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HIV-1 integrase is an essential enzyme for the HIV-1 replication cycle, and

currently, integrase inhibitors are in the first line of treatment inmany guidelines.

Despite the discovery of new inhibitors, including a new class of molecules with

differentmechanisms of action, resistance is still a relevant problem, and adding

new options to the therapeutic arsenal to fight viral resistance is a Sisyphean

task. Because of the difficulty and cost of in vitro screenings, machine learning-

driven ligand-based virtual screenings are an alternative that can not only cut

costs but also use valuable information about active compounds with yet

unknown mechanisms of action. In this work, we describe a thorough

model exploration and hyperparameter tuning procedure in a dataset with

class imbalance and show several models capable of distinguishing between

compounds that are active or inactive against the HIV-1 integrase. The best of

the models was then used to screen the natural product atlas for active

compounds, resulting in a myriad of molecules that share features with

known integrase inhibitors. Here we also explore the strengths and

shortcomings of our models and discuss the use of the applicability domain

to guide in vitro screenings and differentiate between the “predictable” and

“unknown” regions of the chemical space.
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Introduction

Over the past few years, the development of new antiretroviral therapies (ARTs) has

significantly increased the life expectancy of people living with HIV (Human

Immunodeficiency Virus), the causative agent of acquired immunodeficiency

syndrome (AIDS) (Moore and Chaisson, 1999). The most recent compounds used in

ART formulations are integrase strand transfer inhibitors (INSTIs). The HIV integrase

(IN) is a major HIV-1 enzyme, and its inhibitors are being used in several first-line HIV

treatments (el Bouzidi et al., 2020). The IN is an interesting study case because it has two
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sites that may be exploited for inhibition: the active site—in

which the inhibition impairs the strand-transfer reaction -, and

the so-called allosteric site—in which the drug binding impairs

the binding of the co-factor lens epithelium-derived growth

factor (LEDGF) (Christ and Debyser, 2013).

Despite the discovery of a class of drugs for each of two

different sites of IN, resistance mutations against both types of

inhibitors have been reported, causing disruption of binding sites

and, in some cases, therapeutic failure (Feng et al., 2013;

Machado and Guimarães, 2020; Mbhele et al., 2021),

generating a demand for new molecules that could potentially

translate into therapies. In silico screenings (or virtual

screening—VS.) approaches are a set of methods used to

screen extensive collections of molecules before the in vitro

tests of drug candidates, reducing the number of molecules to

be tested. Currently, several groups are exploiting the potential of

Machine Learning (ML) in drug discovery (Li et al., 2017;

Stephenson et al., 2019; Zhou et al., 2021). The models

applied range from the use of fingerprints and molecular

descriptors such as BCUTs to the use of connectivity graphs

in graph neural networks (Cheung and Moura, 2020).

In 2015, an ML VS. method was used to search for new active

ligands capable of inhibiting HIV-1 IN, using active and

assumed-inactive compounds (Kurczyk et al., 2015). ML was

also used to specifically find allosteric inhibitors in 2017 (Li et al.,

2017). However, since 2015, more than 100 new compounds

tested against the IN were added to the BindingDB alone

(Wassermann and Bajorath, 2011). Here, we built models

based on molecular descriptors that are able of discerning

between compounds that are active and inactive against the

IN regardless of the mechanism of action, using data from the

BindingDB, and thoroughly screening a combination of

resampling and modeling methods. The models were efficient

in discerning between active and inactive compounds even in a

set of molecules with different mechanisms of action. The best

model was used to screen the Natural Product Atlas (NPA)

database (van Santen et al., 2019) for new inhibitor candidates,

resulting in a set of compounds that were predicted as positives

by the models.

Materials and methods

Dataset

A dataset of 7,165 compounds tested against the IN was

obtained from the BindingDB. In addition, INSTIs (Raltegravir,

Elvitegravir, Bictegravir, Dolutegravir, and Cabotegravir) and

allosteric integrase inhibitors (ALLINI-1 and ALLINI-2) were

added (Kessl et al., 2012; Feng et al., 2013). The compounds with

IC50 higher than 1 μM were considered inactive, and the ones

with IC50 below or equal to 1 μM were considered active. The

pairwise Tanimoto coefficient was calculated for all the

compounds using the maccs fingerprint implemented in the

RDkit package (Landrum, 2013), and duplicates of the

compounds (Tanimoto coefficient equals 1) were removed

and the average IC50 of all the copies was used. For the

screening, we used all compounds in the Natural Product Atlas.

For each compound, all the molecular descriptors

implemented in the Python library MORDRED (Moriwaki

et al., 2018) were calculated using as input the SMILES

representation of each compound. From this final dataset,

30% of the compounds were sampled and set aside to form a

test set, and the remaining 70% were used as the training set. To

guarantee the representativity of the test set, its entries were

divided into clusters based on their distances in feature space

using the k-means algorithm. After that, proportional samples

were drawn from each cluster to form the test set; the ideal

number of clusters was determined using the elbow method,

and—in order to avoid any distortion caused by outliers–features

were normalized using z-scores for the clustering procedure. The

choice of standardization can considerably affect the quality of

the final model, especially with the presence of outliers, being the

investigation of alternative methods of an opportunity for future

analyses To further test the models, a set of HIV-1 integrase

decoys was retrieved from DUDE-E (Mysinger et al., 2012) to

assess how the models behave when predicting the activity of

compounds that were not deliberately tested or designed as

inhibitors. The z-score of each feature was calculated again,

this time just for the training set, and the mean and standard

deviation values obtained for each feature were used to

standardize all the other sets of compounds.

Sampling strategies, feature selection,
hyperparameter optimization, and model
assessment

We built three different groups of models: using 10 features,

30 features, and 50 features, the feature selection process was

carried out by calculating the mutual information between

variables in the training set and the response variable, and the

top 10, 30, and 50 features were used in each of the cases. The

different feature selection procedures were combined with three

different sampling strategies: undersampling, Synthetic Minority

Oversampling Technique (SMOTE), and

undersampling+SMOTE. For the SMOTE procedures, we used

three nearest neighbors to generate the synthetic entries. The

combinations of different numbers of features and sampling

strategies were used to train a logistic regression (LR) model,

a Random Forest (RF) model (Breiman, 2001), a Support Vector

Machine (SVM) model (Shmilovici, 2009), and a Multilayer

perceptron (MLP) (Castro et al., 2017).

To optimize the hyperparameters of the RF model, a random

search with three-fold cross-validation was performed, exploring

the number of trees (integers from 200 to 2000), the maximum
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tree depth (integers from 10 to 110), the minimum number of

samples required to split an internal node (2, 5, 10,15,20), the

minimum number of samples required to be at a leaf node (1, 2, 4,

8), and whether or not to use bootstrap.

For the hyperparameter optimization of the SVM, a grid

search with three-fold cross-validation was carried out, to explore

the values of C (0.001, 0.01, 0.1, 1, 10,100) and values of Gamma

(0.001, 0.01, 0.1, 1, 10) in an RBF kernel.

Finally, for theMLP, we built a model with two hidden layers,

varying the number of nodes from: half the input size, the input

size, and twice the input size. Lambda values for L2 regularization

(0, 0.01, 0.001, 0.0001), batch size (32, 64 and 128), and learning

rates (0.1, 0.01, 0.001, 0.0001) were also explored. The

optimization was carried out through three-fold cross-

validation using 10 epochs, and the best architecture was used

for the optimization of the number of epochs also using cross-

validation.

After hyperparameter optimization of LR, RF, SVM, and

MLP models, the optimum probability thresholds were

calculated by averaging the Youden’s J index over 500 cross-

validation rounds adjusting the models to 80% of the training set

observations, and validating against the remaining 20%.

The performance of the models was calculated by testing

them against the test set, and further validation was done by

testing against a set of 6,650 decoys; the model with the highest

precision against the test set was used for the predictions in the

NPA dataset. To add information on possibility of assay

interference, the molecules predicted as active were submitted

to the prediction of PAINS (Pan-Assay INterference

compounds) using filters of functional groups from the

ChEMBL database, as well as several filters of properties

calculated with the RDKit. They were also clustered by a

hierarchical clustering algorithm using the Tanimoto distance

matrix, and the best-scoring molecule from each cluster was

chosen as representative.

To assure that the predictions were within the applicability

domain of the models, we merged the training and NPA set,

carried out a principal component analysis (PCA), and using the

first three principal components we drew a convex hull (Netzeva

et al., 2005) around the training set, leaving out the NPA

compounds that were outside the boundaries of the hull.

Results

Dataset

After applying the IC50 cutoff and excluding duplicated

molecules based on Tanimoto coefficients, we obtained

1,439 active compounds, 5,598 inactive compounds, and

28902 NPA compounds. The test set comprised 408 active

compounds and 1704 inactive compounds sampled from the

50 clusters. The number of rule of five violations (Pollastri, 2010)

of each compound within the training and test set was assessed in

order to guarantee that the models were not just discerning

between drug-like and non-drug-like compounds (Figure 1); 74%

of the active compounds and 79% of the inactive compounds

showed zero violations of the rule of five, and therefore are all

highly suitable as orally bioavailable drugs (Giménez et al., 2010).

Both datasets are also well distributed in relation to the number

of rule-of-five violations of the compounds, with the inactive set

showing only a slightly increased number of compounds with no

violations, while the active ones have a slightly increased number

of compounds with one violation.

Given the number of active compounds in the dataset,

resampling strategies (SMOTE and SMOTE+undersampling)

were implemented. The training set using SMOTE was

comprised of 3,894 inactive compounds and 3,093 active

compounds and synthetic active samples. The

SMOTE+undersampling set contained 1947 inactive samples

and 2062 active and synthetic active samples. The pairwise

Tanimoto coefficient of the training/test set molecules shows

rare entries with values greater than 0.7, confirming that the

dataset is quite diverse (Figure 2A). Figure 2B displays the first

three principal components of the training and test set. We

emphasize that the test set was sampled from 50 clusters of

compounds (proportional to cluster size), and it is possible to see

that the compounds used for the test of the models are distributed

throughout all the regions of the feature space where compounds

FIGURE 1
Druglikeness ofmolecules within the training set. The bar plot
depicts the frequency of compounds with 0, 1, 2, 3, four and five
rule of five violations among the active compounds set, and the
inactive compounds set.
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of the training set can also be found. It suggests that sampling the

entries of the test set from different clusters helped achieve a

representative test set, spanning even some of the less populated

regions of the relevant feature space.

Model performance and fitting

The evaluation of the models showed that RF using

30 features and the SMOTE strategy was the highest precision

model, and when considering the F1 score, the two best models

have the same performance. All the top five models are RF or

SVM models using SMOTE, followed by RF models using

undersampling+SMOTE. Suggesting that just undersampling

generates a loss of information, and therefore, precision values

lower than 0.8 (Table 1). LR models had the least promising

performances, suggesting that there are essential non-linear

relationships that must be considered to correctly classify the

compounds. MLP also underperformed, even being theoretically

capable of capturing the non-linearities, possibly because the

reduced number of data points hindered the optimization of the

model. RF and SVM models also performed better against the

decoy set (Table 2), with the top five models correctly classifying

almost all the decoys, even when including the ones outside the

convex hull. LR and MLP models underperformed against the

decoy set too, and the combination of SMOTE and MLP had the

worst performance regardless of the number of features used.

RF+SMOTE using 30 features had an accuracy of 0.97 when

tested against the decoy set, both when considering the decoys

within the hull or all of them.

In what concerns the features selected on the highest-

precision model, 22 of them are BCUT descriptors, five are

Barysz Matrix descriptors, and the three remaining are an

E-state descriptor, a molar refractivity descriptor, and a

molecularID descriptor. BCUT descriptors—which are

eigenvalue-based descriptors - have been described before in

studies with antimalarials as the most influential features in

activity (Roy et al., 2002; Hou et al., 2016; Sarkar et al., 2016;

Danishuddin et al., 2019), and here too these were the dominant

features, corroborating the observations that were made in other

studies, and suggesting the importance of BCUTs in ligand-based

strategies.

Prediction

The first step was to determine the applicability domain of

the models. Figure 3 shows the three first PCs of the NPA dataset

and the training/test set. It is possible to see the regions in which

the datasets overlap, and consequently, the regions in which the

models can be applied to discern between active and inactive

compounds. Since only the NPA compounds inside the convex

hull drawn with the training set were used, 1,283 compounds

were left out of the prediction. Here we used a convex hull with

only three dimensions, but the hull can be expanded to higher

dimensions at an increased computational cost, and the use of

more dimensions could enhance the resolutions of the

boundaries. The convex hull presents itself as an interesting

tool for two antagonistic approaches: one could use it either to

understand the boundaries within which the model works or to

determine which regions of the chemical space are sufficiently

“unknown” and should be prioritized during in vitro screenings

to find new compounds. From the remaining 27619 molecules

from the NPA, 246 were predicted as active by the best-

performing model, from which 106 presented no rule-of-five

violations. From all the 106 active compounds, 63 passed the

FIGURE 2
Variability of the training and test set. (A) displays the pairwise Tanimoto coefficient of the training and test set; while (B) displays the three first
PCs of the training and test set and the percentage of variance explained by each one of them, where the training set is shown in blue, and the test set
in lime green.
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PAINS filter. The molecules predicted as active were quite

diverse, with an average Tanimoto coefficient of 0.4

(Figure 4), meaning that the molecules were still remarkably

different among themselves, which could be explained by the fact

that models were trained in a heterogeneous and mechanistically

diverse dataset. In Figure 4 it is also possible to observe how the

molecules predicted as active cluster together in feature space,

with few exceptions.

Most of the top 15 molecules (Figure 5) were derived from

fungi and bacteria, with Streptomyces sp. being the most

predominant source of molecules. Among the set of

compounds predicted as active (Figure 6), the most frequent

Murcko scaffold (Bemis & Murcko, 1996) (considering

continuous scaffolds with a minimum of six heavy atoms) was

7,8,9,10-tetrahydro-5H-benzo[b]carbazole, followed by

xanthene. Most of the scaffolds shown are large and complex

structures that are ubiquitous among molecules from the Natural

Product Atlas.

Most of the top 15 molecules shown in Figure 5, present

groups resembling the diketoacid moieties found in INSTIs,

TABLE 1 Model performance. The model, number of features, sampling strategy and performance is shown for each of the models.

Model Number of
features

Sampling methods Precision Accuracy Recall F1 score

RF 30 SMOTE 0.95 0.97 0.91 0.93

RF 50 SMOTE 0.93 0.98 0.94 0.93

RF 10 SMOTE 0.92 0.96 0.86 0.89

SVM 50 SMOTE 0.92 0.96 0.86 0.89

SVM 30 SMOTE 0.88 0.95 0.86 0.87

RF 10 Undersampling+SMOTE 0.84 0.95 0.93 0.88

RF 50 Undersampling+SMOTE 0.82 0.95 0.96 0.88

RF 30 Undersampling+SMOTE 0.79 0.94 0.97 0.87

RF 10 Undersampling 0.78 0.93 0.87 0.82

SVM 30 Undersampling+SMOTE 0.78 0.93 0.89 0.83

SVM 50 Undersampling+SMOTE 0.76 0.93 0.89 0.82

RF 50 Undersampling 0.75 0.93 0.95 0.84

SVM 10 Undersampling+SMOTE 0.72 0.91 0.87 0.79

MLP 30 Undersampling 0.71 0.9 0.87 0.78

MLP 50 Undersampling 0.7 0.9 0.86 0.77

MLP 50 Undersampling+SMOTE 0.68 0.9 0.87 0.76

SVM 10 SMOTE 0.68 0.89 0.83 0.75

RF 30 Undersampling 0.66 0.9 0.93 0.77

MLP 30 Undersampling+SMOTE 0.63 0.88 0.92 0.75

SVM 50 Undersampling 0.63 0.88 0.9 0.74

SVM 30 Undersampling 0.61 0.87 0.88 0.72

SVM 10 Undersampling 0.55 0.84 0.92 0.69

MLP 10 Undersampling+SMOTE 0.45 0.78 0.76 0.57

MLP 10 Undersampling 0.37 0.72 0.61 0.46

MLP 10 SMOTE 0.28 0.64 0.55 0.37

MLP 30 SMOTE 0.24 0.51 0.72 0.36

MLP 50 SMOTE 0.22 0.46 0.71 0.34

LR 10 Undersampling 0.12 0.27 0.44 0.19

LR 10 SMOTE 0.11 0.24 0.43 0.18

LR 30 SMOTE 0.09 0.21 0.34 0.14

LR 10 Undersampling+SMOTE 0.08 0.33 0.23 0.12

LR 30 Undersampling 0.07 0.32 0.2 0.10

LR 50 SMOTE 0.07 0.21 0.23 0.11

LR 50 Undersampling 0.05 0.25 0.17 0.08

LR 30 Undersampling+SMOTE 0.04 0.4 0.1 0.06

LR 50 Undersampling+SMOTE 0.04 0.31 0.11 0.06

Where LR, logistic regression model; RF, random forest model; SVM, Support Vector Machine model and MLP, multilayer perceptron.
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pointing out that the model seems to be selecting molecules

containing hydroxylated aromatic compounds. However, the

exact pattern found in diketoacids is rarely complete in the

selected natural compounds or at least is slightly different,

which could be caused by the lack of available compounds

containing exact matches. It is also possible, however, that

only two coplanar oxygens could also interact with Mg2+ ions

in the active site of the enzyme. For instance, in molecules

7,164 and 10677 the third oxygen of the triad is offset by one

position, making the configuration slightly different from the

known INSTIs. Candidate 25458 shows protruding oxygens like

dolutegravir, but one of them is not free to interact with Mg2+

ions, and instead is linked to another ring in the molecule

scaffold; in the other segment of the molecule, the coplanar

oxygens are separated by a methyl group. Molecule 1847 also

resembles dolutegravir diketoacid moiety, except for the fact that

one of the three coplanar oxygens protruding from the ring is

linked to a methyl group, which could difficult strand-transfer

inhibition, but could still be an interesting subject to test; mainly

because its closest correspondence within the set of active

TABLE 2 Model performance on decoy set. The model, number of features, sampling strategy and performance is shown for each of the models.

Model Sampling Features Accuracy Accuracy AD

RF Undersampling+SMOTE 50 0.99 1.00

SVM SMOTE 50 1.00 1.00

RF Undersampling 30 1.00 1.00

RF Undersampling 50 0.99 0.99

RF Undersampling+SMOTE 30 0.99 0.99

RF SMOTE 50 0.99 0.99

SVM SMOTE 30 0.97 0.97

LR Undersampling 30 0.94 0.94

SVM Undersampling+SMOTE 30 0.94 0.93

RF SMOTE 30 0.91 0.91

LR Undersampling+SMOTE 30 0.91 0.91

RF Undersampling+SMOTE 10 0.90 0.91

MLP Undersampling 10 0.86 0.90

SVM SMOTE 10 0.89 0.89

SVM Undersampling+SMOTE 50 0.88 0.88

SVM Undersampling 30 0.88 0.87

SVM Undersampling+SMOTE 10 0.88 0.86

MLP Undersampling+SMOTE 10 0.87 0.86

LR Undersampling+SMOTE 10 0.87 0.86

RF SMOTE 10 0.85 0.85

MLP Undersampling+SMOTE 50 0.82 0.84

MLP Undersampling 50 0.82 0.84

LR Undersampling 50 0.83 0.83

MLP Undersampling 30 0.80 0.82

SVM Undersampling 50 0.80 0.82

RF Undersampling 10 0.80 0.81

SVM Undersampling 10 0.82 0.80

LR SMOTE 30 0.80 0.80

LR SMOTE 10 0.75 0.76

LR Undersampling+SMOTE 50 0.75 0.75

MLP Undersampling+SMOTE 30 0.71 0.70

LR SMOTE 50 0.66 0.66

LR Undersampling 10 0.65 0.65

MLP SMOTE 10 0.45 0.46

MLP SMOTE 50 0.32 0.33

MLP SMOTE 30 0.12 0.13

Where LR, logistic regression model; RF, random forest model; SVM, Support Vector Machine model and MLP, Multilayer perceptron. Accuracy AD, accuracy considering only decoys

within the applicability domain.
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compounds (Figure 7) is an experimental INSTI-like diketoacid

inhibitor with an IC50 of 600 nM. A similar case is 8,861, which

contains a methyl between the coplanar oxygens protruding from

the rings. Its closest correspondent in the dataset of active

compounds is an experimental integrase inhibitor which also

lacks the third coplanar oxygens, but contains the halogenated

ring characteristic of the commercial INSTIs and displays an IC50

of 7.6 nM. It suggests that perhaps the absence of the third Mg-

contacting oxygen does not completely impair activity. The

presence of only two coplanar oxygens in the rings, however,

can be reminiscent of IN “cinnamoyl inhibitors” (Buolamwini

and Assefa, 2002) and therefore can still be a sign of inhibitory

activity. Molecules 7,164 and 1,266 share the same “cinnamoyl

inhibitor” as their closest neighbor in the dataset of active

compounds.

Compounds 7,164, 10677, 1963, and 23004 seem to display a

recurring theme of 8-hydroxy-1-tetralone regions and

halogenated rings. Albeit having features present in known

highly active inhibitors, in these molecules, the moieties are

reoriented in the structures in ways that could impair

functionality. The nearest neighbor of 23004 is a compound

that was investigated as ALLINI, but despite the similarity

concerning the presence of the halogenated and hydroxylated

rings, both molecules are topologically very distinct. Compound

9,121–oridamycin B –, except for two small groups is very similar

to xiamycin, a compound that was shown before as active against

HIV-1 (Ding et al., 2010), the same similarity is observed with

compound 21687–xiamycin E–and 19-methoxyl-xiamycin.

These three compounds are interesting cases because xiamycin

was only shown to be anti-HIV-1 in culture assays and is believed

to block viral entry.

The model selected for the predictions has a clear preference

for polyhydroxylated aromatic compounds, which were the most

investigated types of compounds in the early days of IN drug

development (Buolamwini and Assefa, 2002), and therefore very

frequent within the dataset. The active compounds were divided

into 30 clusters, and the most populated clusters—which

comprise more than 50% of the active molecules - were

explored here (Figure 8), the cluster information for all

FIGURE 3
PCA of the training set and NPA set. The graph shows the
three first PCs of the training set/test set (purple), and the NPA set
(dark green), as well as the percentage of variance explained by
each one of them, to show the regions in which they overlap.

FIGURE 4
Profile of the molecules predicted as active. (A) shows the pairwise Tanimoto coefficients of the molecules predicted as active; while (B) shows
the first three PCs of the NPA set, and the percentage of variance explained by each one of them. The compounds predicted as inactive are shown in
red, and the ones predicted as actives are shown in green.

Frontiers in Drug Discovery frontiersin.org07

Machado et al. 10.3389/fddsv.2022.954911

https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2022.954911


FIGURE 5
Top 15 RF predictions. Each of the top 15 molecules predicted as active by the best model (RF, using 30 features and SMOTE) are shown.
Molecules with rule of five violations were filtered out of the top 15 and can be seen in the supplementary material (Supplementary Table S2).
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molecules can be found in Supplementary Table S1. Molecules

25458, 10817, 10677, 8,861, and 7,164 are representative of five of

the major clusters, which are populated by compounds with

similar structural features that were also classified as active. The

average pairwise Tanimoto coefficient of cluster 4, which has

molecule 10817 as representative was 0.83, showing that the

molecules within the cluster are highly similar and most of them

also have similarities with xiamycin. Other molecules that share

the same scaffold as 10817 are 9,121 and 21686—both with high

scores according to the best model. The intracluster pairwise

similarities highlight the capability of the model to make

consistent predictions and capture scaffold information

despite the use of features that do not explicitly represent the

connectivity maps. Despite the consistency, some compounds

show structural features of active compounds but in different

spatial configurations, highlighting the possible shortcomings of

the method.

It is important to emphasize the fact that for some of the

molecules, the model could pinpoint fundamental substructures

found in known inhibitors and select molecules with such features,

while in others, the substructures were selected, but in spatial

distributions that could hinder activity. Although not likely, it

could be that because of the unknown mechanism of action of

many molecules in the dataset, these selected compounds - that do

not resemble structures of known actives but bear some of their

substructures—could still be active, but act by differentmechanisms.

The use of features that do not explicitly consider the connectivity of

themolecule could lead to some sort of “monkey’s paw effect”where

molecules predicted as active bear similar moieties to known active

compounds, but in spatial configurations that hinder activity. On the

other hand, this kind of flexibility can be interesting to explore new

areas of the chemical space while preserving some characteristics

that are known to play a role in inhibition. More experiments are

needed to further discuss if the molecules that lack resemblance to

the known active compounds could act as inhibitors or are mere

artifacts. The fact remains that the best-performing model could

detect important structural features and select interesting

compounds for screening, including some that are remarkably

similar to highly active compounds. The complete list of

molecules predicted as active can be found in Supplementary

Table S2 and the ones that pass PAINS filters can be found in

Supplementary Table S3. It is important to emphasize the fact that

FIGURE 6
Frequent scaffolds in compounds predicted as active. Murcko scaffolds extracted from the RF highest probability compounds and their
frequency inside the dataset.
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FIGURE 7
Training set compounds closest to the top 15. Each of the compounds with higher Tanimoto coefficients in relation to the top 15 predicted
active compounds, the Tanimoto coefficients are shown, as well as the name of the neighbors (shown in Figure 5).
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the molecules from the training set were not sorted by their

mechanisms of action, and the mechanism is not even stated in

the bindingDB. Therefore, themodels could be selecting compounds

that are either similar to INSTIs or ALLINIs, or act by alternative

mechanisms.

Conclusion

Here we showed a thorough selection of models capable of

discerning between active and inactive compounds from the

BindingDB. RF model using SMOTE was shown to be the

best strategy regardless of the number of features used.

SMOTE was shown to be an interesting strategy both alone or

in conjunction with undersampling; and can be very useful to

deal with minority classes, which is usually a problem because of

the lack of negative results available but can also be an issue when

only a small group of active compounds is known. The

performance of the models was also tested against IN decoys,

to further validate their predictive capabilities.

We also implemented a convex hull strategy to limit the

predictions to the boundaries of the applicability domain of

the models, which is essential to state that a given observation

cannot be interpolated using the training set. The hull can also

be an interesting strategy for exploring compounds with

features that were not screened before. For instance, the

1,283 compounds that were found to be outside the hull,

probably share little chemical similarity with compounds

already tested against the HIV-1 integrase. This

information can be used to guide in vitro screenings, both

to feed Machine Learning models with information about

molecules with new properties, or to increase the chance of

finding new classes of molecules in experimental procedures

by exploring “unknown” regions of the feature space. Fifteen

of the promising compounds were explored in the detail, being

mostly bacteria-derived compounds with features that

resemble some of the known inhibitors, and many others

are listed in the supplementary tables. Some of the molecules,

however, display inhibitor-like groups, but in different spatial

configurations, which can arise from the choice of features

used to train the model.

Machine learning-based approaches are a promising strategy

for ligand-based virtual screenings. Here we make our

contribution both to the suggestion of new inhibitor

candidates against a key HIV-1 enzyme, and to expand on the

model-building strategies for this kind of approach.

FIGURE 8
Cluster representatives from the active compounds. The representative of each of themain clusters is shown alongsidewith the cluster size and
average intracluster Tanimoto coefficient. Representatives were chosen according to activity prediction.
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