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Introduction: Psoriasis is a chronic, immune-mediated condition that affects
approximately 100million individuals worldwide. Interleukin 23 (IL-23) serves as a
crucial pro-inflammatory cytokine in the pathogenesis of chronic inflammatory
diseases associated with psoriasis. Monoclonal antibody therapies targeting IL-23
inhibit the overactive cytokine signaling that contributes to chronic inflammation
across various organ systems. Over the past decade, IL-23 inhibitors have gained
significant prominence in the treatment of psoriasis. Natural products have
emerged as potential modulators of IL-23 activity, particularly in the context
of inflammatory diseases such as inflammatory bowel disease (IBD). Several well-
characterized phytochemicals, including sulforaphane, resveratrol, and
curcumin, have demonstrated efficacy in inhibiting the production and
function of Th17 cells, which are regulated by IL-23. However, the exploration
of natural products specifically related to psoriasis has been limited.

Methods: This study aimed to identify novel candidates derived from natural
products for the treatment of psoriasis. To achieve this, 60,000 natural
compounds were filtered according to the rule of five (Ro5) and obtained
from the ZINC database. These ligands underwent high-throughput virtual
screening (HTVS) in molecular docking studies against the IL-23 receptor. The
top 50 ligands were subsequently re-evaluated using standard precision (SP), and
for enhanced accuracy, the top 19 from the SP protocol were further screened
using the extra precision (XP) protocol.

Results and Discussion: The computational screening revealed that the docking
energy values for the nineteen ligands binding to the target enzyme ranged from
-3.669 to -7.143 kcal/mol. Among these, ligand 1 (L1) exhibited the highest
binding energy at -7.143 kcal/mol with IL-23. Molecular dynamics (MD)
simulation further confirmed the stability of the IL-23-L1 complex, highlighting
a robust interaction between L1 and the target enzyme, with Tyr100 being one of
the amino acids showing the highest frequency of interaction throughout the
simulation. Density functional theory (DFT) analysis using the Becke, three-
parameter, Lee-Yang-Parr (B3LYP)/6-31++G(d,p) basis set indicated a
promising reactivity profile for the ligands. The analysis of absorption,
distribution, metabolism, excretion, and toxicity (ADMET) properties suggested
that all inhibitor ligands possess favorable pharmacological characteristics,
including appropriate molecular weight, lipophilicity, hydrogen bond donors
and acceptors, molecular refractivity, topological polar surface area (TPSA),
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and the number of rotatable bonds, all in accordance with Ro5. Additionally, the
physicochemical properties indicate that most ligands are capable of human
intestinal absorption (HIA) and possess a wide therapeutic index, suggesting a
favorable safety profile.

KEYWORDS

natural compounds, Interleukin-23, virtual screening, ADMET, drug-likeness, dynamic
simulation

1 Introduction

Psoriasis, an immune-mediated, chronic, non-communicable
illness, will impact about 7.5 million individuals in the
United States in 2021, accounting for 3.0% of the population
(Armstrong et al., 2021). Among the various forms of psoriasis,
plaque psoriasis is the most common, accounting for over 80% of all
cases. This type is characterized by erythematous, scaly patches, or
plaques, primarily located on extensor surfaces, although it can also
affect intertriginous areas, nails, soles, and palms. The condition
impacts both men and women equally, but it is more prevalent in
adults than in children (Paller et al., 2018; Rachakonda et al., 2014).
While psoriasis can manifest at any age, there is a bimodal
distribution of onset, typically occurring between the ages of
18–39 and 50–69 years (Parisi et al., 2013). The age at which
psoriasis begins can be influenced by both genetic and
environmental factors. The presence of the HLA-C*06 allele is
associated with the early onset of psoriasis (Nair et al., 2006).
The pathophysiology of psoriasis is complex and not fully
understood; however, it is believed to be linked to the
hyperactivation of components of the adaptive immune system
(Lin et al., 2002). Various cell types, including natural killer
T cells, keratinocytes, plasmacytoid dendritic cells, and
macrophages, release cytokines that activate myeloid dendritic
cells during the initial stages of psoriasis pathogenesis. DNA-
LL37 complexes stimulate plasmacytoid dendritic cells to secrete
interferon-alpha, which in turn activates myeloid dendritic cells.
Upon activation, these myeloid dendritic cells subsequently release
ILs, specifically IL-12 and IL-23. Consequently, IL-23 has been
identified as a critical therapeutic target for psoriasis.
Ustekinumab is the most commonly used anti-IL-12/23-
p40 agent, having received approval for the treatment of psoriasis
in 2009. It offers the advantages of fewer injections, long-term
maintenance, and high rates of remission. Although targeting the
IL-23 immune axis is effective for treating various autoimmune
diseases, there are risks associated with significant infections and
other adverse effects (Aubin et al., 2013; Ru et al., 2021).
Briakinumab, a fully human monoclonal antibody targeting IL-
12/23-p40 for psoriasis treatment, was associated with severe
complications and side effects in a phase III clinical trial. As a
result, the drug’s developer withdrew its application for approval
from the FDA and the European Medicines Agency in 2011 (Strober
et al., 2011; Gordon et al., 2012). Natural products have emerged as
potential modulators of IL-23 activity, particularly in the context of
inflammatory diseases such as IBD. Several well-characterized
phytochemicals, including sulforaphane, resveratrol, and
curcumin, have shown efficacy in inhibiting the production and
function of Th17 cells, which are regulated by IL-23. However,

research on natural products specifically related to psoriasis has been
limited. Therefore, this study aimed to identify novel candidates
derived from natural products for the treatment of psoriasis. To
accomplish this objective, we employed computer-aided structure-
based drug design, a specialized field within drug discovery that
utilizes computational and theoretical techniques to effectively
identify and optimize lead compounds. Virtual screening, which
acts as the in silico counterpart to high-throughput screening for
extensive compound libraries, plays a vital role in the drug discovery
process. This methodology significantly decreases both the time and
costs associated with the identification of new drug candidates
(Aghahosseinia et al., 2024; Gheidari et al., 2024b; Gheidari et al.,
2024c; Gheidari et al., 2024e; Mahmoodi et al., 2024). The existence

FIGURE 1
Summary of virtual screening.
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of comprehensive databases is essential to this approach. Among
these, ZINC stands out as one of the largest freely accessible web-
based repositories of natural compounds, encompassing over
80,617 molecules (Irwin et al., 2012). This study aimed to
identify natural products within the ZINC database through in
silico methods, including molecular docking, MD simulation,
DFT study, and ADMET predictions, with the goal of
discovering compounds that could potentially be more effective
than existing drugs and may serve as targets for psoriasis
treatment (Figure 1).

2 Experimental procedures

2.1 Quantum chemistry via DFT calculation

The compound DFT is used to ascertain the density and energy
properties of the electron. The Gaussian 09W program (Frisch et al.,
2009) is used to do computed analyses of the structure of atoms,
molecules, crystals, and surfaces, as well as their interactions. The
wavenumbers of the vibrations were determined by calculations
utilizing the B3LYP method and a 6-31++G (d,p) basis set. The
B3LYP functional is a valuable approach for accurately describing
harmonic vibrational frequencies in molecules of small to medium
size. The output check files were analyzed using GuassView 6.0.
Molecular orbital (MO) analysis is essential in quantum chemistry
and has been used to thoroughly characterize chemical behavior.
The highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) of a molecule are
employed to characterize chemical properties such as reactivity,
stability, and kinetics. The molecule’s hardness or softness is
determined by its hardness (η) value, with softer molecules
exhibiting higher reactivity. The electronegativity (X) value
indicates the molecule’s ability to attract electrons.

2.2 Design and preparation of library of
natural product compounds

A total of around 60,000 compounds were obtained from the
Zinc15 database (https://zinc15.docking.org) utilizing online tools.
These compounds were chosen based on their adherence to

Lipinski’s Ro5 and their classification as natural products. They
were collected for the purpose of conducting virtual screening
analyses. The compounds underwent ligand preparation using
the LigPrep Wizard (Schrödinger 2017-2 software, LLC, New
York). The structures underwent minimization using the
optimized potentials for liquid simulations (OPLS) 2005 force
field, with the ionization state of each chemical set to neutralize.
In addition, tautomer’s and a minimum of 10 conformations per
ligand were also produced (LigPrep, 2017).

2.3 Protein preparation

The crystal structure of IL23A, depicted in Figure 2 and
identified by PDB ID: 6wdq (RCSB, 2025), was obtained from
the RCSB database at a resolution of 3.40 Å. Its secondary
structure comprises several alpha helices and beta sheets,
interspersed with multiple loops that contribute to the protein’s
three-dimensional conformation. The preparation of the protein
included refining hydrogen bonds, incorporating missing hydrogen
atoms, optimizing the structure, and removing atomic conflicts and
water molecules prior to docking. Ultimately, the protein structure
underwent energy minimization and optimization using the OPLS
2005 force field (Protein Preparation Wizard, 2017).

2.4 Determining the active site and receptor
grid generation

The docking pocket of the IL-12 and IL-23 receptor complexes is
primarily formed by the interaction between the shared p40 subunit
and the IL-12Rb1 receptor, which is crucial for the binding and
signaling of both cytokines. Specifically, the IL-12Rb1 receptor
engages the p40 subunit at a highly complementary interface
characterized by a significant degree of charge complementarity,
where the positively charged loop in p40 interacts with a negatively
charged patch in IL-12Rb1, facilitating effective docking and
subsequent signal transduction. Prior to docking, the binding site
was defined as a grid box using Receptor Grid Generation (Maestro,
Schrödinger 2017-2 software, LLC, New York). The grid box was

FIGURE 2
Structure of IL23R receptor protein.

FIGURE 3
Structure of IL23R grid box coordinates.
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positioned at coordinates X = −16.469875, Y = 31.725000, and
Z = −29.749080, with a radius of 20 Å. This grid box is relevant to
the inhibition of IL-23R, as shown in Figure 3 (Glassman et al.,
2021). The van derWaals radius scaling factor was initially set to 1.0,
the partial charge cut-off to 0.25, and the charge scale factor to 1.0,
with grid creation (Glassman et al., 2021) performed without any
limitations.

2.5 Molecular docking

The Ligand docking module of Schrödinger used grid-based
Ligand Docking with Energetics (GLIDE) (Glide, 2017) in three
distinct dockingmodes: (i) HTVS for docking and scoring; (ii) SP for
docking and scoring; and (iii) XP for docking and scoring. The
whole library of ligands was screened using HTVS docking and
scoring. For each ligand, a mean numerical conformation of Glide,
known as G-Score, was determined. A total of 50 ligands, which
exhibited the highest G-Score with HTVS, underwent further
evaluation utilizing SP docking and scoring. This was done to
examine the reliability and correctness of the docking poses. To
reduce false-positive results, 19 ligands that were 100% thriving were
further screened using XP docking and scoring. As shown in Table 1,
these 19 ligands were arranged by their XP G-Score, with the lowest
XP G-Score meaning the best result of the docked ligands to the
IL23R protein. The detailed 2D and 3D binding interactions of these

19 ligands within the active pocket of IL23R are shown in
Supplementary Figure A of the Supplementary Information.

2.6 Drug-likeness prediction and
Lipinski’s RO5

The resemblance across drugs can be ascribed to molecular
properties including hydrophobicity, electronic distribution,
hydrogen bonding, molecular weight, bioavailability, reactivity,
toxicity, and metabolic stability. The term used to describe this
resemblance is “drug likeness,” which pertains to the similarity in
molecular attributes and structural properties between recognized
drugs and specific compounds (Ertl et al., 2000). Lipinski’s rule is a
widely used method for predicting the solubility and permeability of
a chemical compound, which in turn determines its eligibility as a
potential medicinal agent. Poor absorption or penetration is
associated with certain metrics and is more probable when a
substance contradicts them. The parameters to be measured are
the number of hydrogen bond donors (HBD), the number of
hydrogen bond acceptors (HBA), the molecular weight (MW),
and the octanol-water partition coefficient (LogP). The acceptable
values for these parameters are HBD ≤ 5, HBA ≤ 10, MW ≤ 500, and
LogP ≤ 5 (Gheidari et al., 2024a; Gheidari et al., 2024d). The
prediction was conducted with a complimentary web-based Swiss
ADME service (Daina et al., 2017).

TABLE 1 Zinc15 IDs, HTVS, SP and XP G-Score of the top 19 selected ligands.

Ligand Zinc15 ID HTVS G-Score SP G-Score XP G-Score

L1 ZINC000008624310 −6.661 −7.096 −7.143

L2 ZINC000012889744 −6.585 −6.996 −6.388

L3 ZINC000022936763 −7.741 −7.330 −5.966

L4 ZINC000012481418 −6.586 −6.965 −5.926

L5 ZINC000035442265 −6.771 −7.304 −5.787

L6 ZINC000015707582 −6.689 −8.235 −5.575

L7 ZINC000000832602 −6.963 −6.822 −5.180

L8 ZINC000020760042 −6.633 −6.744 −5.158

L9 ZINC000002952759 −6.861 −6.945 −4.958

L10 ZINC000604405338 −6.677 −6.727 −4.785

L11 ZINC000009781412 −7.387 −6.736 −4.720

L12 ZINC000000637702 −7.176 −7.234 −4.649

L13 ZINC000022936745 −8.299 −7.900 −4.612

L14 ZINC000072325990 −6.841 −6.758 −4.564

L15 ZINC000085876697 −6.804 −6.749 −4.247

L16 ZINC000000870328 −6.825 −6.994 −4.155

L17 ZINC000000246425 −6.620 −6.763 −4.152

L18 ZINC000002344695 −6.853 −6.785 −3.800

L19 ZINC000000709329 −6.923 −6.973 −3.669
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2.7 ADMET properties

An important aspect of drug design research and development is
ensuring the safety of chemical compounds. Therefore, accurately
predicting the ADMET characteristics is crucial. In order to
determine these abilities, some attributes were used as indicators,
namely, Caco-2 cells. Caco-2 cells are a kind of human colon
epithelial cancer cell line that serves as a representation of the
absorption of drugs and other substances in the human intestine.
A substance with a high Caco-2 value exhibits a high level of
absorption in the gut. HIA is the mechanism by which drugs
taken orally are absorbed from the gastrointestinal (GI) tract into
the circulation of the human body. The blood-brain barrier’s
significance lies in its ability to determine the degree of
lipophilicity of compounds, which in turn indicates their
likelihood of being successfully absorbed across plasma
membranes. P-glycoprotein is a crucial transmembrane protein
that actively transports several exogenous chemicals out of cells.
The presence of this trait is observed in mammals, fungi, and
bacteria, and it is believed to have developed as a protective
response to noxious compounds. One of the significant
components in the determination of a drug’s safety is plasma
protein binding (PPB), in the sense that pharmaceuticals with
high PPB have a limited therapeutic index, meaning that

compounds with low PPB values are substantially safer.
Carcinogenicity refers to the ability of a substance to cause the
development of malignant tumors, enhance their occurrence or
severity, or accelerate the time it takes for tumors to form after
inhalation, ingestion, topical application, or injection. The synthetic
accessibility score quantifies the level of simplicity in synthesizing
compounds. The predictions were generated with ADMETlab 2.0
(Xiong et al., 2021).

2.8 MD simulation

MD simulations can provide a theoretical understanding of how
a certain molecule behaves inside the binding pocket (Cuya et al.,
2018). This allows for the identification and prediction of more
accurate ligand-receptor interactions and the validation of
molecular docking findings. MD simulations were conducted by
solvating the compound in an explicit orthorhombic water box
using the SPC water model. The system was gradually heated to a
temperature of 300 K and maintained at constant pressure using the
Nose-Hoover thermostatic algorithm and the Martina-Tobias-Klein
method. To neutralize the system, sodium chloride salt at a 0.15 M
concentration was selected. The system ran for 100 ns on
10,411 frames using Desmond (Desmond, 2017). The Desmond

TABLE 2 Geometric parameters of the ligands L1-L19.

Compound
Gas phase

Optimization energy (hartree) Polarizability (α)
(Atomic units)

Dipole moment (Debye)

L1 −1,338.53 294.97 7.11

L2 −1,658.31 354.55 4.65

L3 −1,572.31 362.67 6.76

L4 −1,659.35 307.79 7.33

L5 −1861.02 325.57 2.44

L6 −1,548.31 381.16 3.61

L7 −1,604.83 344.79 4.71

L8 −1,102.27 268.61 3.74

L9 −1,546.34 346.79 4.19

L10 −1,603.91 363.08 5.89

L11 −1,579.40 362.30 6.16

L12 −1,351.76 326.14 5.33

L13 −1,511.18 373.51 4.17

L14 −1,461.31 264.83 5.18

L15 −1,392.06 367.62 5.65

L16 −1,423.32 324.20 7.45

L17 −899.74 300.64 1.31

L18 −1,375.78 303.52 8.16

L19 −1,349.31 325.64 8.45
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package’s Simulation Interactions Diagram tool was used to analyses
the system at frame zero as a reference. The analysis focused on the
protein and ligand root-mean-square deviation (RMSD) values in
relation to the reference.

3 Results and discussion

3.1 DFT

For each of the 19 selected ligands L1-L19, optimization in the
gas phase using the B3LYP/6-31++G (d,p) basis by means of the
Gaussian 09W software package and the Gauss View visualization
application was performed, and their values are shown in Table 2.
No imaginary frequencies were found, and the geometries of the
ligands were changed to have the lowest energy gradient, proving
that all structures were in fact local minima.

The FMO orbitals of the 19 selected ligands are shown in
Supplementary Figure B of the Supplementary Information. The
red and green color distributions represent the positive and
negative phases of the MO wave function, respectively. We
estimate that several descriptors are essential for evaluating the
stability and reactivity of compounds, including the energy gap
(ΔE gap), hardness (η), softness (S), electronegativity (X), and
electrophilicity (ψ). The energy gap represents the difference
between the HOMO and the LUMO, with a larger gap indicating

greater stability and lower reactivity. In this analysis, L5 exhibits the
highest energy gap at 5.482 eV, making it the most stable compound,
closely followed by L1 with a gap of 5.331 eV and L14 at 5.225 eV,
both suggesting significant stability. Hardness, which measures a
compound’s resistance to deformation or change, is defined as half
the energy gap. A higher hardness value indicates a more stable and
less reactive compound. In this study, L5 leads with a hardness of
2.741, while L1 and L14 also show considerable hardness values of
2.665 and 2.612, respectively. Conversely, L17 has the lowest hardness
at 1.487, which correlates with its higher reactivity. Softness, being the
inverse of hardness, indicates a compound’s reactivity, with a higher
softness value suggesting greater reactivity. In this context, L5 has the
lowest softness at 0.182, indicating reduced reactivity, while L9 has the
highest softness at 0.298, suggesting it is more reactive.
Electronegativity measures a compound’s ability to attract
electrons, with a higher value indicating a stronger tendency to
attract electrons. In this analysis, L10 has the highest
electronegativity at 4.193, followed closely by L8 at 4.132. In
contrast, L17 has the lowest electronegativity at 2.205, suggesting it
is less effective at attracting electrons. Finally, electrophilicity indicates
a compound’s ability to accept electrons in a chemical reaction, with a
higher value suggesting a stronger electrophile. L8 stands out with the
highest electrophilicity at 4.712, indicating it is a strong electrophile,
while L17 has the lowest electrophilicity at 1.635, making it less likely
to act as an electrophile. Table 3 shows the energetic properties of
ligands L1–L19.

TABLE 3 Energetic parameters of the ligands L1-L19.

Compound EHOMO(eV) ELUMO(eV) ΔE
gap (eV)

Hardness(η) Softness
(S)

Electronegativity(X) Electrophilicity(ψ)

L1 −6.476 −1.144 5.331 2.665 0.187 3.810 2.723

L2 −5.825 −1.314 4.511 2.255 0.221 3.569 2.824

L3 −5.425 −0.973 4.451 2.225 0.224 3.199 2.299

L4 −6.234 −1.829 4.404 2.202 0.227 4.031 3.691

L5 −6.448 −0.965 5.482 2.741 0.182 3.707 2.506

L6 −5.549 −0.802 4.746 2.373 0.210 3.175 2.124

L7 −5.625 −1.220 4.405 2.202 0.226 3.423 2.659

L8 −5.943 −2.320 3.623 1.811 0.275 4.132 4.712

L9 −5.620 −2.271 3.349 1.674 0.298 3.946 4.648

L10 −6.445 −1.941 4.504 2.252 0.222 4.193 3.903

L11 −5.578 −1.630 3.948 1.974 0.253 3.604 3.290

L12 −5.352 −1.026 4.326 2.163 0.231 3.189 2.351

L13 −5.453 −0.694 4.758 2.379 0.210 3.073 1.985

L14 −6.678 −1.453 5.225 2.612 0.191 4.066 3.164

L15 −5.727 −1.862 3.865 1.932 0.258 3.795 3.726

L16 −5.859 −1.384 4.475 2.237 0.223 3.622 2.931

L17 −3.693 −0.718 2.975 1.487 0.336 2.205 1.635

L18 −5.670 −0.977 4.693 2.346 0.213 3.324 2.354

L19 −5.809 −1.344 4.464 2.232 0.223 3.576 2.865
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TABLE 4 Docking scores, and interaction of each ligands L1-L19.

Compound XP
G-Score

Interaction residue

Hydrogen bond Van der waals bond Hydrophobic Other

Conventional
H-bond

Carbon C-bond Pi-donor
H-bond

L1 −7.143 Glu111 Gln110,Thr102,Ser98,Gly116,Cys115,Leu113,Thr112 His108,Tyr100, Ile28

L2 −6.388 Glu111,Leu113,Gly24,Asn27 Thr112 Asn29 Tyr67,Thr102,Tyr100,Gln110,Ile25,Ser31 Ile28,His108

L3 −5.966 Gly24,Asn29 Leu113 Leu113 Ser98,Gly116,Asn27,Ile25,Gln110,Glu111,Ser31 Ile28, Tyr100, Thr112,His108

L4 −5.926 Glu111 Thr112,Ser98,Met99,Lys117,Gly116, Tyr67,Thr102 His108,Leu113,Ile28, Tyr100 Gln110

L5 −5.787 Gly116,Cys115,Tyr100,Tyr67,Thr102,Glu111,Gln110,Thr112,Leu113 Ile28,His108 Cys30

L6 −5.575 Glu111 Gln110 Thr102,Cys115,Lys117,Asp118,Ser98,Tyr100 Thr112,Gly116,Ile28,His108,Leu113

L7 −5.180 Gly24,Lys57, Asn29 Ala55,Ile56,Gln110,Glu111 Asn29 Ser31,Leu113,Ile28,Asn27,Thr112,Asn58,His108 Ile56,Lys57

L8 −5.158 Glu111 Glu111 Thr112,Gln110,Thr102, Ile28,Asn29 Leu113,His108, Tyr100

L9 −4.958 Asn58 Ser31,Glu111,Tyr67,Tyr100,Thr102,Gln110,Cys59,Ile56,His108,Lys107 Lys57,Thr112 Leu113

L10 −4.785 Asn58 Lys107,Thr112,Glu111,Gln110,Leu113,Gly24,Asn29,Ser31,His108,Ile56 Lys57

L11 −4.720 Gly24 Gly24 Leu113 Ala55,Ser31,Ile56,Thr112,Glu111,Gln110,Asn27,Ile28,Asn29 Lys57,His108

L12 −4.649 Glu111,Gln110, Asn29 Leu113,
Asn29

Thr112,His108,Cys59, Lys107,Asn58,Ser31,Gly24,Asn27,Ile28 Ile56,Lys57

L13 −4.612 Tyr100,Gly70 Tyr100 Ile71,Gln110,Ile28, Cys115,Lys117,Asp118,Ser98,Thr102,
Glu111,Lys72,Leu113

Gly116,Tyr67 Tyr100

L14 −4.564 Leu113 Thr112,Gln110,Thr102,Tyr100,Ile28, Ser31,Asn29 Leu113, His108 Glu111

L15 −4.247 His108,Gly24,Asn27,Asn29 Ile28,Ser31,Thr112,Asn58,Gln110,Glu111,Leu113 Ile56,Lys57,His108

L16 −4.155 His108 Asn58,Cys59,Gln110,Glu111,Leu113,Ser31,Asn29 Lys107,Ile56,Lys57, Thr112,His108

L17 −4.152 Leu113 Glu111,Gln110,Asn29,Lys57,Asn58,Ser31,Thr112 Ile56,His108

L18 −3.800 Asn29,Glu111 Leu113 Ser31,Tyr67,Thr102,Tyr100,Gln110, Thr112 His108, Lys107,Asn58 Lys57,Ile56,Leu113

L19 −3.669 Glu111 Ala55,Asn29,Ser31, Gln110,Asn58,Ile56 Lys57,Leu113,His108,Thr112,Lys107
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3.2 Molecular docking

The molecular docking technique is extensively employed in
drug design and the analysis of biological data, as it offers a
computational framework for predicting interactions between
small molecules and their biological targets, including proteins
and nucleic acids. By simulating the binding affinity and
orientation of ligands within the active sites of target
macromolecules, molecular docking aids in the identification of
potential drug candidates and the optimization of lead compounds.
This methodology not only deepens our understanding of molecular
interactions but also supports the rational design of therapeutics,
thereby expediting the drug discovery process. In this study,
60,000 natural products were docked into the active site of IL23R
using HTVS. Fifty ligands that exhibited the highest G-scores from
HTVS were subsequently evaluated using SP docking to confirm the
reliability and appropriateness of the docking poses. To reduce the
likelihood of false-positive results, nineteen ligands demonstrating
significant potency were further screened using XP docking. An
analysis of the interactions within these protein-ligand complexes
was conducted, and the results are summarized in Table 4. The
amino acid residues in the active site of IL23R, which include both
bonding and non-bonding interactions with ligands L1–L19, are as
follows: Ala55, Asn27, Asn29, Asn58, Cys115, Cys59, Gly70, Gly24,
Gly116, Glu111, Gln110, His108, Ile25, Ile28, Ile56, Ile71, Leu113,
Lys57, Lys72, Lys107, Met99, Ser31, Ser98, Thr102, Thr112, Tyr67,
Tyr100, and Asp118.

Due to their favorable interactions inside the active site of IL23R,
ligands L1 and L2 are more effective than other ligands. The L1 has a

H-bond with the amino acid residue Glu111, which has a length of
2.60 Å. Furthermore, three hydrophobic interactions within IL23R
have been observed, with bond lengths of 4.76 Å for Tyr100, 5.05 Å
for Ile28, and 5.21 Å for His108. Additionally, ligand L1
demonstrates seven van der Waals interactions involving residues
Gln110, Thr102, Ser98, Gly116, Cys115, Leu113, and Thr112.
Figure 4 shows detailed 3D and 2D binding interactions of
ligand L1 within IL23R’s active pocket.

L2 gained the second-highest score among all ligands due to its
robust binding interactions with the active site of the IL23R protein.
Ligand L2 forms a total of six hydrogen bonds. These include four
H-bonds with the amino acid residues Glu111, Leu113, Gly24, and
Asn27, with bond lengths of 2.72, 1.95, 2.31, and 2.45, respectively,
and a C-bond with a bond length of 2.83 for Thr112 and a Pi-donor
H-bond with a bond length of 3.06 for Asn29. In addition, there are
two hydrophobic interactions, with bond lengths of 4.88 Å for
Ile28 and 3.90 Å for His108. Also, it forms van der Waals
interactions with Tyr67, Thr102, Tyr100, Gln110, His108, Ile25,
and Ser31. Figure 5 illustrates the 3D and 2D binding interactions of
ligand L2 inside IL23R’s active pocket.

3.3 MD simulation

The combined use of MD simulation and docking methods
enhanced the confirmation of the obtained results. This enabled us
to examine the changes in the structure of the ligand-receptor
complex during the duration of the simulation. Simulations
provide a thorough examination of the exact motion of each

FIGURE 4
The 3D and 2D bindings mode of L1 into the active site of IL23R.
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atom over time, allowing us to examine changes and fluctuations in
protein patterns. The MD simulation was performed on the best
scoring complex of L1 for 100 ns. The dynamic stability of the
complexes was assessed by measuring the RMSD of the complex
backbone atoms during the whole trajectory to confirm their
stability. As illustrated in Figure 6, the plot utilizes the left Y-axis
to represent the RMSD of the protein and the right Y-axis to display
the ligand RMSD profile that is aligned with the protein backbone.

The frames obtained from the 100 ns trajectory were aligned
with the reference frame backbone. The plot shows how much the
protein-ligand complex has evolved throughout the simulation in a
structural manner. The highest RMSD for the IL23R protein in this
simulation is around 7.46 Å at 64.60 ns on frame 6726, whereas the
highest ligand RMSD was observed around 21.1 Å at 45.36 ns on
frame 4725. The convergence of RMSD values demonstrated that L1
and IL23R maintained their contact throughout the simulation. The

FIGURE 5
The 3D and 2D bindings mode of L2 into the active site of IL23R.

FIGURE 6
RMSD values for the L1-6wdq complex throughout the simulation.
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root mean square fluctuation (RMSF) is a measure of the average
deviation of each atom’s position from its mean position in a given
simulation or set of structures. The binding site of the IL23R
complexes showed stable RMSF values. There were no significant
fluctuations observed in the region where the ligand binds to the
protein. The interaction between compound L1 and the binding site
residues of IL23R is shown in more detail in Figure 7. The residues
that interact with L1 include Gly24, lle25, Thr26, Asn27, lle28,
Asn29, The67, Asn69, Gly70, lle71, His96, Ser98, Met99, Tyr100,

Thr102, His108, Phe109, Gln110, Glu111, Leu113, Gly116, Lys117,
and Asp118, which are shown in green. The RMSF values for the
residues in the binding site were found to be around 4 Å.

Ligand-protein interactions, including hydrogen bonds,
hydrophobic, ionic, and water bridges, can be monitored
throughout the simulation. As depicted in Figure 8, Gly24, Ser98,
and Tyr100 had the most interactions with the ligand during the
simulation duration. Moreover, over at least 40% of the simulation
period, Ser98 and Tyr100 demonstrated a variety of interactions,

FIGURE 7
RMSF plot for Cα of Il23R residues in compound L1-IL23R complex.

FIGURE 8
Protein–ligand contacts during simulation time.

Frontiers in Drug Discovery frontiersin.org10

Gheidari et al. 10.3389/fddsv.2025.1525533

https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2025.1525533


encompassing hydrophobic water-bridged and hydrogen-bond
interactions with the ligand. Consequently, this residue
experienced numerous interactions throughout the entire
simulation time.

As shown in Figure 9, various properties of L1 are examined
over a 100-ns MD simulation. Fluctuations in RMSD indicate
structural changes in the ligand over time. Low RMSD values
suggest structural stability, while significant fluctuations may
indicate instability and conformational changes. The radius of
gyration (Rg) graph measures the “extent” of the ligand,
reflecting its spatial distribution. Variations in this metric can
provide insights into the ligand’s compactness or expansion;
higher rGyr values suggest a more extended structure, whereas
lower values indicate a more compact conformation. The
intramolecular hydrogen bond (intra-HB) graph displays the
number of internal hydrogen bonds within the ligand.
Fluctuations in this graph can signify changes in structural
stability and internal interactions, with an increase in the number
of hydrogen bonds typically contributing to greater structural
stability. The molecular surface area (MolSA) graph calculates the
MolSA of the ligand using a 1.4 Å probe radius. This measurement

helps assess the ligand’s surface area available for interactions with
other molecules, and variations in this graph may indicate changes
in the ligand’s accessibility to its environment. The accessible surface
area (SASA) graph represents the surface area of the ligand that is
accessible to solvent molecules, providing insights into the ligand’s
exposure in a solvent environment. Fluctuations in this graph may
reflect changes in the ligand’s interactions with the solvent. Finally,
the polar surface area (PSA), graph indicates the surface area
contributed solely by oxygen and nitrogen atoms within the
ligand, helping to assess the ligand’s polarity. Variations in this
graph may suggest changes in the ligand’s polar characteristics and
their implications for biological interactions.

3.4 Drug likeness and ADMET properties

The Physicochemical, pharmacokinetic, and medicinal
chemistry features mentioned for our top 19 natural product
candidates are shown in Table 5. None of the candidates violate
Lipinski’s rule because their results are in the favorable range. The
pharmacokinetic parameters revealed that except for ligand L2, the

FIGURE 9
Ligand properties demonstrated by RMSD, rGyr, intraHB, MolSA SASA, PSA.
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TABLE 5 Physicochemical, pharmacokinetics, and medicinal chemistry properties of the ligands L1-L19.

MW
(g/mol)

HBA HBD TPSA (Å2) LogP MR GI absorption P-gp
substrate

Lipinski Bioavailability
score

PAINS
(alert)

Synthetic accessibility
score

L1 396.44 5 3 99.100 1.380 109.290 High Yes Yes 0.550 0 4.080

L2 491.54 5 5 143.630 2.100 141.680 Low Yes Yes 0.560 0 4.460

L3 477.57 5 3 78.400 2.330 140.790 High Yes Yes 0.550 0 4.320

L4 469.50 8 1 81.160 2.190 127.110 High Yes Yes 0.550 0 3.570

L5 458.96 5 3 73.470 2.790 129.040 High Yes Yes 0.550 0 4.000

L6 475.58 4 2 84.990 2.000 146.120 High Yes Yes 0.550 0 4.380

L7 467.49 6 1 92.310 3.140 128.070 High No Yes 0.550 0 3.460

L8 324.33 3 2 85.510 0.980 99.300 High Yes Yes 0.550 0 2.980

L9 459.49 5 2 102.420 3.310 129.850 High Yes Yes 0.550 0 3.030

L10 484.55 4 0 81.240 1.960 146.790 High Yes Yes 0.550 0 5.150

L11 469.49 5 1 92.310 3.130 133.890 High Yes Yes 0.550 0 3.500

L12 405.45 4 1 83.080 2.860 117.370 High No Yes 0.550 0 3.150

L13 471.59 4 2 69.610 2.380 148.250 High Yes Yes 0.550 0 4.480

L14 403.35 6 1 69.720 2.830 104.690 High Yes Yes 0.550 0 3.260

L15 427.50 4 0 63.370 2.400 132.860 High Yes Yes 0.550 0 3.690

L16 415.40 5 0 84.690 2.540 114.570 High Yes Yes 0.550 0 3.270

L17 289.37 0 0 12.690 0.980 93.320 High Yes Yes 0.550 1 2.180

L18 407.44 4 1 73.850 3.220 115.080 High No Yes 0.550 0 3.110

L19 401.42 4 0 75.460 2.920 115.000 High No Yes 0.550 0 3.050

P-gp: p-Glycoprotein.
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TABLE 6 ADMET profile of the ligands L1-L19.

Absorption and distribution

Mode Caco-2 permeability PGP-inhibitor p-Glycoprotein substrate (PGP-substrate) HIA PPB VD BBB

L1 −5.487 −0.353 +++0.990 0.349 86.524% 0.741 −0.301

L2 −5.935 −0.002 +++0.990 0.013 82.656% 0.213 −0.220

L3 −5.560 −0.118 +++0.995 0.241 86.206% 2.797 +++0.970

L4 −5.638 −0.001 +0.686 0.413 46.379% 1.567 −0.103

L5 −5.352 ++0.716 +++0.979 0.014 90.250% 3.173 ++0.774

L6 −5.501 −-0.030 +++0.991 0.887 82.741% 0.909 ++0.769

L7 −4.817 −0.116 +++0.993 0.018 94.711% 0.455 −0.238

L8 −5.186 −-0.000 +0.565 0.378 61.748% 1.008 +++0.935

L9 −5.077 +++0.994 +++0.965 0.007 95.714% 0.772 −0.159

L10 −5.583 −-0.002 +++0.967 0.546 67.473% 0.305 +0.543

L11 −4.895 −-0.057 ++0.751 0.003 97.936% 0.362 −0.289

L12 −4.871 −-0.100 ++0.887 0.005 96.843% 0.376 −0.153

L13 −5.483 −-0.026 +++0.995 0.750 88.527% 1.940 +++0.982

L14 −4.692 −0.433 −-0.003 0.003 83.957% 1.134 −0.225

L15 −5.375 +++0.999 +++0.992 0.409 89.624% 1.738 +++0.952

L16 −4.836 −0.112 +++0.960 0.003 93.989% 0.378 +++0.955

L17 −5.209 −-0.003 +++1.000 0.972 80.014% 0.673 +++0.994

L18 −4.883 +++0.974 +++0.960 0.005 95.587% 0.576 +0.601

L19 −4.840 −0.104 +++0.991 0.010 88.819% 0.438 +++0.943

Metabolism Elimination

Mode P450
CYP1A2
inhibitor

P450
CYP1A2
Substrate

P450
CYP3A4
inhibitor

P450
CYP3A4
Substrate

P450
CYP2C9
inhibitor

P450
CYP2C9
Substrate

P450
CYP2C19
inhibitor

P450
CYP2C19
Substrate

P450
CYP2D6
inhibitor

P450
CYP2D6
Substrate

T1/2 CL

L1 −0.113 −-0.046 −-0.054 −0.339 −0.421 +0.628 −0.192 +0.624 −-0.035 −0.301 0.495 5.638

L2 −-0.041 −-0.061 −0.159 −-0.066 ++0.703 ++0.899 −0.186 −-0.057 −0.277 −0.202 0.883 1.199

L3 −-0.072 −-0.091 +0.627 −0.154 −0.112 −-0.063 +0.554 +0.563 +++0.941 ++0.898 0.484 8.868

(Continued on following page)
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TABLE 6 (Continued) ADMET profile of the ligands L1-L19.

Metabolism Elimination

Mode P450
CYP1A2
inhibitor

P450
CYP1A2
Substrate

P450
CYP3A4
inhibitor

P450
CYP3A4
Substrate

P450
CYP2C9
inhibitor

P450
CYP2C9
Substrate

P450
CYP2C19
inhibitor

P450
CYP2C19
Substrate

P450
CYP2D6
inhibitor

P450
CYP2D6
Substrate

T1/2 CL

L4 −-0.021 −-0.073 −-0.007 −0.123 −-0.030 −0.237 −-0.040 −0.285 −0.170 +0.527 0.336 2.388

L5 −-0.063 −-0.067 ++0.714 −0.149 −0.109 −-0.060 +0.665 −0.265 +++0.959 ++0.889 0.542 8.779

L6 −-0.047 −-0.085 +0.624 −0.363 +0.656 −-0.093 −0.308 +0.564 −0.111 ++0.773 0.490 4.944

L7 −0.294 +++0.936 +++0.961 ++0.896 +++0.956 ++0.731 +++0.909 +0.684 ++0.869 ++0.866 0.564 3.796

L8 +++0.964 +++0.955 ++0.734 +0.582 +0.502 ++0.878 +0.682 ++0.821 +0.587 −0.276 0.358 4.560

L9 −0.278 ++0.870 +++0.931 −0.495 +++0.915 +0.563 +0.671 −0.231 −0.287 ++0.725 0.511 6.964

L10 −-0.020 −-0.077 +++0.931 ++0.852 ++0.889 −0.484 −0.458 +0.546 −-0.058 −0.223 0.143 1.917

L11 +0.684 −0.271 +++0.977 −0.461 +++0.938 −0.404 +++0.919 −0.176 +++0.982 ++0.855 0.477 3.441

L12 −0.315 +0.622 ++0.721 ++0.857 +++0.911 +0.551 ++0.818 −0.291 −0.419 +0.506 0.521 4.876

L13 −0.107 −0.193 ++0.888 +0.554 −-0.056 −0.227 +0.534 ++0.863 +++0.947 ++0.895 0.222 8.294

L14 −0.117 +0.578 +0.645 −0.287 ++0.830 +++0.942 ++0.826 +0.556 +0.597 +0.548 0.181 1.444

L15 −0.301 +0.614 ++0.780 ++0.891 ++0.803 +0.647 +0.596 ++0.896 −0.296 ++0.862 0.053 5.703

L16 ++0.796 ++0.832 +++0.925 +++0.927 ++0.834 −0.188 +0.508 −0.254 +++0.920 −0.251 0.749 1.907

L17 −0.459 +++0.956 −-0.006 −0.307 −-0.002 −-0.034 −-0.024 +++0.916 +++0.983 +0.664 0.690 5.547

L18 ++0.710 ++0.822 +++0.901 +0.660 +++0.952 −-0.087 ++0.900 −0.288 +++0.948 +0.589 0.364 4.496

L19 −0.466 +++0.962 −0.285 +++0.930 ++0.761 −0.222 −0.426 +0.579 −-0.016 −0.216 0.674 2.500

Toxicity

Mode AMES toxicity Carcinogenicity Eye corrosion Eye irritation hERG H-HT LD50 Respiratory toxicity

L1 −0.154 −0.114 −-0.003 −-0.012 −0.397 −0.251 2.667 −-0.027

L2 −-0.012 −0.210 −-0.003 −-0.008 −-0.016 −0.320 2.916 −-0.098

L3 ++0.871 −0.473 −-0.003 −-0.006 +0.679 +++0.989 2.726 ++0.854

L4 −-0.004 −0.237 −-0.003 −-0.025 −0.405 ++0.878 3.188 ++0.721

L5 −0.243 −-0.089 −-0.003 −-0.006 ++0.810 +++0.985 2.538 +++0.907

L6 +0.582 ++0.726 −-0.003 −-0.007 −0.474 +++0.979 2.751 ++0.897

(Continued on following page)
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TABLE 6 (Continued) ADMET profile of the ligands L1-L19.

Toxicity

Mode AMES toxicity Carcinogenicity Eye corrosion Eye irritation hERG H-HT LD50 Respiratory toxicity

L7 −0.183 −0.426 −-0.003 −-0.019 +0.656 −0.295 2.578 −-0.073

L8 −-0.047 −-0.030 −-0.003 −-0.011 −-0.015 +0.623 2.616 −0.287

L9 −0.343 −-0.082 −-0.003 −-0.009 ++0.784 ++0.709 2.732 −-0.031

L10 −-0.012 −0.154 −-0.003 −-0.015 −0.136 +++0.98 3.307 −0.325

L11 +0.540 +++0.934 −-0.003 −-0.058 −0.459 −0.196 2.840 −-0.038

L12 −0.477 ++0.886 −-0.003 −0.113 +0.697 −0.271 2.651 −-0.057

L13 +0.590 ++0.733 −-0.003 −-0.006 ++0.714 +++0.990 2.926 ++0.863

L14 −-0.060 −0.112 −-0.003 −-0.009 −-0.017 +++0.984 2.651 −0.480

L15 −0.312 −0.469 −-0.003 −-0.009 +++0.950 +++0.970 2.703 −0.338

L16 ++0.882 +++0.947 −-0.003 −0.145 −0.105 −0.215 2.756 −0.110

L17 +++0.923 +++0.901 −-0.006 +++0.991 −-0.007 −-0.034 2.548 −0.194

L18 −0.360 ++0.860 −-0.003 −-0.035 +0.565 −0.251 2.607 −-0.062

L19 +++0.905 +++0.924 −-0.003 −0.148 −0.233 −0.321 2.830 −0.118
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rest are highly absorbed after oral administration through the GI
tract. This may be attributed to its higher MW (491.54 g/mol),
elevated TPSA of 143.630 Å2, LogP of 2.100, and the presence of five
HBD and HBA, all of which hinder its ability to permeate biological
membranes and interact effectively within the GI tract. The
structural alarms and pan-assay interference (PAINS) have been
utilized in medicinal chemistry to forecast the presence of unstable,
reactive, and toxic fragments in a compound’s structure (Brenk et al.,
2008; Baell and Holloway, 2010). Except for ligand L17, which has a
het_pyridiniums_A alarm, other ligands in PAINS descriptors have
zero alarms. The synthetic accessibility score (SA score) is a metric
used to evaluate the ease of synthesizing drug-like molecules. It was
observed that all the ligands possess a favorable SA score, indicating
that they can be readily synthesized. The use of CaCo-2 cells, which
are generated from human colon epithelial cells, is a widely accepted
approach for studying the intestinal absorption of medicines in
people. The CaCo-2 cell permeability findings for all ligands L1–L19
were observed to be within a satisfactory range, indicating that these
ligands exhibit favorable intestinal membrane permeability. The
study revealed that ligands L2, L4, L8, L10, L11, L12, L16, L17, and
L19 have inhibitory effects on Plasma glycoprotein (PGP).
Conversely, ligands L5, L9, L14, L15, and L18 do not
demonstrate inhibitory activity against PGP. Additionally, ligands
L2, L12, and L14 have been identified as P-glycoprotein (PGP)
substrates, but the other ligands do not exhibit PGP substrate
activity. The computed values for HIA indicate that all
substances possess a high likelihood of being effectively absorbed
through the intestinal membrane. The assessment of PPB has
significance in the evaluation of medication safety. Drugs
exhibiting a high PPB value (>90%) are associated with a narrow
therapeutic index, whereas those with a low PPB value are
considered to be comparatively safer. In the current investigation,
it was shown that ligands L1, L2, L3, L4, L6, L8, L10, L13, L14, L16,
L17, and L19 exhibited low PPB values. This finding suggests that
these particular ligands have a wide therapeutic index, indicating a
favorable safety profile. Conversely, the other ligands did not
demonstrate similar safety characteristics. The volume of
distribution (VD) at steady state, denoting the apparent VD
subsequent to the medication achieving uniform dispersion
across all tissues after a sufficient amount of time. A VD value
greater than 0.5 signifies that the medication exhibits efficient
distribution within the plasma, whereas a VD value lower
than −0.5 suggests the drug’s limited capability to traverse the
cell membrane (Kufareva and Abagyan, 2012). The anticipated
VD value for all ligands L1–L19 suggests that the medicine
exhibits satisfactory dispersion throughout the plasma.
Compounds that have CBrain/CBlood values greater than 1 are
categorized as possessing central nervous system (CNS) activity,
whereas compounds with CBrain/CBlood values below 1 are
characterized as lacking CNS activity. Compounds that exhibit
action in the central nervous system (CNS) are capable of
traversing the Blood-Brain Barrier (BBB) and inducing adverse
effects on the central nervous system (Ajay et al., 1999).
According to the data presented in Table 6, all of the ligands
L1–L19 have CBrain/CBlood values below 1, indicating that they
are not capable of crossing the BBB. Cytochrome P450 (CYP)
enzymes play a crucial role in the metabolism of various
compounds, including drugs, environmental chemicals, and

endogenous substances. These enzymes are responsible for the
oxidative metabolism of a wide range of substrates, influencing
drug efficacy and toxicity. Understanding the substrate specificity
and activity of different CYP enzymes is essential for predicting drug
interactions, optimizing therapeutic regimens, and minimizing
adverse effects. For CYP1A2, ligands such as L7, L8, L17, and
L19 exhibit strong substrate activity, indicating that they are
likely to be efficiently metabolized by this enzyme. In contrast,
L1 and L2 show minimal interaction, suggesting a lower likelihood
of influencing the metabolism of other drugs processed by CYP1A2.
In the case of CYP3A4, L16 and L19 are notable substrates,
indicating efficient metabolism, while L2 demonstrates weak
substrate activity, suggesting limited metabolism by CYP3A4. For
CYP2C9, L14 shows strong substrate activity, whereas L17 exhibits
minimal interaction. Regarding CYP2C19, L17 demonstrates strong
substrate activity, indicating efficient metabolism, while L2 shows
weak interactions, suggesting limited metabolism by CYP2C19.
Lastly, for CYP2D6, L3 is a strong substrate, indicating efficient
metabolism. Half-life (T1/2) is defined as the time required for the
concentration of a drug in the bloodstream to decrease by half. This
parameter is crucial for determining the duration of action of a drug
and its elimination kinetics. Ligands such as L14, L15 exhibit short
half-lives. These ligands are eliminated relatively quickly from the
body, which may necessitate more frequent dosing to maintain
therapeutic levels. L2 and L16 have the longest half-lives among the
ligands studied. Such ligands may remain in the system longer,
potentially leading to prolonged therapeutic effects. However, they
may also accumulate in the body if dosed too frequently, increasing
the risk of side effects. Clearance rate (CL) refers to the volume of
plasma fromwhich a substance is completely removed per unit time.
It is a crucial parameter that helps determine the dosing regimen of a
drug. Ligands such as L1, L3, L5, L9, L13, L15, and L17 have
moderate clearance rates. This suggests that they can be eliminated
at a reasonable pace, allowing for effective therapeutic management
without frequent dosing. Ligands with lower clearance rates, such as
L2 and L14, indicate that these substances remain in the body
longer, which may necessitate careful monitoring to avoid toxicity,
particularly in patients with compromised liver or kidney function.
Toxicology research plays a crucial role in the field of drug design as
it facilitates the identification and assessment of the deleterious
effects of newly developed substances on living creatures. The
assessment of toxicity indices for ligands L1–L19 indicated that,
with the exception of ligands L11, L12, L16, L17, L18, and L19, the
remaining ligands were judged to possess non-carcinogenic
properties. Furthermore, the AMES toxicity evaluation indicated
that the ligands L3, L11, L12, L16, L17, and L19 show no
discernible toxicity.

4 Conclusion

This research investigates the targeting of the IL-23 protein,
recognized as a significant pro-inflammatory cytokine involved in
the pathogenesis of chronic inflammatory diseases related to
psoriasis. Utilizing virtual screening and molecular docking
techniques, a total of nineteen lead natural products were
identified. The docking analysis demonstrated that these ligands
possess high binding affinities for the IL-23 protein, with L1
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exhibiting the highest binding affinity, as indicated by a docking
score of −7.143. L1 establishes a hydrogen bond with Glu111,
participates in seven van der Waals interactions, and forms three
hydrophobic interactions with the IL-23 protein. The RMSD
analysis confirmed that L1 consistently maintained stable
interactions with critical residues of IL-23, suggesting that the
L1-IL-23 complex remained thermodynamically stable
throughout the 100 ns simulation trajectory. DFT analysis
employing the B3LYP/6-31++G (d,p) basis set revealed a
favorable reactivity profile for the ligands. Additionally, the
analysis of ADMET properties indicated that the newly identified
inhibitors possess favorable pharmacological characteristics and
comply with Lipinski’s rule. The physiological assessment
revealed that, with the exception of L1, the other ligands
demonstrate high gastrointestinal absorption. To validate the
anti-IL-23 potential of these identified ligands and to address the
limitations inherent in silico analyses, further laboratory and clinical
investigations are necessary. Such studies will enhance the
understanding of the safety and efficacy of the identified ligands
in the treatment of psoriasis. This study provides significant insights
into the binding mechanisms of the IL-23 enzyme in psoriasis,
indicating that future research on the efficacy of these lead
compounds in animal models of psoriasis may facilitate clinical
trials and the development of innovative therapeutic strategies for
this challenging condition.
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