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The structure-activity relationships data available in public databases of inhibitors
of DNA methyltransferases (DNMTs), families of epigenetic targets, plus the
structural information of DNMT1, enables the development of a robust
structure-based drug design strategy to study, at the molecular level, the
activity of DNMTs inhibitors. In this study, we discuss a consensus molecular
docking strategy to aid in explaining the activity of small molecules tested as
inhibitors of DNMT1. The consensus docking approach, which was based on three
validated docking algorithms of different designs, had an overall good agreement
with the experimental enzymatic inhibition assays reported in the literature. The
docking protocol was used to explain, at the molecular level, the activity profile of
a novel DNMT1 inhibitor with a distinct chemical scaffold whose identification was
inspired by de novo design and complemented with similarity searching.
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1 Introduction

Epigenetic drug discovery is a promising strategy for treating cancer and other complex
diseases. Over the past 20 years, several small molecules with novel chemical scaffolds have
been investigated with high affinity and selectivity against specific epigenetic targets
(Dueñas-González et al., 2016). In several cases, the epi drugs administered alone are
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not very potent but are co-administered with other epigenetic drugs
in combined therapies (Dueñas-González et al., 2016). Amongst the
major clinically validated epigenetic targets are the DNA
methyltransferases (DNMTs) including the two de novo
methyltransferases: DNMT3A and DNMT3B, and the
maintenance methyltransferase DNMT1. The latter, which is the
most abundant of the three, duplicates the pattern of DNA
methylation during replication, and it is essential for proper
mammalian development. Since DNA methylation represents a
crucial epigenetic mechanism for gene regulation, the
development of inhibitors of DNMTs (DNMTis) represents
promising perspectives for new therapies. Of the three,
DNMT1 has been proposed as the most interesting target for
experimental cancer treatments (Dueñas-González et al., 2016;
Yu et al., 2019; Zhang et al., 2022).

Azacitidine and 5-aza-decitabine (Figure 1) are two
DNMT1 FDA-approved inhibitors for the treatment of
myelodysplastic syndrome. However, both drugs are non-specific
and have several pharmacokinetic issues (Stresemann and Lyko,
2008). Many other small molecules have been investigated by our
and other research groups (Medina-Franco et al., 2015; Giri and
Aittokallio, 2019; Hu et al., 2021; Ala et al., 2023) whose structure-
activity data is freely accessible in large public databases such as
ChEMBL (Davies et al., 2015; Mendez et al., 2019). In the current
release of ChEMBL (33), the most active DNMT1 inhibitor has a
reported IC50 value of 0.3 nM, although the value is inconclusive.
Computational approaches including molecular docking, molecular
dynamics, and a broad range of chemoinformatics methods,
collectively called “epi-informatics” (Medina-Franco, 2016), have
contributed to identifying or developing novel DNMT and other
epigenetic targets’ modulators (Sessions et al., 2020). Of note, de
novo design is being employed extensively to identify novel
epigenetic drug candidates (Prado-Romero and Medina-Franco,
2021) although it has not been pursued (or at least published) to
guide the design of DNMT inhibitors.

In addition to a large amount of enzymatic inhibition assays’
data of small molecules, since the first crystallographic structure of
the catalytic domain of DNMT1 was published (Song et al., 2011)
other three-dimensional (3D) coordinates of DNMTs (Syeda et al.,
2011; Cheng et al., 2015; Li et al., 2018; Horton et al., 2022; Kikuchi
et al., 2022) are available at the Protein Data Bank (Berman et al.,
2000). This information has boosted the application of structure-
based design data to understand the activity of small molecules at the
structural level and to select small molecules for testing among large
chemical libraries.

Structure-based virtual screening (SBVS) is a useful technique
for drug discovery (Lionta et al., 2014). SBVS aims to predict the best
interaction mode between two molecules to form a stable complex,
and it uses scoring functions to estimate the force of non-covalent
interactions between ligands against a molecular target. As a result,
the ligands are ranked according to their predicted affinity to the
target. The next goal is to develop hit compounds into leads that
then can enter into preclinical studies as drug candidates (Lionta
et al., 2014). SBVS relies on the availability of a 3D structure of the
target protein. Remarkably, the pose prediction and scoring
functions are major factors for the success or failure of the SBVS,
not to mention that it is possible to obtain different results from
different software using the same input. To reduce the number of
false positives (Maia et al., 2020), consensus virtual screening (CVS)
has been used (Houston and Walkinshaw, 2013).

SBVS has guided the identification of hit compounds with
epigenetic targets. For example, Chen et al. uncover the first
selective inhibitor against the disruptor of telomeric silencing 1-
like (DOT1L) (Chen et al., 2016), the most studied non-SET-
containing methyltransferase that is responsible for the mono-,
di- and trimethylation of lysine 79 of histone H3 - H3K79 (Feoli
et al., 2022). Zheng et al. reported the combination of high-
throughput screening, SBVS, and molecular dynamics to identify
computational hits against a histone methyltransferase (Zheng et al.,
2021). Kong et al. used SBVS to uncover astemizole as an inhibitor of

FIGURE 1
Chemical structures of representative inhibitors of DNMT1.
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EZH2/EED (Kong, et al., 2014). Yu et al. reported the SBVS of a
commercial screening library, followed by in vitro assays to identify
a low micromolar DNMT3A inhibitor with a distinct chemical
scaffold (Yu, Chai, et al., 2022). The experimentally validated hit
compound was later used in a ligand-based virtual screening (LBVS)
based on structural similarity to uncover a submicromolar
DNMT3A inhibitor with selectivity against DNMT1, DNMT3B,
and G9a. The hit compounds also showed activity in a cancer cell
proliferation assay (Yu et al., 2022). In a recent study, Ala et al.
reported an SBVS based on molecular docking and dynamics of
three databases to identify four compounds with potential inhibitory
activity of DNMT1 (Ala et al., 2023).

The goal of this study was to develop a consensus docking
protocol to analyze DNMT1 inhibitors. The protocol was based on a
combination of well-validated search algorithms, molecular docking
scores, and data fusion. We also report a novel DNMT1 inhibitor

with a distinct chemical scaffold whose design was based on de novo
design and similarity searching. In this study, we did not test directly
the compounds designed de novo because of the additional time and
economic resources that require the chemical synthesis. Instead, as
the first approach to reduce costs and speed up time (as explained in
the Methods Section), we combined the results of de novo design
with similarity searching of a commercial chemical library. The
docking protocol helped to suggest a binding mode with DNMT1.
Unexpectedly, new activators of the enzymatic activity of
DNMT1 were also found.

2 Methods

The general approach to developing the consensus docking
protocol is outlined in Figure 2A, followed by a docking-based

FIGURE 2
General workflow of the strategies implemented in this work. (A) Consensus molecular docking based on Autodock Vina (Vina), LeDock, and
Molecular Operating Environment (MOE). (B) Structure-based analysis of a de novo inspired compound. The de novo compound was obtained from
fragment libraries retrieved from active compounds. As a first approach, similar compounds from a commercial and ready available library (ChemDiv)
were selected for purchase and testing. Continuous black arrows represent the steps followed in this study. Dashed arrows denote perspectives of
this work and alternative strategies to identify active molecules: (1) chemical synthesis and testing of compounds designed de novo; (2) virtual screening
of the commercial library (including ChemDiv) using the consensus docking protocol; (3) structure-based design and selection of additional candidate
compounds based on the docking results of the newly identified compound.
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analysis of a novel DNMT1 inhibitor whose identification was
inspired by de novo design (Figure 2B). In general, the docking
protocol comprised six key steps: 1) Target selection; 2) Target
preparation; 3) Dataset preparation; 4) Molecular docking; 5)
Ranking and re-scoring; and 6) Data fusion (consensus scoring).
Details of the protocol are explained in the following sections.

The consensus molecular docking (Figure 2A) was used to
generate a binding model of a DNMT1 inhibitor with a novel
chemical scaffold identified from an independent de novo design
approach combined with similarity searching (method
schematically presented in Figure 2B). In Figure 2B, we mark
with dashed arrows alternative strategies that will be pursued in
forthcoming studies to identify DNMT1 inhibitors based on the
outcomes of this study, namely, chemical synthesis and testing of
compounds designed de novo; virtual screening of a commercial
library using the consensus docking protocol; and structure-based
design and selection of additional candidate compounds based on
the docking results of the newly identified compound.

Hereunder, we describe first the specific methods used to
develop the docking protocol (Sections 2.1–2.8) and this is
followed by the description of the selection of the newly tested
compounds and the enzymatic inhibition assay (Sections 2.9–2.10).

In all steps, MarvinSketch 22.18 was used for drawing and
displaying chemical structures (“MarvinSketch 22.18, Chemaxon,
2023”). Datasets and code for the analysis are available on GitHub at
https://github.com/DIFACQUIM/DNMT1-Protocol.

2.1 Targets selection and preparation

The crystallographic structure of human DNMT1 (PDB ID:
4WXX) was retrieved from the RCSB Protein Data Bank (PDB)
available online: https://www.rcsb.org/ (accessed on 30 June 2023)
(Berman et al., 2000). Among the different crystallographic
structures of DNMT1 available on PDB we selected PDB ID: 4WXX
because it contains a co-crystallized molecule of S-adenosyl-
L-homocysteine (SAH), and was diffracted with a resolution of 2.
62 Å. SAH is reported to be a potent inhibitor of bothDNA and histone
transmethylation (Halsted and Medici, 2016), therefore this 3D
structure could be of interest as a model for inhibitory interactions
(Alkaff et al., 2021). The protein preparation was made with default
settings of the QuickPrepmodule ofMolecular Operating Environment
(MOE) v. 2022.02 (“Molecular Operating Environment (MOE).
Chemical Computing Group Inc.: Montreal, QC, Canada, 2023”):
addition of all the lacking hydrogen atoms, protonation state at
pH 7, elimination of water molecules 4.5 Å farther from the protein
and inside the SAH cavity, addition of missing amino acids residues
(breaks of up to ten residues and terminal out gaps of up to five
residues) and for larger gaps, neutralization of the endpoints adjoining
empty residues and energyminimization. The parameters employed for
the energyminimization stage were from the AMBER14:EHT forcefield
[ff14SB (Maier et al., 2015) for the protein; MAB forcefield (Gerber and
Müller, 1995), and AM1-BCC charges for SAH (Jakalian et al., 2002)].
The energy minimization of the protein in MOE is carried out with
three successive nonlinear methods: steepest descent, conjugate
gradient, and truncated Newton.

2.2 Dataset selection and preparation

The 153 ligands with reported enzymatic activity against
DNMT1 in a biochemical assay were obtained from ChEMBL
API v. 32 (Davies et al., 2015; Mendez et al., 2019). Only
molecules with binding assay type and unequivocally assigned
IC50 were selected. Compounds with nucleoside scaffolds
(Supplementary Figure S1) were removed using RDKit library
(Landrum et al., 2023) substructure search with SMARTS. Before
docking (vide infra), the 153 ligands were built and their geometry
was energy minimized using MFF94x forcefield implemented on
MOE software. For every ligand, the dominant protonation state at
physiological pH (7.4) was chosen (“Molecular Operating
Environment (MOE). Chemical Computing Group Inc.:
Montreal, QC, Canada, 2023”).

2.3 Docking with Vina

The file with the prepared ligands was split with the LeFrag
module (Lephar Research, 2023), and Open Babel v.3.1.1 (O’Boyle
et al., 2011) was used to convert to .pdb format. Protein and ligands
were converted to.pdbqt with MGLTools v.1.5.6. The molecular
docking was carried out with Vina v.1.2.3 (Trott and Olson, 2010;
Eberhardt et al., 2021) with an exhaustiveness of 8 and 5 binding
modes to output. The best score for each ligand was selected for
further analysis, with the code freely available at https://github.com/
DIFACQUIM/Docking. The grid box was centered in the
coordinates: -47.673, 61.885, 6.256 (x, y, z) with a search space of
17 × 25 × 14 Å.

2.4 Docking with LeDock

Docking with Ledock (Kirkpatrick et al., 1983) was carried out in
the SAH cavity with the default settings of the software: the grid
centered 4 Å around the co-crystallized SAH, twenty docking runs
for every ligand and 1 Å for the root mean square deviation (RMSD)
clustering. For further data analysis, the best score for every ligand
was selected with the code available at https://github.com/
DIFACQUIM/Docking.

2.5 Docking with MOE

Docking with MOE v. 2022.02 was centered on the SAH
cavity and molecular docking was carried out with the default
settings: placement (method: triangle matcher, score function:
London dG) and refinement (method: rigid receptor, score
function: GBVI/WSA dG) (Vilar et al., 2008). Using the
“Triangle Matcher” method, the compounds were subjected to
30 search steps and the default values for the other parameters.
The clusters with an RMSD <2 Å were visually explored. During
the docking, the receptor was considered rigid and the ligands
flexible. The conformations with the lowest binding energy were
selected for additional analysis.
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2.6 Validation of docking protocol

For this analysis, ligands with IC50 equal to, or lower than
10 μM (pIC50 ≥ 5) were labeled as ‘active’, otherwise they were
considered ‘inactive’. Notably, a 10 μM value has been used as a
general threshold to define active/inactive molecules in other
large-scale studies (Sun et al., 2017; López-López et al., 2022). To
develop the current consensus docking protocol, we made the
approximation that the enzymatic inhibition assays and the
activity values reported in ChEMBL are comparable. The
RMSD between the docked and co-crystallized binding
conformation of SAH was calculated with Open Babel v. 3.1.1
(O’Boyle et al., 2011). From molecular docking scores and the
positive class probabilities, receiver operating characteristic
(ROC) curves were generated using KNIME software version
4.6.0 (Gómez-García and Medina-Franco, 2022; Berthold et al.,
2009). The results were recorded in a comma-delimited CSV file,
which included the scores of each docking program and their
ligand efficiency (LE) (vide infra).

2.7 Re-scoring

Docked ligands were ranked according to their predicted scores
in ascending order, compounds with higher rank have more
negative values, thus better predicted affinity against DNMT1.
pIC50 values were also ranked in descending order since a higher
value represents a more potent compound (pIC50 ranking).
Additionally, LE was calculated individually for each molecular
docking score (obtained by Vina, LeDock, or MOE software)
with the equation:

LigandEfficiency LE( )�Docking Score DS( )
HeavyAtomCount

(1)

In Equation 1, the Heavy Atom Count for each ligand was
calculated using RDKit library (Landrum et al., 2023).
Correlations and graphs were obtained with SciPy (Virtanen
et al., 2020), Matplotlib (Hunter, 2007), and seaborn
(Waskom, 2021) libraries using Python programming language
version 3.10.12.

2.8 Consensus scoring

Since there is not a single “best” scoring function and
docking program, it has been established that combining
results from different docking programs increases the
likelihood of identifying correct docking poses and improve
the performance of docking-based virtual screening (Charifson
et al., 1999; Houston and Walkinshaw, 2013; Perez-Castillo
et al., 2019; Blanes-Mira et al., 2022). In this study, docking
scores and LE values from Vina, LeDock, and MOE were used to
calculate seven data fusion metrics: maximum, minimum,
arithmetic mean, geometric mean, harmonic mean, median,
and Euclidean norm (Bajusz et al., 2019). The data fusion
metrics were calculated employing SciPy (Virtanen et al., 2020).

2.9 De novo inspired selection of
compounds

Automated de novo design was carried out with alvaBuilder
v.1.0.6 (Mauri and Bertola, 2023). Briefly, alvaBuilder combines
structural fragments which are obtained from the training sets
chosen by the user. The new sets of molecules constructed from
the fragments are scored with a scoring function, also chosen by the
user (vide infra). Two different training sets were selected as the
source of fragments used as construction blocks. The first dataset
was retrieved from ChEMBL 31 (Davies et al., 2015; Mendez et al.,
2019) selecting compounds with IC50 against DNMT1 equal to, or
lower than 10 μM. The second is the diversity subset (PS6) of
5,000 compounds from Life Chemicals (“Diversity Screening
Libraries, 2021”) (accessed in August 2021). Both datasets were
curated with the same protocol. Briefly, compounds were
standardized, the largest component was retained, and
compounds were neutralized and reionized to generate canonical
SMILES and remove duplicates, as previously published by our
group (Sánchez-Cruz et al., 2019; DIFACQUIM, 2020). A random
subset of 285 compounds from Life Chemicals was used to match
the number of ‘active’ molecules from ChEMBL after curation. We
set the scoring function with ranges of descriptors calculated from
the molecules with reported biological activity, using alvaDesc 2.0.10
(Mauri, 2020) (the values used for the scoring function are in the
Supplementary Table S1): molecular weight (MW), hydrogen bond
donors and acceptors, consensus partition coefficient (logP),
aqueous solubility (ESOL), synthetic accessibility (SAscore),
topological polar surface area (TPSA). The aggregation method
was an arithmetic mean with a population size of 70 and
100 iterations. For each training set, 700 molecules were
computed. Finally, 1,398 compounds remained after curation.

De novo compounds were used for similarity searching with the
commercial library from the Epigenetics Focused Set of ChemDiv
(“ChemDiv, 2023”), with 25,883 compounds. Morgan fingerprints
of radius 2 (Morgan2) and 3 (Morgan3) (Rogers and Hahn, 2010),
along with MACCS keys (166-bit) fingerprint (Durant et al., 2002)
were calculated for all compounds with RDKit (Landrum et al.,
2023), and similarity was computed with the Tanimoto coefficient.
Molecules fromChemDiv that exhibit one of the following similarity
values to at least one compound de novo designed were selected for
additional analysis: equal to, or higher than 0.30 for Morgan
fingerprints radius 2 or 3; or equal to, or higher than 0.80 for
MACCS keys. The selection of these thresholds was based on typical
values of intuitive high structure similarity for each fingerprint
(Medina-Franco, 2012). Similarity values, along with commercial
availability criteria, were used to purchase compounds for further
evaluation (vide infra).

2.10 Enzymatic DNMT1 inhibition assay

Compounds obtained from ChemDiv were experimentally
tested at the company Reaction Biology in an enzymatic
inhibition methyltransferase assay (“Reaction Biology
Corporation, 2023”) using the HotSpotSM platform. Our research
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group has reported the methodology and results of this biochemical
assay, including the identification of 7-amino alkoxy-quinazolines
(Figure 1) (Medina-Franco et al., 2022). Briefly, HotSpotSM is a low-
volume radioisotope-based assay that employs tritium-labeled
AdoMet (3H-SAM) as a methyl donor. The test compounds
diluted in dimethyl sulfoxide were added using acoustic
technology (Echo550, Labcyte, San Jose, CA, United States) into
an enzyme/substrate mixture in the nano-liter range. The reactions
were started by adding 3H-SAM and incubated at 30 °C. Total final
methylations on the substrate (Poly dI-dC) were identified by a filter
binding method implemented in Reaction Biology. Data analysis
was conducted with GraphPad Prism software available at Reaction
Biology (La Jolla, CA, United States) for curve fits. The enzymatic
inhibition assays were carried out at 1 μM of SAM. The standard
positive control was SAH. The compounds were tested in 10-
concentration IC50 (effective concentration to inhibit enzymatic
activity by 50%) with a threefold serial dilution starting at
100 μM and 200 μM only for F447-0397. Activity percentage
values and dose-response curve are reported as provided by the
testing laboratory in Figure 8, Supplementary Table S4, respectively.

3 Results and discussion

First, we present the results of the docking protocol with
DNMT1 (validation and consensus approach), followed by the
results of the newly identified DNMT1 inhibitor with a distinct
chemical scaffold. Since the chemical synthesis of de novo
compounds requires more time investment, a similarity searching
was performed as a first approach to identify novel scaffolds de novo
inspired. To have an insight about the possible mechanism of action
of the new inhibitor, the docking protocol was used to identify
possible key interactions.

Three different algorithms to generate conformers were employed:
MOE (Triangle Matcher), Ledock (simulated annealing) (Kirkpatrick
et al., 1983), and Vina (Iterated Local Search global optimizer) (Baxter,
1981; Blum et al., 2008). In the Triangle Matcher method, the
conformers generated for every ligand are placed inside a space of
approximately 5 Å around SAH, this space is permeated with alpha
spheres, and, the poses are generated by aligning ligand triplets of atoms
on triplets of receptor site points in a systematic way. The receptor site
points are alpha sphere centers representing tight packing locations
(“Molecular Operating Environment (MOE). Chemical Computing
Group Inc.: Montreal, QC, Canada, 2023”). The docking run begins
with a random conformation, and the move consists of random
perturbations of rotatable bonds and the search of the
conformational space is carried out using molecular mechanics force
fields, with a final rejection test for each molecular move to find an
optimal solution (Vilar et al., 2008).

The simulated annealing method of Ledock initially generates an
aleatory conformer from which the neighborhood of conformers is
generated in search of the one with the most favorable binding energy.
Nonetheless, during the first iterations, the generation of conformers
will not always move in search of the most favorable binding energy but
can move towards the generation of conformers with less favorable
binding energy. This is intending to expand the region of search in
conformational space (Kirkpatrick et al., 1983). The Iterated Local
Search global optimizer of Vina consists of a succession of steps of a

mutation and a local optimization, with each step being accepted
according to the Metropolis criterion (Trott and Olson, 2010). It
uses the Broyden-Fletcher-Goldfarb-Shanno method (Nocedal and
Wright, 2006) for local optimization, which is an efficient quasi-
Newton method (Trott and Olson, 2010).

In MOE, two different scoring functions were employed: London
dG for the initial conformer generation and GBVI/WSA dG for the
conformer refinement. London dG takes into account the average gain/
loss of rotational and translational entropy, the energy due to the loss of
flexibility of the ligand (calculated from ligand topology only), the
hydrogen bond energy, and the desolvation energy. GBVI/WSAdG also
considers the gain/loss of rotational and translational entropy, the
Coulombic electrostatic energy, van der Waals interactions, and the
solvation electrostatic energy. The exposed surface area of the ligand is
penalized (“Molecular Operating Environment (MOE). Chemical
Computing Group Inc.: Montreal, QC, Canada, 2023”). The scoring
function of Ledock takes into account the Coulombic electrostatic
energy, van der Waals interactions, the hydrogen bond energy, the
intra-molecular clashes, and torsion strain (Kirkpatrick et al., 1983). The
scoring function of Vina (Trott and Olson, 2010) is inspired by the
scoring function X-CSCORE which takes into account the van der
Waals interactions, hydrogen bonding, deformation penalty, and the
hydrophobic effect (Wang et al., 2002).

3.1 Validation of docking protocol and re-
scoring

The validation of the molecular docking protocol was done with
two approaches: RMSD values between the docked and co-
crystallized binding conformation of SAH, and ROC curves (as
detailed in the Methods Section).

The RMSD values for SAH were lower than 2 Å for all docking
programs (Vina: 1.586 Å (second pose); LeDock: 1.291 Å; and MOE:
1.214 Å), Supplementary Figure S2 shows the 3Dpredicted pose of SAH
with each software. The calculated values suggest that the docking
protocols are able to identify the experimental 3D conformation of SAH
found in the crystallographic structure.

Figure 3 shows the ROC curves for all three docking software using
the docking scores and the LE. The ROC curves indicated that MOE’s
binding scores led to better identification of true positives, in contrast
with Ledock and Vina. However, the calculation of LE (Equation 1) is
detrimental to the area under the curve (AUC) (Vina: 0.295; LeDock:
0.250; and MOE: 0.084), this suggests that LE does not contribute to
discarding inactive molecules (Figure 3B). These results highlight the
relevance of considering the ligand size, herein with the heavy atom
count, to evaluate the performance of the docking programs.

To have an insight into the data distribution, correlation plots
are shown in Figure 4: Vina (4A), LeDock (4B), and MOE (4C). In
each plot, the horizontal axis represents the pIC50 ranking. Docking
scores, scores’ ranking, and LE are shown in the vertical axis for each
docking software. Spearman correlation (ρ) was computed for each
plot. ‘Active’ and ‘inactive’ compounds against DNMT1 are
represented in different colors. Supplementary Figure S3 shows
the correlation plots for all three docking programs plotting the
pIC50 values on the horizontal axis.

Although ρ values for docking scores and scores’ ranking are
equal for each program, as expected due to the transformation to
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rank variables, the distribution of the data is more scattered when
plotting the scores’ ranking. Despite the fact the highest correlation
observed is low (0.55), the correlation plots in Figure 4 indicate that,
overall, considering the ligand size improves the performance of the
docking program. This is particularly noticeable in the results
obtained with Vina and LeDock where the ρ values improved
when considering the LE (Figure 4). The observations obtained
with the correlation plots agreed with the conclusions obtained from
the ROC curves (Figure 3).

3.2 Consensus docking

As discussed in the Introduction, consensus SBVS could bemore
accurate at identifying active compounds as compared to individual
methods (Wang andWang, 2001; Houston andWalkinshaw, 2013).
Data fusion also helps to rationalize the relationships between the
chemical, physicochemical, and biological features that explain in
more detail the possible binding mechanism of different kinds of
inhibitors (López-López and Medina-Franco, 2023). Data generated
with consensus docking has been useful in developing new drug
candidates (Maia et al., 2020; Morris et al., 2022). The advantage of
using different docking programs is that the variety of generated
conformers is enriched because every program has its own
conformer generation algorithm and scoring functions.

Analysis of consensus docking results with data fusion
metrics has been shown to improve the results of individual
docking (Bajusz et al., 2019; Triches et al., 2022; López-López
and Medina-Franco, 2023). Table 1 summarizes the resulting
correlations (ρ) of the pIC50 ranking and different data fusion
metrics implemented in this work (see Methods Section for
details). The resulting correlations (ρ) with pIC50 can be found
in the Supplementary Table S2. The best performances were
achieved with the median and the minimum rules for the
docking scores and LE, respectively. There is a higher

correlation with LE, in concordance with the results before
the consensus.

Figure 5 shows the correlation between different consensus
docking approaches obtained with different data fusion rules
(described in the Methods Section) and the bioactivity of
DNMT1 inhibitors reported in the literature. The two best
correlations are shown as calculated with Spearman’s correlation:
the pIC50 values with the median docking score (ρ = 0.372) and with
the minimum LE (ρ = −0.564). In agreement with the results
discussed in Section 3.1, LE had the best correlations, which
further emphasizes the convenience of accounting for the size of
the ligand while doing docking analysis with DNMTis.

As observed from Figure 5, correlation values increased from
individual docking scores in the case of Vina and LeDock.
Minimum LE also shows a better correlation than LeDock and
MOE alone. Nevertheless, the calculated correlation for Vina LE has
a close value (ρ = 0.559).

The corresponding ROC curves are shown in Figure 6
emphasizing the improved performance of the consensus median
and consensus minimum.

3.3 Distinct DNMT1 inhibitor inspired by de
novo design

As a result of the similarity searching using the 1,398 molecules
proposed with de novo design, six compounds from ChemDiv were
purchased. The results of the similarity calculations are provided as
supplementary .csv files. Figure 7 shows the chemical structures of the
newly tested compounds with DNMT1, as well as the most similar de
novo compound according toMorgan fingerprint of radius 2 (Morgan2)
(Rogers and Hahn, 2010). Most similar de novo compounds according
to Morgan fingerprint of radius 3 and MACCS keys are in
Supplementary Table S5. The database of the de novo-designed
molecules is available at https://github.com/DIFACQUIM/DNMT1-

FIGURE 3
Receiver operating characteristic (ROC) curves of the docking with DNMT1 with three different docking programs. Curves are generated with
scoring (A), and with ligand efficiency (B).
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Protocol/tree/main/De-Novo_inspired. Compound F447-0397 had
inhibition against DNMT1 in the enzymatic assays, with an IC50 of
41.3 ± 2.1 μM. Dose-response curves used for the calculation of IC50 are
in Figure 8. The data used by the testing laboratory (Reaction Biology) to
obtain the IC50 is in Supplementary Table S4. It should be noted that,
although one point was excluded from the curve fit, F447-0397 inhibited
in more than 99% the enzymatic activity of DNMT1 at the highest

concentration tested. Nevertheless, theHill slope of the IC50 curve is not
close to 1.0 as it occurs for the positive and internal control, SAH for
which the assay conditions to measure DNMT1 were developed by the
testing laboratory. Based on these results it is important to conduct
additional biochemical and orthogonal assays (e.g., in a cellular context)
to further confirm the activity of the compound F447-0397. This
compound exhibits a novel scaffold, not previously published among

FIGURE 4
Docking scores and ligand efficiency (LE) correlations with ranked pIC50 of compounds with activity against DNMT1. Compounds labeled as active
are in red, orange, or firebrick, and inactive compounds are in blue, cyan, or olive green. Spearman’s correlation is shown above each graph. From left to
right: binding scores, scores’ ranking, and LE calculated with (A) Vina, (B) LeDock, and (C)MOE. Despite the low correlation (maximum 0.55), taking into
account the ligand’s size improves the performance of the docking program.

TABLE 1 Results of data fusion metrics and their correlations with pIC50 ranking.

Data fusion metric Docking scores correlation Ligand efficiency correlation

Maximum 0.330 −0.391

Minimum 0.230 −0.564

Arithmetic mean 0.321 −0.541

Geometric mean 0.320 −0.536

Harmonic mean 0.320 −0.533

Median 0.372 −0.498

Euclidean norm 0.318 −0.543

Bold values are represents the best correlation for each case.
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DNMT1 inhibitors to our knowledge. This was shown as no matching
molecule was found after the substructure search with the Murcko
scaffold of F447-0397 as implemented in RDKit (Landrum et al., 2023),
using the curated dataset of 743 molecules with biological activities
against DNMT1 found inChEMBL 33 (Davies et al., 2015;Mendez et al.
, 2019). Supplementary Table S3 summarizes the results of the
enzymatic inhibition assays of the six compounds.

The compounds F447-0397, F447-0509, and F447-0644 are
quite similar, in particular, F447-0397 and F447-0509 (an
additional methyl group and substitution pattern in the
sulfonamide phenyl ring). The docking scores and LE of the
three molecules are also similar (Supplementary Table S3), as
could be anticipated from their structural similarity. However,
the percentage of enzymatic activity at 100 μM is quite different,
with F447-0397 being the only inhibitor (12.76%). These are good
examples of activity cliffs: compounds with similar chemical
structures but very unexpected activity differences (Maggiora,
2006). Although the IC50 of F447-0397 indicated that it is not a

very potent compound (41.3 μM - and could be considered
“inactive,” the scaffold is novel and could be an interesting
starting point for optimization). The novel DNMT1 inhibitor has
a “long scaffold” e.g., four-ring systems connected with one-to-three
bond linkers. This is in line with other DNMT1 inhibitors with “long
or extended scaffolds,” such as the 4-aminoquinoline SGI-1027 and
its analogs (Datta et al., 2009; Gros et al., 2015) and glyburide
(Juárez-Mercado et al., 2020) (Figure 1). However, unlike SGI-1027
and glyburide, F447-0397 was identified by a combination of de novo
design and similarity searching.

Figure 9 shows the predicted binding mode of F447-0397 with
DNMT1 generated with Vina, the docking program that had, overall,
the best performance of all three docking programs (as shown in
Figure 3). The predicted pose shows a hydrogen bond between
Glu1168 and the piperazine ring of F447-0397. This could be a key
interaction since the co-crystallized SAH also makes a hydrogen bond
interaction with Glu1168. Re-docking of SAH, with the three software,
predicted the same interaction (Supplementary Figure S4). The

FIGURE 5
Correlation plots between ranked pIC50 values reported in ChEMBL for DNMT1 inhibitors and (A) docking scores and (B)minimum ligand efficiency
(LE). The Spearman’s correlation coefficient is indicated in the plots. Compounds with IC50 values lower/greater than 10 μM are represented with a
different color.

FIGURE 6
Receiver operating characteristic (ROC) curves of the docking with DNMT1 with three different docking programs. Curves generated with scoring
(A), and with ligand efficiency (B), including the best consensus metric.
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predicted binding mode with Vina also exhibits a hydrogen bond
between Arg1310 and the oxygens of the sulfonamide from F447-0397.
MOE predicted pose also showed the hydrogen bond with the oxygens
of the inhibitor’s carboxylic acid (Supplementary Figures S5, S6).

Interactions with Arg1310 and computational hits were previously
observed in separate docking studies with DNMT1 (Bashir et al.,
2023), and also between Arg1310 and EGCG (Figure 1)
(Assumpção et al., 2020). Of note, LeDock and MOE predicted

FIGURE 7
Chemical structures of newly tested compounds with DNMT1 according to commercial availability. The Murcko scaffold is marked in green. The
most similar de novo compound (Morgan2 representation) to the commercially available molecule (from ChemDiv) is shown on the left, alongside the
similarity values calculated with the Tanimoto coefficient. The IC50 value of the active compound is indicated.
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interactions between Asn1578 and F447-0397, the interaction with this
particular residue could provide selectivity towards DNMT1 versus
DNMT3A (Yu et al., 2019). This suggests that F447-0397 could be the
starting point of an optimization project toward selective
DNMT1 inhibitors.

Compound E760-5661 was an activator (142% enzymatic
activity under the assay conditions), followed by the structurally
related molecule L162-0591 (132% activity, Supplementary Table
S3). Although this is an unexpected result (as we were looking for
inhibitors), at least there is agreement that compounds structurally
similar have similar (activation) profiles. The activation of
DNMT1 also has clinical implications, as DNA hypomethylation
has been related to various human diseases, like cancer, and
cardiovascular diseases (Wilson et al., 2007; Pogribny and
Beland, 2009). Other activators, also identified serendipitously,

have been recently published (Rodríguez-Mejía et al., 2022). It
would remain to confirm the capabilities of compounds E760-
5661 and L162-0591 in a cellular context. To this end, a global
human DNA methylation assay could be performed, as recently
reported by Rodríguez-Mejía et al. that recently identified two
DNMT1 activators (Rodríguez-Mejía et al., 2022). It also remains
to explore, at the structural level, the activity cliffs identified in this
work. Preliminary structural comparisons of the three compounds
(F447-0397, F447-0509, and F447-0644) suggest a quite precise
protein-ligand interaction of the active compound - F447-0397 -
with DNMT1. The structural analogs could be binding in a different
binding region that activates the enzymatic activity of DNMT1 at a
certain level, possibly by relaxing allosteric autoinhibition of human
DNMT1, as recently proposed for two activators of DNMT1. The
mechanism of activation of DNMT1 is out of the scope of this study.

FIGURE 8
Dose-response curves used to calculate the IC50 values. Data and curves provided by the testing laboratory, Reaction Biology. Data for the positive
control SAH (left) and ChemDiv compound F447-0397 (right). F447-0397 was tested in a 10-dose IC50 mode with 3-fold serial dilution, starting at
200 µM.

FIGURE 9
The predicted binding mode (Vina) of F447-0397 with DNMT1 (PDB ID: 4WXX), showing (A) 3D and (B) 2D binding models.
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4 Conclusion and perspectives

This study contributes to the further development of inhibitors
of DNMT1 through a comprehensive analysis of docking protocols
and analysis of the individual vs. consensus results. Herein, we also
used different structure-based analyses to suggest the binding mode
of a new DNMT1 inhibitor whose design was inspired by a de novo
ligand-based design. Noteworthy, there are no previous reports of
inhibitors of DNMTs proposed with de novo design. We concluded
that, overall, out of the three docking programs, Vina had the best
performance concerning the docking poses, as measured by the LE.
Calculation or consideration of LE significantly enhanced the
performance of Vina, Ledock, and MOE to prioritize compounds
in SBVS of the 153 DNMT1is in ChEMBL. Regarding the consensus
protocol, the best data fusion rules were the median and, more
significantly, the minimum fusion, particularly considering the LE.
The results emphasize the significance of considering the size of the
ligand as part of the results of the docking analysis.

We also report a small molecule (F447-0397) with a chemical
scaffold that had not been previously published as a DNMT1 inhibitor.
Docking simulations suggested a binding mode of the new inhibitor
making interactions with Glu1168 (like co-crystallized SAH) and
Arg1310 (like previous hits). As part of the study, we uncovered two
activity cliffs: compounds with a chemical structure similar to F447-
0397 but a very different activity profile.

One of the main perspectives of this work is performing
additional biochemical assays at different testing concentrations
of F447-0397 and conducting orthogonal assays to confirm its
DNMT1 inhibitory activity. To this end, the whole genome
methylation profiling could be assessed with techniques such as
High-Performance Liquid Chromatography Ultraviolet (HPLC-
UV), Liquid Chromatography coupled with tandem Mass
Spectrometry (LC-MS/MS), ELISA-Based Methods, LINE-
1+Pyrosequencing, PCR-based amplification fragment length
polymorphism (AFLP), restriction fragment length
polymorphism (RFLP) or a combination of both, or
luminometric methylation assay (LUMA) (Kurdyukov and
Bullock, 2016; Pechalrieu et al., 2017). The activators of
DNMT1 encourage investigating these compounds as potential
biochemical probes to explore the role of DNMT1. Another
perspective is to perform virtual screenings of chemical libraries
with the newly developed consensus docking protocol (Figure 2B),
including the screening of ChemDiv. Also, it can be pursued the
chemical synthesis and testing of compounds designed de novo and
the structure-based optimization (including chemical synthesis and
testing) of the active compound identified in this work, F447-0397
(the latter two perspectives also outlined in Figure 2B). Of note, since
several successful SBVS to identify DNMT1 inhibitors have been
reported, a key point in future screenings is filtering chemical
libraries that had not previously been screened, including newly
developed focused libraries.
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