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Introduction: No novel therapeutic targets for post-traumatic stress disorder
(PTSD) have been successfully advanced in over two decades, despite substantial
unmet clinical need. High-throughput genomic and transcriptomic studies have
generated large pools of candidate targets, yet many lack mechanistic relevance,
clinical applicability, or druggability. We developed a systematic, biologically
rationalized prioritization framework to identify high-confidence CNS-relevant
PTSD targets.

Methods: A three-phase quantitative prioritization strategy was applied to 2,467
initial candidate targets derived from PTSD transcriptomic datasets. Phase 1
identified targets expressed in CNS tissues that replicated in independent
cohorts, showed consistent differential expression in PTSD CNS tissues, and
had concordant direction of effect. Phase 2 advanced targets with moderate or
strong CNS disease associations using DisGeNET scores. Phase 3 ranked targets
using a composite pathogenicity score incorporating drug trial data, predicted
loss-of-function intolerance, and protein-protein interaction network
connectivity.

Results: Phase 1 reduced 2,467 candidates to 177 targets enriched for PTSD-
relevant traits such as irritability, emotional symptoms, and insomnia. Phase 2
refinement yielded 55 targets with strong CNS phenotypic associations. Phase 3
prioritization identified 20 top-ranked targets with robust PTSD brain association
and high CNS pathogenicity, implicating neurotransmitter systems, neurite
structural regulation, and protein homeostasis.

Discussion: This three-phase prioritization framework enables efficient de-
risking of PTSD target discovery, focusing resources on the most promising
and biologically relevant candidates. The approach is adaptable to other poorly
understood CNS disorders and may help overcome decades-long stagnation in
PTSD therapeutic innovation.
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Introduction

Post-Traumatic Stress Disorder (PTSD) is the fourth most common psychiatric
condition in the United States, affecting both military and civilian populations, and
contributes to a substantial public health burden. PTSD is currently diagnosed based on
complex clinical symptoms, including re-experiencing, avoidance, negative cognitions
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and mood, and arousal [Diagnostic and Statistical Manual of
Mental Disorders, Fifth Edition, Text Revision (DSM-5-TR)]
(American Psychiatric Association, 2022). Available therapies
exist, but are limited to broadly treating PTSD, including only
two FDA approved selective serotonin reuptake inhibitors (SSRIs)
(FDA, 2001; American Psychological Association, 2025; Henney,
2000), which have limited efficacy, undesirable side effects, and
target only the symptoms of PTSD, but not cellular pathology,
largely because of the sparsity of specific pathways and
mechanisms underlying the disorder. As a result, no additional
approvals have been issued for PTSD in over 20 years including a
recent FDA complete response letter for MDMA-assisted therapy
(Grossie, 2024; Lykos Therapeutics, 2024). The PTSD drug
development deadlock is driven by multiple contributing factors
including blinding, the lack of understanding of the biological
underpinnings of PTSD, the generally poor predictive value of
preclinical models (Khodosevich et al., 2024; Steckler et al., 2015)
and specifically preclinical in vivo PTSD models such as Single
Prolonged Stress (SPS) (Ferland-Beckham et al., 2021), a lack of
disease relevant and predictive therapeutic biomarkers, and the
challenges of identifying potent molecules within the stringent
range of molecular properties necessary for blood-brain barrier
(BBB) penetration (Jeromin et al., 2020; Wu et al., 2023). Thus,
there is a striking need for rational drug development to identify
and advance novel PTSD therapeutic targets.

Based on the premise that the expression of PTSD relies on a
complex interaction between severity of exposure to traumatic stress
and underlying biological and genetic susceptibility, Cohen Veterans
Bioscience (CVB), a nonprofit biomedical research organization,
invested in research to improve the probability of drug discovery
and biomarker success. Initial investments focused on evaluating
genetic susceptibility for PTSD through the establishment of a PTSD
Consortium to lead the first analysis of global genome wide
association studies (GWAS) (Nievergelt et al., 2019; Gelernter
et al., 2019; Stein et al., 2021; Nievergelt et al., 2023; Nievergelt
et al., 2024). This program established that PTSD susceptibility is
heritable and highly polygenic (Nievergelt et al., 2023; Nievergelt
et al., 2024), which reinforces that PTSD has a biological
underpinning. However, there are significant challenges in
mapping single nucleotide polymorphisms (SNPs) identified in
GWAS to definitive, select genes (Li and Ritchie, 2021; Gazal
et al., 2022; McManus et al., 2023), which limits the
identification of causal pathways and therapeutic targets. To
understand how diverse genetic perturbations converge onto
functional pathways, CVB funded a project that resulted in the
development of a protein-protein interaction (PPI) network
encoded by genes strongly associated with PTSD based on SNPs
identified by the PTSD Psychiatric Genomics Consortium, an
approach that has advanced biological underpinnings of autsim
spectrum disorder (Pintacuda et al., 2023).

Alternative approaches for target identification include
conducting bulk (tissue) or cell-type specific (single cell, sc) RNA
sequencing (RNAseq) studies, which have been applied both broadly
to developmental disorders (Duan W et al., 2020) and specifically to
PTSD (Girgenti et al., 2021; Seah et al., 2022; Wang et al., 2023;
Chatzinkakos et al., 2023). Unsurprisingly, a number of brain
regions are implicated in PTSD including the prefrontal cortex
(PFC) and the amygdala. Accordingly, studies focused on human

RNAseq (aka transcriptomics) have been conducted on specific
regions derived from postmortem CNS tissue (e.g., PFC
subdomains) and from human iPSC-derived excitatory neurons
(iPSC-NeuExc) (Girgenti et al., 2021; Seah et al., 2022; Wang
et al., 2023; Chatzinkakos et al., 2023). Importantly, these studies
have provided lists containing transcripts that may play a role in
PTSD. The utility of RNAseq has been demonstrated for recent drug
discovery efforts, yielding actionable targets, in particular in the
context of oncology drug development (Yang et al., 2020; Rydzewski
et al., 2021; Bell, 2023). With the ultimate goal of facilitating novel
therapeutic discovery efforts to ameliorate PTSD, we set out to
identify and prioritize PTSD-relevant targets that would further our
understanding of neuronal phenotypes underpinning PTSD.
Knowing that we could not confidently associate GWAS-
identified SNPs with definitive causal genes, we took advantage
of the publicly available transcript-based data supplemented with
published GWAS (Girgenti et al., 2021; Seah et al., 2022; Wang et al.,
2023; Chatzinkakos et al., 2023) to identify target genes with
increased confidence.

Notably, transcriptomic studies typically identify large numbers
of transcripts that are either up-regulated or down-regulated. Thus,
identifying and prioritizing transcripts using large transcriptomic
data sets is a challenge due to the number of possible targets and
their specific relevance to underlying cellular pathology. Therefore,
we developed a novel 3-phase quantitative prioritization strategy to
identify and rank PTSD-associated transcripts derived from publicly
available sources (Girgenti et al., 2021; Seah et al., 2022; Wang et al.,
2023; Chatzinkakos et al., 2023) and using the principle of
consilience we ultimately prioritized and selected 20 ‘index’
transcripts and their related proteins to further interrogate and
generate PTSD PPI networks. Our central hypothesis was this three-
phased approach would advance PTSD disease understanding and
therapeutic development by contributing to knowledge of PTSD
neuronal phenotypes and disease signatures. Because it is unlikely
that any one target will meaningfully treat all clinical phenotypes of
such a heterogenous disorder as PTSD, our proposed method has
the goal of identifying and prioritizing multiple putative PTSD
targets. This could inspire a new investment in untangling
cellular disease that underpins the clinical phenotypes. Ideally
PPI networks, derived from our selected index proteins, would be
functionally validated using a series of experimental assays, as part of
future research efforts. Finally, we believe our approach, which we
applied to PTSD as a practical example, will be applicable to other
complex disorders to aid in target identification.

Methods

The following describes a novel, rationalized, and systematic
three-phased bioinformatics prioritization strategy to (i) Nominate
independently replicated PTSD-associated targets, (ii) Determine
their observed differential expression in PTSD brain tissues, and (iii)
Characterize evidence to support CNS-relevant pathogenicity
(Figure 1) for eventual advancement to functional assays using
induced excitatory neurons (iNeuExc) (Mertens et al., 2015;
Nehme et al., 2018), which capture cellular disease phenotypes
and are distinct from iPSC-NeuExc, which eliminate phenotypes
due to reprogramming to a ground state (Takahashi et al., 2007).
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We utilized a number of publicly available tools to facilitate our
efforts: STRING (Szklarczyk, 2019; Szklarczyk, 2023) is a free PPI
database that captures physical and functional interactions, parsed
on species (e.g., human), which can be viewed in STRING, but can
also be imported, visualized, and further analyzed via a plugin
module with Cytoscape (Cline et al., 2007; Doncheva et al., 2019;
Singhal et al., 2020). As protein-protein associations may not
necessarily indicated physical interactions, we took an additional
(first neighbors) step in Cytoscape to build on our core proteins and
develop a PTSD protein interaction network emphasizing likely
physical interactions. The three phases are:

Phase 1

All data and calculations related to Phase 1 are provided in
Supplementary Table S1. Candidate PTSD-associated
transcriptomic targets and their direction of regulated expression
were extracted from 10 studies, encompassing 29 analyses. Across
each study, potential targets were annotated as to whether the
published findings represented (i) Direct observation of
differential transcript expression in brain tissues or in iPSC-
NeuExc from PTSD cases versus controls (Girgenti et al., 2021;
Logue et al., 2021; Seah et al., 2022; Wang et al., 2023;
Chatzinkakos et al., 2023), (ii) Imputation of differential
transcript or protein expression from brain tissues in PTSD cases
versus controls (Girgenti et al., 2021; Jaffe et al., 2022; Wingo et al.,
2022; Zhang et al., 2022) and (iii) Inference of PTSD-associated
genes through GWAS (Nievergelt et al., 2019; Gelernter et al., 2019;
Stein et al., 2021; Maihofer et al., 2022; Nievergelt et al., 2023).
Literature was selected based on the following criteria: for study
inclusion both a PTSD and a control cohort were required; No
published studies during time of analysis were excluded. Details of
analyses that were interrogated relevant to Phase 1 are provided
(Supplementary Table S1). For clarity, imputation and related
analyses were conducted and described in the cited studies. We
utilized the collective information gained from these studies
to generate an initial list of targets. Four criteria, listed
below, reduced presumptive targets (2,467) to generate an
actionable list.

1. Directly observed to be differentially expressed in PTSD brain
tissues or iPSC-NeuExc: n = 4 cortical tissues, n = 1 subcortical

tissue (amygdala), and n = 1 cell type (excitatory neuron) are
represented.

2. Observed in independent cohorts: n = 6 fully independent
cohorts represented in the data set.

3. Exhibited consistent (>50%) direction of difference relative to
controls across all analysis in which it was identified.

4. At least one of the following:
• One or more additional observations of differential
expression in PTSD brain tissues or neurons.

• Supported by imputation of differential expression in brain
tissues from PTSDGWAS data (for review of these methods,
see Li and Ritchie, 2021).

• Implicated by a genome-wide significant SNP from a
publicly available PTSD GWAS.

Ultimately, the utility of Phase 1 was to generate an actionable
list of targets (n = 177), defined as an economically viable set of
transcripts/proteins, to be experimentally evaluated by most
academic or industry labs while still revealing molecular
signatures that provide insight to underlying pathogenic
mechanisms.

Phase 2

All data and calculations related to Phase 2 are provided in
Supplementary Table S2. DisGeNET (www.disgenet.org) gene
disease association (GDA) scores were obtained from
DisGeNET (see DisGeNET Supplement) and used to
establish orthogonal evidence for target relevance in a CNS
disease context. DisGeNET GDA scores (Supplementary Table
S2) reflect the strength of evidence for a gene-disease linkage
across multiple databases, have previously been used
successfully in CNS target prioritization, and include
bioinformatic/computational efforts in support of
neurodegeneration and Parkinson’s Disease (Deng et al.,
2023; Birkenbihl et al., 2023). DisGeNET has also validated
prediction efforts using either in vitro or in vivo models of
Alzheimer’s Disease (Tun et al., 2023) and ADHD (Li et al.,
2023). In a drug development context, a retrospective analysis
found that strong DisGeNET GDA scores outclassed all other
parameters in increasing chances of success from phase 1 to
launch (Mungall et al., 2016). Thus, for our approach, targets

FIGURE 1
Overview of PTSD Brain Target Prioritization Strategy. Transcriptomic and genomic datasets were assessed to identify targets in brain tissues/iPSC-
NeuExc that are confidently associated with PTSD (Phase 1, yielding n = 177 targets) and associated with other CNS phenotypes using DisGeNET (Phase 2,
yielding n = 55 targets), and are likely to be pathogenic based on a three-component pathogenicity score (Phase 3) ultimately leading to a prioritized and
top-ranked PTSD target cohort (n = 20 targets).
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with GDA scores <0.3 were deprioritized, which left 55 targets
to be advanced to Phase 3 (Figure 1).

Phase 3

Targets (n = 55) advanced to Phase 3 were associated to PTSD
through altered brain tissue or neuron expression (Phase 1) and have
linkages to CNS-relevant phenotypes (Phase 2). The goal of Phase 3 was
to prioritize targets allowing for efficient use of resources during future
validation experiments. Therefore, we integrated additional metrics that
estimated a target’s pathogenicity and generated a composite
pathogenicity score, which was ultimately combined with the Phase
2 GDA score and yielded 20 top tier PTSD targets. All Phase 3 data and
calculations are provided in Supplementary Table S3. To benchmark
effects of Phase 1 on the candidate target pool, enrichment analysis using
theMonarch human phenotype-genotype database (Scannell et al., 2018)
was performed with the target pool before (n = 2,467) and after (n = 177)
Phase 1-selection, using the whole genome for statistical background
(analysis tool is available through www.string-db.org).

Results

PTSD target identification

The goal of phase 1 was to identify and advance targets with strong
supporting evidence of association with PTSD via altered expression
in brain tissues (Figure 1). We combed through 10 studies and
identified 2,467 potential targets. Of these, 177 targets met our
four criteria, listed above, and were advanced to Phase 2
(Supplementary Table S4; Figure 2). We conducted phenotype

enrichment to validate that our phase 1 approach appropriately
refined the target list in accordance with phenotypes that may be
associated with PTSD. While candidate targets prior to selection
showed some (minor) enrichment for relevant phenotypes such as
panic attack (Figure 2A), there was a notable emergence (5-fold
increase) of multiple psychiatric and CNS disease phenotypes that
resulted following Phase 1 selection (Figure 2B). All terms derived
from Phase I were significant at FDR <0.05. Note that “Strength” on
the x-axis represents Effect Size, which is defined in the legend of
Figure 2, and reflects enrichment of specific phenotypes. These results
indicate that advancing putative targets on the basis of a reproducible
RNAseq signal derived from PTSD tissues/iPSC-NeuExc enriched the
target pool with candidates implicated in neuronal/CNS phenotypes,
which we believe have relevance to PTSD. Subsequently, targets that
survived Phase 1 were advanced to a second enrichment step to
further validate/refine the target list.

The goal of phase 2 was to advance Phase 1-nominated PTSD-
associated targets that have orthogonal evidence of association to
CNS pathological (disease) phenotypes (Figure 1). CNS-relevant
GDA scores were defined by disease terms containing “Mental
Disorder”, “Nervous System Disease”, or “Behavioral Mechanism”

and were first annotated to their respective Phase 1 PTSD relevant
targets (Figure 3). Each target was categorized by its highest GDA
score as having “weak” (<0.3), “moderate” (0.3–0.39), or “strong”
(>0.4) effect size. Among the 177 Phase 1 targets, 135 (77.4%) had at
least one CNS-relevant GDA of any strength, with 55 (31.07%)
possessing at least one moderate or strong CNS-relevant GDA
(Figures 2, 3A). Moderate and strong gene-disease associations,
which included linkages to schizophrenia, autism, depression,
neurodegeneration (and more) were archived in a PTSD gene-
disease linkage map for future reference; this can be found in
Supplementary Table S2. The 55 targets that had at least one

FIGURE 2
Phase-1 Selected Targets were Enriched for CNS Phenotypes. Panels represent the top 25 terms resulting from Monarch human phenotype
enrichment analysis (via STRING) using all PTSD candidate targets (n = 2,467) identified in source publications (A) and phase 1-selected targets (n = 177,
(B). Targets selected in Phase 1, reflecting confidence of association to PTSD in brain tissues, were enriched 5-fold formultiple PTSD-relevant phenotypes
(from 2 to 10), including irritability, emotional symptommeasurement, insomnia, and brain disease (B). All analyses were conducted using the whole
genome as the background. “Strength” on the x-axis represents Effect Size, which equals log10 [(Observed number of proteins in the analyzed network
annotated to phenotype ‘X’:Total number of all proteins annotated to phenotype ‘X’) (Expected number of proteins annotated to Phenotype ‘X’ in a
random network of the same size)]. For perspective, an effect size of 0.3 would be equivalent to a 2-fold enrichment. Phase 1 selected targets (n = 177)
were advanced to Phase 2.
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moderate or strong CNS-relevant GDA were advanced (Figure 3B)
from Phase 2: For simplicity, GDA scores were assigned a “Phase
2 Score” of 3 (i.e., with strong GDA, n = 34) or “Phase 2 Score” of 2
(i.e., with moderate GDA, n = 21) (Table 1, Supplementary Table

S5). To validate that the Phase 2 selection procedure, based on
strength of DisGeNETGDA score, enriched the target list for disease
an enrichment analysis was performed using Monarch human
phenotype-gene associations (Mungall et al., 2016). Specifically,

FIGURE 3
Phase 2 Leverages DisGeNET GDA Scores to Identify PTSD Targets with CNS Phenotype Linkages. For each Phase 1-advanced target (n = 177),
DisGeNET gene-disease association (GDA) scores for CNS-relevant disorders were exported and filtered to retain only GDA scores of >0.3 (A). 135 of the
177 phase 1-advanced targets had a CNS-relevant GDA score of any strength, while 55 targets had at least onemoderate (0.3–0.39) or strong (>0.4) CNS-
relevant GDA score (B).

TABLE 1 Phase 2 Advanced 55 Brain Targets with Evidence of CNS Disease Linkages. 55 of the Phase 1 targets were advanced through phase 2 on the basis of
having at least one DisGeNET CNS-relevant disease association score with an Effect Size ≥ 0.3. Targets in blue (n=26) are supported by both primary
transcriptomic and supporting genomic evidence of association to PTSD. Strong GDA Effect Size (≥ 0.4) —> score 3. Moderate (Mod) GDA Effect Size
(0.3-0.39) —> score 2. Note: see Supplemental Table 2 for GDA score calculations.
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FIGURE 4
Phase 2-Selected Targets are Enriched for CNS Disease Above and Beyond Phase 1-Selected Targets. Panels represent all significantly enriched
(FDR<0.05) terms resulting from Monarch human phenotype enrichment analysis via STRING. Phase 2 targets were enriched for CNS phenotypic
abnormalities when tested against a stringent background of Phase 1-selected targets. “Strength” on the x-axis represents the effect size =
log10 [(Observed number or proteins in the analyzed network annotated to phenotype ‘X’:Total number of all proteins annotated to phenotype ‘X’)
(Expected number of proteins annotated to phenotype ‘X’ in a random network of the same size)]. For perspective, a 2-fold enrichment would be
equivalent to an effect size of 0.3. Three clusters of targets with between 2 and 4 fold enrichment are shown by red ovals.

FIGURE 5
Phase 3 Pathogenicity Score Components. Phase 3 derived scores for equally weighted components (metrics) were used to calculate a
pathogenicity score for each target. Metric 1: Predicted loss-of-function intolerance (pLI), Metric 2: Targeted by drug, and Metric 3: Influential
network node.

FIGURE 6
pLI among Phase 2-Advanced Targets. The predicted loss-of-function intolerance (pLI: 0-1) for each of the 55 Phase 2-advanced targets. See
Supplementary Table S5 for detailed information on target-specific pLI. The dashed line indicates the standard threshold for a gene to be considered
extremely loss-of-function intolerant (0.9).
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Phase 2 targets were tested for enrichment against a background of
Phase 1 targets, revealing significant enrichment for CNS
phenotypic abnormalities (Figure 4). This analysis supports that
selecting targets in Phase 2, on the basis of CNS-relevant DisGeNET
GDA scores, had the intended effect of enriching the network for
CNS-relevant pathology.

The goal of phase 3 was to rank order targets with a composite
pathogenicity score (Figure 1), which was comprised of three
components termed “Metrics” (Figure 5), which are described
below. Each Metric was weighted equally to minimize biases in
determining how the three metric values influenced target
prioritization and thus each had a maximum score of 1, which
yielded a maximum pathogenicity score of 3 that was used along
with GDA scores to rank order PTSD targets (described below). The
goal of assigning the following metrics was to provide quantitative
values to properties of each target using established criteria and to
minimizing biases when prioritizing targets.

[Metric 1] Predicted loss-of-function
intolerance (pLI)

Predicted loss-of-function intolerance (pLI) is a continuous
metric with a range of 0–1 that quantifies the selection pressure
against (i.e., the relative rarity of) loss-of-function (LOF) variants for
a particular gene (Karczewski et al., 2020). A pLI score >0.9 is
considered to be extremely loss-of-function intolerant and likely to
be haploinsufficient; that is when one functional copy of a gene is not

capable of rescuing a phenotype (Karczewski et al., 2020).
Importantly, the reason certain genes are loss-of-function
intolerant is that these genes tend to be essential for normal
cellular function, such that LOF results in severe, if not fatal
phenotypes (Karczewski et al., 2020). Therefore, pLI provides
strong positive evidence that a putative target is pathogenic.
Additionally, a high pLI score is often associated with a potential
drug target (Fabre and Mancini, 2022) and thus targets with higher
pLI scores may contribute to PTSD. However, it is important to
stress that a low a pLI score does not effectively rule out a target as
benign (Karczewski et al., 2020). For each Phase 2-advanced target
pLI, reported by GnomAD/DisGeNET, was used with no additional
transformation (Figure 6; Supplementary Table S3).

[Metric 2] Targeted by drug
Drug information can inform estimates of a given target’s

pathogenicity by providing positive evidence that modifying the
drug target alleviates (portions of) the disease state. To generate a
“targeted by drug” score for each target, drug information was
mined from two sources: DrugBank (www.drugbank.com) and a
legacy version of the Integrity Discovery Database. To estimate
confidence that manipulating a target could be therapeutically
effective, each target was scored on whether it has been targeted by
a drug with a CNS indication and how advanced in development
the drug was. Among the 55 targets that we advanced from Phase 2,
twelve targets had therapeutic drugs developed for CNS

TABLE 2 “Targeted by Drug” Scoring Schema. Based on current drug information, each target was evaluated to determine if a drug that modifies it is in
development for a CNS indication and how far advanced in the development process it is.

Score 0 Score 0.25 Score 0.375 Score 0.5

CNS indication No n/a n/a Yes

Best CNS Phase Preclinical Phase 1 or 2 Phase 3 Launched

TABLE 3 “Targeted by Drug” Scores of Phase 2-Advanced Targets. The 12 (out of 55) targets that had at least one targeting compound in-development for a
CNS indication were scored based on the criteria described in Table 2. The remaining 43 targets received a score of 0.

Targeted by drug score

Target CNS Ind CNS Phase Score

CACNA1B 0.5 0.5 1

CACNA2D 0.5 0.5 1

ECE1 0.5 0 0.5

GABBR1 0.5 0.5 1

GPX1 0.5 0.5 1

HDAC4 0.5 0.5 1

HRH3 0.5 0.5 1

IGF1R 0.5 0.375 0.875

KCND3 0.5 0.5 1

KDR 0.5 0 0.5

MC1R 0.5 0.5 1

NDUFA2 0.5 0.375 0.875
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indications; the full scoring of these twelve targets is shown
in Table 3.

[Metric 3] Influential network node
Network analysis considers physical and biochemical

interactions among selected targets and can help identify
targets that reside in an ‘influential’ position by quantifying
target connectivity within a disease-relevant network. To
establish network nodes, the STRING database analysis tool
(Szklarczyk, 2019) was used to first generate a PTSD-relevant
interaction network using the 177 targets advanced from Phase 1
(Figure 7). Second, each of the 55 targets advanced from Phase 2
(represented as green nodes in Figure 7) were annotated based on
connectivity, where node degree is the number of proteins in the
network with which a target interacts within the PTSD
interaction network. The network node scores were assigned
as a function of node degree with 0° = 0, 1–3° = 0.5, 4–5° =
0.75, and >5° = 1 (Supplementary Figure S1).

Integrating phase 2 and phase 3: Prioritizing top
tier and secondary (ancillary) PTSD targets

To generate a rank-ordered target priority list, target scores
from Phase 2 (GDA Score) and Phase 3 (Pathogenicity Score)
were summed to yield a novel Target Advancement
Prioritization (TAP) Score (Table 4; Supplementary Table S5).

Both the directionality of target changes in PTSD and the TAP
score are valuable considerations for designing experiments that
encompass our proposed Decision Matrix (Supplementary
Figure S2). The top transcriptomics-based targets we
identified include receptors (e.g., GABBR1, HRH3, IGF1R),
ion channels (e.g., CACNA1B, CACNA2D, KCND3),
epigenetic regulators (e.g., HDAC4, KMT2E), transcriptional
regulators (e.g., MED13L, FOXP2, ARC), neurite regulators
(NRXN1, PCLO, MAPT, NCAM1), and mediators of
proteolysis (e.g., ECE1, TRAF3). Notably, five of the top ten
targets were supported by both transcriptomic and GWAS-
derived evidence (Supplementary Table S5).

PTSD target interaction network
As a next step we explored the interactions of our top 20 PTSD

index proteins, which serve as nodes in our network. Nodes, which
are connected by ‘edges’ reveal relations to each other and were
used to essentially build a PTSD PPI network. To accomplish this,
all 177 Phase 1 proteins were entered into STRING using the
multiple proteins search tool and interrogated using STRING
functions including the Markov Cluster (MCL) algorithm
(Supplementary Figure S3), which revealed unique clusters.
Subsequently, we imported our proteins into Cytoscape
3.10.2 to visualize, interrogate, and expand the PTSD PPI
network using the Cytoscape ‘First Neighbor’ tool (Figure 8).

FIGURE 7
PTSD Target Interaction Network. STRING was used to generate a PTSD interaction network based on the 177 high confidence PTSD targets
advanced from phase 1. The subset of 55 targets advanced by phase 2 are indicated as green nodes. Node size reflects the node degree, such that larger
node size indicates greater node degree and hence more connections with other nodes. Two examples show examples of larger (red marque) and
smaller (blue marque) nodes.
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Our top target based on a TAP score of 5.999 (out of 6) was
CACNA1B, which is a Ca2+ ion channel involved in CNS disorders
(Table 4). CACNA1B had four ‘first neighbors’ (CACNA2D2,
NRXN1, GABR1, and KCND3), all of which are on our Top
10 primary list and are involved in brain function. The second
ranked target, which had a TAP score of 5.842 was IGF1R, which is
a receptor tyrosine kinase (RTK) that is also involved in CNS
disorders (Table 4). IGF1R had eight ‘first neighbors’ (Figure 9) all
of which were on our Phase-1 Advanced Target list
(Supplementary Table S4), but only one appeared on our
refined list of Top 20 targets (Table 1). Some of the IGF1R first
neighbor proteins are involved in brain function (e.g., axon
guidance) as well as other functions including regulating
phosphorylation and RAS signaling (Figure 9). A third target
(ranked 10) from our top 10 primary target list was NRXN1,
which is a transmembrane receptor involved in CNS disorders
(Table 4). First neighbor analysis revealed eight first neighbor
proteins (NCAM1, RIMS2, FBXL17, FOXP2, PTPRD, AUTS2,
CACNA1B, and MAPT) (Figures 10A–C), all of which have

brain-specific functions. We also assessed NRXN1 edges in
detail, which showed that edges (connections between nodes)
were supported by both experimental and co-expression
interactions (Figure 10D). Cytoscape also revealed that
NRXN1 interacts with numerous synaptic cleft proteins
(Rudenko, 2019) (Figure 10E).

Clustering of targets

We clustered the 20 top tier targets based on Cytoscape
3.10.2 and placed them in context with each other (Figure 11).
Nodes with significant edges, that is connections, with other top
20 targets from our initial list (Table 1) are shown as lines
connecting with an oval. Targets that had support from both our
primary transcriptomic analysis and support from GWAS are
indicated with blue font. Only FOXP2 (bold blue font) was
observed in a previous internal (CVB) PTSD SNP-AG assessment
and in the current transcriptomic-based identification of PTSD

TABLE 4 PTSD Target Advancement Prioritization (TAP) Score. The top ten targets (green bar) and ten ancillary targets (orange bar) are indicated along with
directionality changes in PTSD. The TAP score has a maximal potential value of 6.000. The biological rationale of each target relevant to PTSD and
expression in Excitatory and Inhibitory neurons as well as in Astrocytes and Microglia are shown.
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targets. Interestingly, four super (functional)-clusters (Figure 11)
bind targets into a functional network although each putative target
has a distinct function (Figure 11; Table 4). Cluster III contains three
nodes (NCAM1, MAPT, and KIFA5). Although, MAPT was not
derived from transcriptomics directly it appeared as a node via edges
connected to other nodes in our analysis with Cytoscape. MAPT also
appeared in a previous internal SNP-AG identification campaign.
Cluster I was connected to Cluster II via connection between the
CACNA1B and NRXN1 nodes. We denote Cluster II as a central
hub with multiple edges (connections) that bind two nodes within
Cluster III. Finally, Cluster IV initially appeared to be independent,
but was revealed to be indirectly bound to Cluster III by edges that
were connected by NDUFA2 and PRKACA. Notably, PRKACA was
not identified via our top 20 list and thus represents an expansion
component ascertained using Cytoscape and bridges the two
clusters. The interactions of PTSD transcript nodes were
partitioned into four distinct super (functional) clusters, which
allow for more readily assessing both function and putative
underlying pathobiology of PTSD.

Nodes within functional clusters, which represent possible
druggable targets, and their associated pathways, may be utilized to
ameliorate cellular disease phenotypes. CACNA1B, which is the node
of Cluster 1, is closely associated with CACNA2D. Both are voltage
gated calcium channels involved in neurotransmitter release and

implicated in a number of CNS disorders including seizures, ataxia,
and schizophrenia (Sundararajan et al., 2018). CACNA1B is connected
to NRXN1, which is the node of Cluster II and is a cell surface receptor.
Cell surface receptors represent traditional pharmacologically-
druggable targets. NRXN1 regulates Ca2+ dependent processes
including neurotransmitter release and synaptic function (Walker
et al., 2012; Han et al., 2020). NRXN1 is connected to NCAM1,
which is part of Complex III, is a cell adhesion molecule involved
in cell-cell interactions and cell-matrix interactions. NRXN1 is also
implicated in schizophrenia and bipolar disorder. KIF5A, also part
of Complex III, is a kinesin enzyme involved in axonal transport, as
well as other functions, and is implicated in neurological disorders
(Flippo and Strack, 2020). IGF1R, the node within Cluster IV is a
receptor tyrosine kinase, which is another traditional
pharmacologically-druggable target involved in cell growth and
survival. IGF1R is implicated in both Alzheimer’s disease and
Parkinson’s Disease (Deak and Sonntag, 2012).

The ten primary targets identified using our approach
(CACNA1B, IGF1R, HDAC4, CACNA2D, KCND3, GABBR1,
NDUFA2*, PTPRD, KIF5A, NRXN) were expanded and
clustered revealing broadly related functional interactions that
at face-value help distinguish underlying biological processes
disrupted as a result of PTSD. In addition to the convergence of
functionality there are neurological diseases related to the

FIGURE 8
CACNA1B Node and Local Interaction Network. Cytoscape 3.10.2 was used to interrogate the PTSD interaction network based on CACNA1B as the
node of interest (A). We then used the ‘first neighbors of selected node’ tool to generate a local interaction network, which revealed the presence of
multiple interacting proteins, whichwere also part of our top 20 list (B). The ‘STRING enrichment’ tool showed that these proteins had a PPI enrichment of
8 × 10−5 and a role in brain health/function with a FDR <10-7 (C).
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clusters that have strong affiliation with PTSD and at a cellular
level suggests overlap between mechanisms contributing to
PTSD and other neurological disorders. According to GTeX,
NDUFA2 is expressed at very low levels in neurons and was thus
swapped with FOXP2 from our ancillary target list. To be
consistent with identifying and prioritizing NDUFA2 using
our approach we still included this target, but re-positioned it
within the ancillary targets. It is critical that all targets be
experimentally validated for expression using existing reagents
and cells/tissues. However, at this point we considered the
evidence at hand and decided to reposition this target.
Additionally, FOXP2 is expressed highly in excitatory neurons
and is also implicated in schizophrenia, autism, and major
depressive disorder.

Discussion

PTSD is a significant and complex disorder with few therapeutic
options, which notably have not been updated in over 20 years.
GWAS have been employed to identify genetic targets of disease and
substantial efforts and resources have been invested in PTSD
GWAS, which have revealed that there is a heritable, and thus
genetic contribution, to the disorder (Nievergelt et al., 2019;

Gelernter et al., 2019; Stein et al., 2021; Nievergelt et al., 2023;
Nievergelt et al., 2024). However, it noteworthy that GWAS have
typically not led to novel therapeutic targets nor a deeper
understanding of neurological disorders (Uffelmann et al., 2021).
Although progress has been made to overcome GWAS limitations
(Watanabe et al., 2017; Schaid et al., 2018; Wang et al., 2020),
aligning GWAS SNPs to specific actionable genes still has significant
challenges. Therefore, we developed a streamlined approach that
relied on transcripts derived from published RNAseq studies
(Girgenti et al., 2021; Seah et al., 2022; Wang et al., 2023;
Chatzinkakos et al., 2023) applied to postmortem CNS tissue and
iPSC-NeuExc, from both PTSD and control samples allowing us to
identify novel targets. We subsequently utilized publicly available
tools to prioritize the transcriptome-based targets with
relevance to PTSD.

Our primary goal was to identify novel PTSD targets and
concomitantly uncover mechanisms that contribute to the
disorder. To identify targets we took advantage of publicly
available transcriptomic data sets (Supplementary Tables S1–S3)
and developed a three-phase strategy that produced a list of twenty
putative targets involved in PTSD. Initially we started with
2,467 targets, which were reduced to 177 (Phase 1), and then
further validated/reduced using enrichment to 55 targets (Phase
2). The 55 targets were rank ordered (prioritized) by summing target

FIGURE 9
IGF1R Node and Local Interaction Network. Cytoscape 3.10.2 was used to interrogate the PTSD interaction network based on IGF1R as the node of
interest (A). We then used the ‘first neighbors of selected node’ tool to generate a local interaction network revealing eight interacting proteins, which
were also part of our top 20 list (B). The ‘STRING enrichment’ tool showed that these proteins had PPI enrichment and a role in stem cell differentiation,
axonal path finding, and dendritic outgrowth (Deak and Sonntag, 2012) with a FDR<0.05 (C).
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scores from Phase 2 (GDA Score) and Phase 3 (Pathogenicity Score),
which yielded a TAP Score producing twenty prioritized targets for
PTSD (Table 4). These findings are an important early step in

developing novel PTSD therapeutics, which have not had a new
therapy developed in greater than 2 decades. Interestingly five of our
prioritized targets (CACNA1B, GABBR1, HDAC4, IGF1R, KDR)

FIGURE 10
NRXN1 Node and Local Interaction Network. Cytoscape 3.10.2 was used to interrogate the PTSD interaction network based on NRXN1 as the node
of interest (A). We then used the ‘first neighbors of selected node’ tool to generate a local interaction network revealing eight interacting proteins, which
were also part of our top 20 list (B). The ‘STRING enrichment’ tool showed that these proteins had a PPI enrichment of 8 × 10−5 and a role in brain health/
function with a FDR <10-7 (C). The panels (A–C) show node assessment while panel (D) shows edge assessment with subscores relevant to
supporting evidence based on experiments and co-expression. The panel in the bottom right (E) shows NRXN1 (blue ovals) interacting with numerous
distinct partners in the synaptic cleft (Rudenko, 2019).
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have a combined ten compounds at various stages of clinical
development (Supplementary Table S8). These compounds are
either modulators or inhibitors suggesting that they would be
appropriate for testing against targets that displayed an upward
directionality in PTSD (Table 4) and were localized within
Functional Clusters I and IV (Figure 11). We suggest testing
these molecules following cell-based assays as described in the
Decision Matrix (Supplementary Figure S2). A limitation with
our strategy is that we cannot confidently associate any given
target with specific PTSD symptom domains. Therefore, this
limits us in the ability to address how identified targets
contribute to the heterogenous clinical phenotypes associated
with PTSD. However, integrating both identification and
prioritization provides a cohesive initial approach, which we
believe may confidently advance targets for complex neurological
disorders such as PTSD. Our target prioritization strategy may also
be applied to a wide array of diseases to accommodate the need for
additional or new therapeutic drug targets and to facilitate the
procurement of cellular disease phenotypes prior to initiating
drug discovery efforts. Of course, other cell types and phenotypic
classes of interest (e.g., immune or cardiovascular disorders) may be
emphasized through choice of input datasets and disease class
filtering in DisGeNET. Importantly, as cell-type specific datasets
and datasets from additional brain regions become more available, it
is anticipated that cell/tissue type of observations will become amore
significant variable for Phase I stage prioritization. Other types of
biological data may also be incorporated as supporting evidence,
such as DNA methylation. In addition, genotype-phenotype linkage
information generated as part of a prioritization process can be
mined for hypothesis generation and functional interpretation. For

example, recently published papers describe several related
approaches that leverage gene-disease association maps similar to
what was generated in our Phase 2 strategy (described above) to
make mechanistic predictions and stratify complex diseases (Torres,
2021; Bermperidis et al., 2022; Bugrim, 2023).

The rationalized and systematic prioritization strategy
described and applied here nominated 55 (i) Independently
replicated PTSD-associated targets with (ii) Observed
differential expression in PTSD brain tissue/excitatory neurons
and (iii) Evidence supporting CNS-relevant pathogenicity. The
PTSD targets we prioritized may be advanced to in vitro
experimental functional validation by following our rationalized
Decision Matrix (Supplementary Figure S2), which is anticipated
to improve confidence in observing phenotypic effects in specific
subsets of neurons. There are alternative methods describing the
establishment of PPI networks (Pintacuda et al., 2023), which may
result in more robust networks, but the tools we utilized are free,
generally easy to use, and allowed us to establish a PTSD network
for functional interrogation. We specifically undertook this task
because for PTSD there have been no new therapies since the
existing class of SSRI therapeutics, which were developed 2 decades
ago. This is particularly relevant given that a promising
‘psychedelic’ molecule (MDMA) recently did not receive
approval for PTSD (Reardon, 2024). This suggests a need to
continue to identify novel targets to both understand this
complex disorder and develop therapeutic alternatives to
complement or supplement SSRIs or psychedelics, provided the
latter is approved for treating PTSD. To provide pathological
context for the targets, we next discuss roles of the associated
networks in contributing to PTSD.

FIGURE 11
PTSD Targets and Local Interaction Network. Cytoscape 3.10.2 was used to interrogate the PTSD interaction network based on nodes, which were
further organized into four super clusters (I-IV). The primary 10 ten targets are: CACNA1B, IGF1R, HDAC4, CACNA2D, KCND3, GABBR1, NDUFA2*, PTPRD,
KIF5A, NRXN. The ancillary 10 targets are: MED13L, PCLO, NCAM1, FLNC, HRH3, KMT2E, FOXP2*, KIF2A, KDR, TRAF3. FOXP2* is an ancillary target and
was swapped in as a primary target due to NDUFA2 having low expression in neurons (see Table 4). Targets with both transcriptomics and GWAS
support are shown by blue font.
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Functional cluster I

CACNA1B (L-type) and CACNA2D (non-L-type) (Figure 11),
belong to voltage gated calcium channels, which modulate diverse
functions in the CNS. CACNA1B and GABBR1 are enriched in the
GABAergic synapse pathway and are upregulated following
propofol (anesthetic) exposures (Li et al., 2018). CACNA1B and
GABBR1 are also involved in biological pathways and mechanisms
associated with genes implicated in schizophrenia (Sundararajan
et al., 2018). CACNA2D is a risk gene for another complex disorder,
Autism (Yang and Shcheglovitov, 2019). Because both calcium
channel types converge on phenotypic associations with CNS
disorders (Table 4), this provides reinforcing evidence that these
channels contribute broadly to complex neurological disorders.

Functional cluster II

It has been suggested that FOXP2, DISC1, and the NRXN family
are linked in a molecular network that contributes to
neurodevelopmental disorders (Walker et al., 2012). However,
this is the first report that we are aware of that provides
supporting evidence that NRXN1 and FOXP2 are interacting
partners (Figure 11). It appears that FOXP2 and PTPRD are
both involved in maintaining synaptic architecture, which
emerged only after complex mutagenesis assessment (Südhof,
2017; Sclip and Südhof, 2023). In addition, both proteins appear
to form both pre-synaptic and post-synaptic structural complexes
(Han et al., 2020).

Functional cluster III

NDUFA2 has previously been shown to be related to the
avoidance subdomain of the PTSD symptom cluster (Pérez-
González et al., 2024). NDUFA2 is an element of the
mitochondrial complex 1 and is dysregulated in neurological
disorders such as AD (Peng et al., 2020). We could not find a
direct link between MAPT and NDUFA2 (Figure 11) in the
literature so the interaction between them is considered tenuous
at this time. Kinesins (also called KIFs) are molecular motors and
implicated in both fast (50–400 mm/day) and slow (less than 8 mm/
day) axonal transport (Maday et al., 2014). KIF2A appears to be an
essential regulator of neuronal connectivity and for the
establishment of precise postnatal hippocampal wiring (Guillaud
et al., 2020). Thus, a plausible scenario is that perturbations in
KIF2A and KIF5A result in altered interactions with TAU (encoded
by MAPT) resulting in disrupted axonal transport as a contributing
mechanism to PTSD.

Functional cluster IV

IGF-1 (Figure 11) has a major role in neuronal development as it
supports neuronal stem cell differentiation, axonal path finding, and
dendritic outgrowth (Deak and Sonntag, 2012). Supportingly,
studies on the role of the IGF-1 receptor elicit very similar
phenotypes (Deak and Sonntag, 2012). IGF-1 acts locally via

IGF1R to augment synaptic connections based on olfactory
nervous system assessment in mice (Deak and Sonntag, 2012).

Collectively, the four nodes we identified play a role in synaptic
architecture and also function in axonal transport, which suggests
that alterations in these processes contributes to PTSD and indicates
cellular interactions to probe using discovery model systems. Our
prioritized target list (Table 4) coupled with the proposed
interaction network (Figures 7, 11) confers a significant
advancement by identifying PTSD cellular pathology, specific
pathways, and mechanisms that may contribute to the disorder,
and may be targeted with existing molecules (Supplementary Table
S8). Limitations to our study include the inability to partition targets
based on the diverse array of distinct cell types including neuronal
subtypes, astrocytes, and microglia that may differentially contribute to
PTSD. An additional limitation is the absence of non-cortical tissue
representation including the striatum, midbrain, hindbrain, and
cerebellum - all off which have been implicated in psychiatric disorders.

A path ahead

Given the poor translational validity of preclinical models of PTSD
(e.g., SPS, Ferland-Beckham et al., 2021), which were evaluated through
various programs and methods developed to improve their utility such
as EQIPD and GOT-IT (Emmerich et al., 2021), we propose, as a future
direction to validate these PTSD targets and interrogate their
involvement in specific pathways using human iPSC models
(Takahashi et al., 2007; Mertens et al., 2015; Nehme et al., 2018).
While this section is hypothetical, we wanted to propose a logical
strategic example for efficiently and cost-effectively validating targets
(Supplementary Figure S2). Initially, proposed targets would be
ascertained for their expression and distribution at the RNA/protein
level using induced iPSC-derived excitatory neurons (iNeuExc).
Traditional iPSC-derived neurons are generated by taking cells with
a somatic cell fate (e.g., fibroblasts) and reprogramming them to obtain
an iPSC (stem cell) identity (Takahashi andYamanaka, 2006; Takahashi
et al., 2007). However, this process essentially eliminates disease
phenotypes. Subsequently, stem cells are programed to obtain a
unique somatic fate such as a subtype-specific neuron (e.g., cortical
excitatory neuron). In contrast, a process of direct conversion from
fibroblast to excitatory neuron (iNeuExc) (Nehme et al., 2018) preserves
disease phenotypes making them better suited to understand cellular
disease pathology (Mertens et al., 2015). This is an important premise
for using advanced iPSC technology to interrogate disease pathology
occurring in adult neurons. The protocol for generating iNeuExc has
been publicly available for years making them a suitable substrate to
begin studies although it would also be valuable to follow the same
process to produce induced Inhibitory neurons (iNeuInh). To
experimentally validate targets and ascertain phenotypes associated
with PTSD targets we propose an experimental paradigm
(Supplementary Figure S2), which is described next. The
determination of expression and distribution encompass the first
proposed decision point with targets having validated expression
subsequently being genetically manipulated in accordance of
directionality (see Table 4). CRISPR modification is proposed to be
coupled with subjecting iNeuExc to a stressor (Supplementary Figure
S2A) such as oxytocin or hydrocortisone (Li and Ritchie, 2021; Duan
et al., 2020). For PTSD, the goal is to mimic in cellular assays the
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convergence of transcriptomic perturbation plus an
environmental stressor.

We complement our target identification and prioritization strategy
with a Decision Matrix (Supplementary Figure S2) that describes a
logical methodology of functionally interrogating prioritized PTSD
targets using relevant assays for PTSD target validation.
Morphometric and electrophysiological assays, respectively, are
informative or decision points with altered electrophysiology being
viewed as a particularly important phenotype based our top tier target
properties (Table 4). Targets demonstrating altered electrophysiological
properties would be advanced through the Decision Matrix to gather
valuable information to facilitate understanding of the biological
alterations that underpin PTSD clinical phenotypes.

The next critical step would be to validate one (or ideally more)
of these targets. Validation of our proposed methodology would
provide potential industry partners with a tool to make rational drug
development decisions that would increase their likelihood of
success, decrease unnecessary testing of patients in negative
clinical trials, and speed the time to important therapeutic
options. Among the 20 putative PTSD targets we identified, four
of the top 10 targets (CACNA1B, GABBR1, HDAC4, IGF1R) and
one ancillary target (KDR) have a combined ten compounds at
various stages of clinical development (Supplementary Table S8).
Notably all five of these targets had an upward directionality in
PTSD (Table 4), which makes them good candidates to be tested
with modulator/inhibitor-based therapeutics that are currently in
development (Supplementary Table S8). Interestingly, all ten
compounds are being tested for, or are already approved for, one
of two CNS indications, epilepsy and neurodegeneration. Two are
approved for use in epilepsy and four other compounds of the same
targets (CACN1B and HDAC) are in development for epilepsy. Two
other targets (GABBR1 and KDR) have one compound each being
developed for epilepsy while the compounds targeting the fifth
target, IGF1R, are being tested in neurodegeneration. An
important next step in validating this methodology would be to
use one (or more) target in the Decision Matrix (Supplementary
Figure S2) and test a given compound’s ability to ameliorate
electrophysiological phenotypes elicited by CRISPR/stress
modification. If applicable, a subset of targets could then be
validated and considered for repurposing (Fajgenbaum et al.,
2025) to treating PTSD.

It is important to acknowledge alternative target identification
strategies to place our approach in context. There is currently rapidly
increased utilization of computational biology, artificial intelligence,
and large language model based approaches for target identification,
which are beyond the scope of this discussion. A number of recent
reviews nicely summarize advances in drug target identification. For
example, network-based approaches (Koutsandreas et al., 2025),
database utilization (Liu et al., 2025), and Mendelian randomization
on expression quantitative trait loci (Baird et al., 2021) have been
described. In addition, experimental-based approaches (Tabana
et al., 2023) including phenotypic screening (Chan et al., 2010)
and CRISPR screening and multidisciplinary approaches (Jia et al.,
2025; Lomenick et al., 2009) have also been utilized. However,
often the aforementioned described approaches have not been
applied to a specific use case scenario to yield actionable target
identification and prioritization. We describe a novel approach
that is complementary to these previous approaches and apply it to

PTSD, which has been without a novel therapeutic development in
more than 2 decades.

In summary, we developed a novel strategy to identify and prioritize
PTSD targets and place them in biologically meaningful pathways. In
addition, we propose a strategic framework for validating biological
properties. Our goal was to make these approaches publicly available to
benefit PTSD patients and researchers pursuing therapeutic
development for the disorder, but we also propose that the tools
may be utilized in other disease discovery contexts.
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