involves aging C57BL/6J female mice to

18–24 months of age, followed by 12 weeks of high fat diet and

4 weeks of ANG II infusion through an osmotic mini pump

(Withaar et al., 2021b). These mice subsequently develop many

HFpEF-like phenotypes, including concentric LV hypertrophy

with diastolic dysfunction, cardiac fibrosis, reduced exercise

tolerance and pulmonary congestion, although pulmonary

hypertension has not been assessed. The LV systolic function

is preserved. Notably, in contrast to recent findings in the

EMPEROR-Preserved trial (Anker et al., 2021), an

SGLT2 inhibitor, dapagliflozin, did not show significant

cardioprotective effects in this triple-hit HFpEF mouse

model (Withaar et al., 2021b). Rather, a GLP-1 agonist,

liraglutide, markedly improves cardiac function, despite

similarly effective glycemic control achieved by both

medications. Conceivably, these mice may model a subgroup

of HFpEF patients who may benefit more from a GLP-1 agonist

than a SGLT2 inhibitor. Alternatively, dapagliflozin may not be

therapeutically identical to empagliflozin, which may be

addressed by the ongoing DELIVER trial (Solomon et al.,

2022). Another drawback of the study by Withaar et al. is

the exclusive use of female mice. Although HFpEF phenotype is

indeed more prevalent in aged female population, similar sets of

risk factors and comorbidities are present in males. Future

studies are necessary to address sex-specific effects in this

model.

3.3 High fat diet, aging and DOC (H2FPEF
score 5)

A recent study by Deng et al. utilized a combinatorial model,

which involves feeding C57BL/6J mice high fat diet from 3 to

16 months of age followed by intraperitoneal injection of DOC

during the last month (Deng et al., 2021). This model

encompasses three most significant risk factors and

comorbidities in HFpEF: hypertension, obesity and aging.

Treated mice develop LV hypertrophy with diastolic

dysfunction, fibrosis and exercise intolerance and pulmonary

edema, although pulmonary hypertension was not formally

evaluated. Notably, treatment with empagliflozin improves

diastolic relaxation, pulmonary edema and exercise tolerance,

but intriguingly did not result in weight reduction. Although

both sexes are included, further sub-group analyses were not

performed.

4 Concluding remarks

In this review, we assessed the clinical applicability and

translational value of various murine HFpEF models. While the

H2FPEF scoring system defines the most clinically relevant features

that HFpEF animal models should manifest, whether these

comorbidities are mechanistically relevant to HFpEF

pathogenesis remains unclear. Although treating comorbidities

has not materially altered outcome, it remains possible that these

comorbidities contribute to the development of HFpEF rather than

propagation of disease. Thus, modeling HFpEF comorbidities

represents a reasonable first step in understanding the precise

pathogenesis of the disease.

It is evident that multifactorial models appear to better

approximate human HFpEF than those with a single

perturbation, making them attractive tools for future HFpEF

research. However, we also note that some multi-hit models

differ from humans with regards to their response to therapy.

Therefore, we advocate that future HFpEF pre-clinical studies

designed to test the efficacy of therapeutic agents should consider

using multiple models. Furthermore, it remains unclear if the

HFpEF phenotypes observed in high scoring multifactorial

models are strain-specific, as is seen in several single-hit models.

In addition to validating these experimental findings in different

strains of mice, we also propose further exploration of multi-hit

models in outbred colonies as they may more faithfully reflect the

heterogeneous phenotypes and responses to therapy that are often

seen in a diverse human population. Because HFpEF-associated

comorbid conditions are not present in equal severity in all HFpEF

patients, uni-factor models may in fact approximate subsets of

HFpEF patients. In addition, these pre-clinical models allow

examination of contribution of each risk factor in isolation

without additional comorbidities confounding the findings. Thus,

although single stressormodels generally have lowerH2FPEF scores,

they should not be disregarded as artifactual.

As the highest scoring parameter in the H2FPEF algorithm,

atrial fibrillation is highly associated with increased risk of HF

(Packer et al., 2020). Mechanistically, atrial fibrillation in HFpEF

patients developed from left atrial remodeling induced by a pro-

inflammatory state secondary to metabolic disorders and

hypertension (Kuo et al., 2022). Yet, none of the HFpEF

murine models, whether encompassing single or multiple

factors, showed atrial fibrillation. The discrepancy is likely due

to the intrinsic resistance to arrhythmia in mice as they lack the

critical cardiac mass (Byrd et al., 2005; Qu, 2006), highlighting

just one of the many major differences between rodents and

humans. Anatomical discrepancies between the organisms often

complicate imaging, electrophysiological studies and surgical

interventions. Physiological disparities, such as markedly

higher heart rate in rodents and correlating action potentials,

changes in metabolism, as well as difference in oxygen and

calcium usage may in fact represent an unsurmountable

obstacle to accurately modeling human HFpEF. Thus, a
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“perfect” murine HFpEF model that can generate immediately

translatable findings may not exist. Rather, we envision the

“imperfect” murine models to instead serve as screening

platforms for novel targetable molecules or pathways, the

validation of which should ultimately be carried out in large

mammal models with physiology closer to that of humans.
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