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Antibody-drug conjugates (ADCs) represent a mechanistically defined class of
targeted therapeutics that combine monoclonal antibodies with cytotoxic
payloads to achieve selective delivery to antigen-expressing carcinoma cells.
Conventional ADC development has primarily relied on empirical screening and
structure-based design, often limited by incomplete structural information, non-
systematic linker–payload selection, and constraints in experimental throughput.
Computational methods, including artificial intelligence and machine learning
(AI/ML) are increasingly being integrated into ADC discovery and optimization
workflows (i.e., AI-driven ADC Design) to address these limitations. This review is
organized into six sections: (1) the progression from traditional modeling
approaches to AI-driven design of individual ADC components; (2) the
application of deep learning (DL) to antibody structure prediction and
identification of optimal conjugation sites; (3) the use of AI/ML models for
forecasting pharmacokinetic properties and toxicity profiles; (4) emerging
generative algorithms for antibody sequence diversification and affinity
optimization; (5) case studies demonstrating the integration of computational
tools with experimental pipelines, including systems that link in silico predictions
to high-throughput validation; and (6) persistent challenges, including data
sparsity, model interpretability, validation complexity, and regulatory
considerations. The review concludes with a discussion of future directions,
emphasizing the role of multimodal data integration, reinforcement learning (RL),
and closed-loop design frameworks to support iterative ADC development.
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Introduction

Antibody-drug conjugates (ADCs) represent a rapidly expanding class of targeted
cancer therapeutics that combine the specificity of monoclonal antibodies with the potent
cytotoxicity of small-molecule drugs. This dual mechanism enables the selective elimination
of cancer cells while minimizing off-target toxicity, offering an enhanced therapeutic
indicator compared to traditional therapies. However, despite significant clinical
advances, conventional ADC development has been slowed down by empirical
approaches, incomplete structural information, and inefficient linker-payload selections,
resulting in a time-consuming and costly discovery process (Kim et al., 2023).

Over the past 3 decades, computational methods have steadily evolved to address these
limitations, as illustrated in Figure 1. In the early 2000s, in silicomodeling and basic artificial
intelligence/machine learning (AI/ML) algorithms were applied to predict antibody-antigen
interactions based on physicochemical features. However, the methods used were limited by
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simple computational resources and the lack of extensive biological
datasets. The progress accelerated in the 2010s with the emergence
of DL. DL allowed for more complex modeling and high-
dimensional relationships critical for predicting antibody
structures, binding affinities, and developability parameters (Bai
et al., 2023). Today, AI/ML play fundamental roles across the ADC
discovery pipeline. ML models have demonstrated efficacy in
predicting drug-to-antibody ratios (DAR) and conjugation site
preferences with significantly improved accuracy over empirical
methods (Angiolini et al., 2025). Another example is DL models
capable of learning from three-dimensional structural data, which
have enhanced antibody paratope prediction and rational affinity
maturation (Dewalker et al., 2025).

The computational revolution has coincided with advances in
molecular engineering. Glycan engineering is essential to ADC
pharmacology, as it impacts antibody stability and
immunogenicity and provides modifiable sites for site-specific
conjugation. Recent computational advances have enabled the
characterization of glycan microheterogeneity at the
glycosylation sites, offering predictive tools to modulate glycan
structures for optimal ADC properties (Moore et al., 2024; Cruz
and Kayser, 2019). PEGylation, the covalent attachment of
polyethylene glycol chains to antibodies, has been extensively
used to improve ADC pharmacokinetics. AI-guided modeling
optimizes PEG chain length, attachment sites, and structural
shielding to prolong circulation while preserving target
engagement (Smith, 2015). Small molecule payload
optimization is another rapidly advancing area. Traditionally,
this was selected via screening; small molecule payloads are now
increasingly matched to antibodies using ML models that predict
cytotoxic potency, stability, and intracellular trafficking
properties (Debnath et al., 2022). ML has enabled the
discovery of novel cytotoxic payloads, such as plitidepsin
derivatives targeting eEF1A (Antunes et al., 2023).
Furthermore, computational simulations of protein-protein
interactions (PPIs) have allowed for engineering ADCs with
minimized off-target binding and enhanced immune system
modulation, including glycan-shielded or albumin-binding
formats (Zhong and D’Antona, 2021).

Nanoparticle-enabled ADC systems represent another frontier
for precision drug delivery. Antibody-nanoparticle conjugates
(ANCs) integrate the targeting specificity of antibodies with the
payload versatility and modifiable release kinetics of
nanotechnology. Emerging studies demonstrate that ANC
platforms can achieve improved pharmacokinetics, enhanced
payloads, and better tumor penetration than conventional ADCs
(Adhikari and Chen, 2025). AI models are being developed to
optimize nanoparticle size, surface chemistry, and antibody
orientation to maximize tumor accumulation and minimize off-
target effects (Gholap et al., 2024; Chandrika et al., 2024). Most
recent examples of antibody-conjugated nanoparticles targeting
HEr2 positive breast cancer cells have demonstrated improved
binding, enhanced drug release control, and superior therapeutic
measures (Juan et al., 2020; Selepe et al., 2024).lipid nanoparticle
(LNP) formulations decorated with antibodies are now used for
siRNA and therapeutic protein delivery to lymphatic tissues
(Sakurai et al., 2022).

Clinically, second-generation ADCs such as Polivy
(Polatuzumab vedotin) and Enhertu (trastuzumab deruxtecan)
showcase how structure-guided conjugation strategies, linker
innovations, and computational payload optimizations are
entering real-world practice (Shi and McHugh, 2023). Glycan
and PEGylation modifications have refined the pharmacokinetics
of investigational ADCs progressing through clinical pipelines
(Sakhnini, 2019).

Despite these advances, several challenges remain. Among them
are data scarcity for rare conjugation chemistries, interpretability of
DLmodels, experimental validation burdens, and regulatory hurdles
(Melo et al., 2018).

This review examines the application of computational
approaches in designing and developing antibody-drug
conjugates, spanning conventional modeling techniques through
recent advances in AI/ML. The discussion is organized into six core
areas: (1) the methodological shift from traditional design strategies
to AI-enabled modeling of ADC components; (2) DL based
approaches for antibody structure prediction and conjugation site
identification; (3) ML frameworks for modeling pharmacokinetics
and toxicity; (4) generative algorithms for antibody sequence

FIGURE 1
Timeline summarizing key developments in ADC design, from early empirical approaches to current AI-integrated and modular strategies.
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diversification and affinity engineering; (5) the integration of
computational tools with high-throughput experimental systems;
and (6) unresolved challenges, validation requirements, and future
directions for computational ADC research. Particular attention is
given to how these approaches may enable the rational design of
next-generation ADCs, including multimeric formats with
enhanced modularity, combinatorial targeting capacity, and
structural complexity. Together, these developments define a
framework for advancing data-driven and mechanism-informed
strategies in ADC engineering.

Traditional computational methods

Early ADC development relied on traditional structure-based
design methods. X-ray crystallography provided atomic resolution
structures of antibodies and target antigens, serving as templates
for computational modeling. Structural determination through
X-ray diffraction and small-angle X-ray scattering (SAXS)
allowed for the initial mapping of epitope-paratope interactions
essential for rational design (Chiu et al., 2019; Filntisi et al., 2014).
Structural information from these methods informed initial
assessments of conjugation sites and antigen binding
compatibility. However, structural data were often incomplete.
In the Protein Data Bank (PDB) and Electron Microscopy Data
Bank (EMDB), only antibody fragments, primarily antigen-
binding fragments (Fabs), single-chain variable fragments
(scFvs), or isolated VH/VL domains, were typically available.
Full-length immunoglobulin G (IgG) structures, encompassing
flexible hinge regions and Fc domains, remained scarce due to
the inherent difficulty in crystallizing or imaging large, flexible
biomolecules (Chaves et al., 2024). This incomplete structural
coverage constrained early ADC design efforts, especially in
modeling linker attachment sites, steric hindrance, and
glycosylation effects. Flexible regions such as the hinge domain,
which is important for internalization and payload delivery, were
poorly represented in available templates, which resulted in
speculation modeling.

Molecular docking emerged as a primary computational tool,
which allowed virtual predictions of antibody-antigen poses and
assessed the potential effects of conjugation on antigen engagement.
However, traditional docking algorithms were often optimized for
small molecule ligands and struggled with large, flexible interface
characteristics of antibody-antigen interactions. Scoring functions
tended to oversimplify binding energetics, leading to overestimating
affinities and frequent false positives (Garofalo et al., 2020; Siddiqui
et al., 2025). To address these challenges, protein-protein docking
platforms such as ClusPro and HADDOCK have been developed to
model the flexibility and shape complementarity of larger biological
complexes (Kozakov et al., 2017; Dominguez et al., 2003). These
tools account for conformational changes and can incorporate
experimental data to guide the docking process, making them
better suited for simulating antibody-antigen and antibody-linker
interactions. Incorporating such methods into ADC modeling has
improved our ability to evaluate structural compatibility and
binding site accessibility, though challenges still remain in
modeling the full ADC assemblies at high resolution. Docking
methods have been used to guide in silico affinity maturation and

structural optimization of antibody variants during early-
stage design.

Molecular dynamics (MD) simulations provided a deeper
understanding of antibody flexibility, linker behavior, and
payload exposure under dynamic biological conditions. MD
simulations enabled the prediction of domain motions, solvent
accessibility, and aggregation-prone regions (Codina et al., 2019).
These simulations continue to support ADC design efforts by
offering atomic-level insight into conformational variability,
linker strain, and local solvation effects that influence stability
and binding. However, MD was constrained by limitations in
simulation timescales, force field inaccuracies, and high
computational costs, restricting simulations to relatively short
times and small system sizes. Even when used with docking, MD
refinements often failed to fully account for flexible loops, glycan
motions, or hinge dynamics (Dixit, 2015). Ongoing advances in
GPU acceleration, enhanced sampling techniques, and hybrid
modeling approaches have improved the feasibility of MD in
larger systems, enabling their continued integration alongside AI-
driven workflows.

Developability assessments were another primary focus of
traditional workflows. The early model evaluated candidate
antibodies and ADCs for aggregation susceptibility, chemical
stability, and solubility properties. These methods relied on
sequence-based descriptors such as hydrophobic patches, charged
residues, and coarse-grained structure-based features (Khetan et al.,
2022). For example, Evers et al. demonstrated the structure-based in
silico prediction of aggregation hotspots in biparatopic ADCs
targeting c-MET, highlighting the need for early aggregation
control to improve manufacturability (Evers et al., 2024). These
tools were effective in screening candidates prior to experimental
validation and were integrated into early-stage selection protocols to
reduce downstream formulation issues.

However, early developability models faced limitations due to
small training datasets, narrow antibody diversity coverage, and lack
of generalization across different payload-linker combinations. The
absence of high-quality 3D structures further compounded these
challenges, often forcing researchers to project predictions from
fragmentary or homology-modeled structures from software like
SWISS-MODEL (Waterhouse et al., 2018). Despite these limitations,
sequence-based models provided actionable insights into charge
distribution, surface hydrophobicity, and isoelectric point, which
remain relevant parameters in manufacturability risk assessment.
These tools served as a decision support layer that complemented
experimental assays and informed downstream engineering
strategies. These traditional computational techniques, covering
structure determination, docking, MD, and developability
prediction, have established the foundation for modern AI-driven
frameworks.

ADC’s structural prediction with
AlphaFold series and other DL tools

The release of AlphaFold2 introduced a transformative
approach to protein structure prediction using novel neural
network DL architectures (Jumper et al., 2021; Yang et al., 2023;
Skolnick et al., 2021; Marcu et al., 2022). AlphaFold2 achieves near-
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experimental accuracy for monomeric proteins, and early
applications to antibody variable domains demonstrated reliable
framework modeling. However, hypervariable complementarity-
determining regions (CDRs), particularly CDR-H3 loops, remain
challenging to predict accurately due to their intrinsic
conformational flexibility (Yin and Pierce, 2023). Studies
applying AlphaFold2 to antibodies revealed that while framework
regions were modeled with RMSD <2 Å, long antigen-contacting
CDR-H3 loops showed structural inaccuracies (Chen et al., 2024).
Recognizing the need for complex modeling, DeepMind introduced
AlphaFold-Multimer, expanding the system to co-fold protein-
protein interactions (Evans et al., 2022). Applications to
antibody-antigen complexes, such as CD20-targeted antibodies,
demonstrated superior interface prediction compared to
traditional docking, although induced-fit interactions remain
challenging (Dabkowska et al., 2024; Boross and Leusen, 2012).

While AlphaFold2 and its multimer extension advanced
structural modeling of individual proteins and some complexes,
they were not designed to predict interactions with small molecules,
glycans, or ions. AlphaFold2 primarily focused on monomeric
folding and limited protein-protein assemblies, with no support
for ligand or post-translational modification modeling. DeepMind
recently introduced AlphaFold3 as a next-generation structure
prediction system (Abramson et al., 2024; Krokidis et al., 2025;
Desai et al., 2024). Compared to other structural modeling
approaches such as RFdiffusion and ProteinMPNN, AlphaFold3
employs a diffusion-based generative framework, extending
predictive capabilities to complexes involving proteins, nucleic
acids, small molecules, ions, and glycans as shown in Figure 2
(Watson et al., 2022; Dauparas et al., 2022). For ADC design,
AlphaFold3 offers the potential to predict glycosylated Fc
domains, linker-payload interactions, and antigen-binding
epitopes in the presence of cofactors (Roy and Al-Hashimi,
2024). However, despite improved static modeling of Fc glycans

and payload-conjugated domains, AlphaFold3 still struggles to fully
capture glycan microheterogeneity, dynamic shielding effects, and
flexible linker behavior due to the limited availability of data. They
also struggle with unusual DNA and RNA structures, such as single
mutations (Bergonzo and Grishaev, 2025). Benchmark datasets have
demonstrated that AlphaFold3 outperforms traditional methods
such as AutoDock Vina as well as deep learning-based
RoseTTAFold in analyzing protein-protein interactions, nucleic
acid complexes, and glycosylated proteins (Abramson et al., 2024;
Eberhardt et al., 2021; Baek et al., 2021). In ligand docking
benchmarks, AlphaFold3 exhibited significantly higher success
rates than conventional approaches. Evaluations from the 15th
Critical Assessment of Structure Prediction (CASP15) further
highlighted the advances achieved with AlphaFold3,
demonstrating state-of-the-art performance in modeling
multimeric protein complexes, protein-small molecule complexes,
and protein–glycan assemblies. (Abramson et al., 2024) AlphaFold-
Multimer previously achieved interface root-mean-square
deviations (iRMSDs) often below 2.5 Å for antibody-antigen
complexes (Liu et al., 2023), and AlphaFold3 extended these
capabilities further, setting new benchmarks for backbone
accuracy, ligand positioning, and covalent modification modeling.
Although modeling glycan flexibility and microheterogeneity
remains a limitation, AlphaFold3 excels at capturing static
glycosylation states, antigenic surfaces, and linker-conjugated
domains, making it highly valuable for ADC structural modeling
workflows, as shown in Figure 3 using Pertuzumab and HER2 as
an example.

Specialized antibody-specific modeling tools have further
enhanced precision and contributed to ADC development.
DeepAb uses recurrent graph neural networks and recurrent
architectures trained on curated antibody datasets to improve the
CDR modeling, particularly emphasizing structural diversity in
CDR-H3 loops (Ruffolo et al., 2020). DeepAb has performed

FIGURE 2
Comparison of structural modeling workflows. AlphaFold3 predicts complexes using multimodal diffusion, while RFdiffusion generates 3D protein
backbones from structural constraints. ProteinMPNN designs sequences for fixed backbones via graph-based inference.
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better than Ablang, which was developed by utilizing antibody-
specific language modeling to predict and complete missing regions
in antibody sequences accurately (Olsen et al., 2022). ABlooper also
uses mathematical neural networks, which enables rapid CDR
modeling at scale but with reduced accuracy for long or kinked
H3 loops (Abanades et al., 2022). SimpleDH3 provides a simple end-
to-end DL framework for predicting CDR H3 loop structure. It
directly outputs backbone atomic coordinates without relying on
post-processing pipelines like Rosetta (Zenkova et al., 2021). Using
ELMo embeddings and bi-directional LSTM architectures,
SimpleDH3 achieves comparable RMSD performance to state-of-
the-art methods such as DeepH3, offering a faster inference speed. It
focuses on modeling only the highly variable CDR-H3 loops rather
than full Fv domains, enabling efficient large-scale antibody
screening for ADC design applications (Chungyoun and
Gray, 2024).

While AlphaFold3 and related deep learning models represent
significant progress in structural prediction, particularly for complex
and multicomponent assemblies, they do not fully resolve the
longstanding challenges associated with structure-based design.
These model remain limited in their ability to capture dynamic

behaviors, glycan heterogeneity, induced fit effects, and other
context-dependent molecular phenomena critical to ADC
functionality. As such, their outputs should be interpreted as
static approximations within broader design frameworks that still
require empirical testing, molecular simulation, and domain-specific
validation. The increasing accuracy of predicted structures enhances
the utility of in silico workflows but does not eliminate the need for
mechanistic interpretation or experimental confirmation.

Integration of AI/ML in ADC ADMET
prediction and linker design

AI/ML plays a significant role in designing linker architectures
for ADCs, moving beyond static structure prediction to proactive
optimization of linker flexibility, stability, and payload
compatibility. Recent studies have demonstrated that DL models
integrated with molecular simulations can efficiently propose linker
sequences optimized for specific mechanical properties and
conformational flexibility, influencing ADC internalization and
payload release (Su and Zhang, 2021). By learning from

FIGURE 3
AlphaFold3-predicted structure of pertuzumab bound to HER2 Domain II, with modeled N-linked glycans. The model illustrates full antibody
architecture, including variable (VH, VL) and constant (CH1, CH2, CH3, CL) domains. The antigen-binding fragment (Fab) regions contain the
complementarity-determining regions (CDRs), which mediate interaction with HER2 Domain II. The Fc region includes a glycosylation site at Asn297,
with glycans modeled by AlphaFold3. The HER2 epitope is positioned near the FV region, demonstrating structural alignment relevant to ADC
targeting and conjugation strategies.
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structural ensembles, these AI-driven methods can anticipate steric
clashes, predict linker degradation pathways, generate linker-
payload combinations made to diverse intracellular
environments, and enhance ADC efficacy and pharmacokinetics.

Transcending static structure optimization, ML, and DL models
have become implementations in predicting key developability
properties in early ADC discovery. Computational platforms now
routinely evaluate solubility, aggregation propensity, chemical
stability, and expression titer using ensemble ML methods
trained on large antibody engineering datasets (Prihoda et al.,
2022; Raybould et al., 2019). Aggregation-prone regions can be
computationally mapped using support vector machine (SVM)
classifiers and recurrent neural networks, while solubility
predictors such as CamSol and SoluProt provide additional
developability screening (Ghomi et al., 2020; Oeller et al., 2023).
These approaches have reduced attrition rates and accelerated the
selection of viable ADC lead candidates.

AI/ML have also been fundamental in linker and payload
optimization, critical parameters that govern ADC stability,
efficacy, and pharmacokinetics. Machine learning-based
predictive models are trained to match linker properties to
payload hydrophobicity, steric constraints, and chemical
reactivity, ensuring optimal intracellular release profiles
(Shen et al., 2023; Xiong et al., 2024). Novel informatics
platforms now curate large libraries of ADC chemical
structures and employ AI to identify linker–payload–antibody
compatibility rulesets, streamlining rational ADC design (Shen
et al., 2023).

To evaluate the outcomes of linker optimization, several
metrics are employed. These include predictions of plasma
stability, cleavage rate in lysosomal conditions, linker exposure
under solvent-accessible surface area (SASA) analysis, and
simulated steric compatibility with antibody and payload
components. Additionally, docking scores, binding energy
(ΔG), and RMSD across conformational ensembles are
employed to assess spatial fit and flexibility. ML models often
use predicted ADMET properties, such as half-life, cell
permeability, and intracellular release kinetics as surrogate
endpoints. For example, Su and Zhang demonstrated a model
that predicted intracellular release profiles based on linker-
payload hydrophobicity and steric load, validated against
in vitro lysosomal degradation assays. (Su and Zhang, 2021) In
glycan-based linker studies, the Woods Group used MD
simulations to analyze hydrogen bond occupancy and
glycosidic torsion angle variability, providing insight into
stability and solvent exposure (Woods Group, 2025) More
broadly, benchmarking efforts described by Bhatt and Shea
have highlighted the use of hybrid ML-mechanistic evaluation
pipelines, supported by publicly available ADC performance
datasets (Bhatt and Shea, 2025).

Efficient, flexible linker modeling and design are further
augmented by combining DL and MD simulations. Models
trained on simulated ensembles can predict linker dynamics,
steric hindrance, and degradation pathways, tailoring linker
structures for optimal tumor penetration and cytotoxic
payload release (Imrie et al., 2020). These advances allow ADC
developers to model static conjugates and dynamic,
physiologically relevant states critical for in vivo efficacy.

Glycan-based linkers represent a modular and biocompatible
strategy for next-generation ADCs. These linkers are
engineered to incorporate site-specific conjugation,
enzymatically cleavable motifs, or sterically protective
elements that modulate payload exposure and tumor
microenvironment responsiveness. Using MD simulations with
the GLYCAM force field, glycan linkers can be modeled at atomic
resolution to evaluate conformational flexibility, hydrogen
bonding patterns, and solvent accessibility under
physiologically relevant conditions. Such simulations enable
the rational design of glycan linkers with controlled
degradation profiles and enhanced plasma stability (Woods
Group, 2025).

State-of-the-art AI pipelines built on NVIDIA GPU
architecture have been increasingly adopted. These platforms
offer scalable, parallelized computing that supports large-scale
simulation and high-throughput docking workflows. Tools like
DiffDock, a diffusion-based structure prediction and docking
algorithm (Corso et al., 2022), can leverage these GPU-
accelerated environments to model glycan–antibody and
glycan–payload interactions with high spatial accuracy and
computational efficiency. DiffDock’s ability to integrate
conformational sampling and ligand flexibility makes it
particularly suited for evaluating the dynamic behavior of
glycan-containing conjugates. When deployed on NVIDIA’s
optimized inference engines and CUDA-based infrastructure,
these pipelines enable rapid screening and prioritization of
glycan linker candidates across diverse structural and chemical
configurations (St. John et al., 2024). This integration of DL-
based docking, MD simulation, and high-performance
computing provides a framework for the rational design of
ADC–glycan conjugates that meet structural and functional
constraints, supporting the development of next-generation
modular linkers with tunable therapeutic properties.

Reinforcement learning (RL) methods represent an unexplored
territory for de novo ADC design. Recent studies have demonstrated
that RL frameworks can simulate iterative mutation and
optimization cycles across antibody sequences, linker chemistries,
and payload combinations. (Schneider, 2021). These algorithms
allow the system to learn from each design iteration, refining
candidates based on developability scores, predicted cytotoxicity,
and pharmacokinetic parameters. Integrating RL into closed-loop
experimental workflows offers the potential for fully autonomous
ADC engineering platforms capable of continuous improvement
and optimization.

Recent computational reviews have emphasized the growing
sophistication of AI-driven ADC design strategies. For instance,
Bhatt D and Shea J. summarized advances in computational lead
optimization for antibody–linker–payload systems (Bhatt and Shea,
2025), while Lodge et al. described emerging technologies for
quantifying antibody binding properties and their downstream
implications for ADC design (Lodge et al., 2025). Together, these
innovations show how AI/ML are no longer supplementary to ADC
development but are becoming essential at every stage, from early
antigen selection and antibody optimization to chemical linker
matching and payload stability prediction. As datasets expand
and DL algorithms grow, the integration of AI/ML holds great
promise, and this is only the beginning.
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Emerging generative AI models
for ADCs

A notable advancement in this field is the emergence of
generative AI frameworks specifically adapted for antibody
engineering, which contributes to ADC development, as
illustrated in Figure 4. Generative adversarial networks (GANs)
and variational autoencoders (VAEs) have generated diversified
CDR loop libraries with enhanced antigen-binding potential. For
example, PALM-H3, a recent GAN-based generative framework,
was created for SARS-CoV-2 antibody studies, which enables the
design of the CDR-H3 sequences conditioned on antibody structural
context by learning potential representations that preserve loop
geometry and canonical structural motif while also introducing
functional diversity for antigen recognition (He et al., 2024).
Similarly, the Ig-VAE model efficiently learns potential
representations of the antibody Fv domains, which allows the
conditional generation of variant antibodies with user-friendly
and user-defined properties (Eguchi et al., 2022).

Transformer-based architecture has further expanded the
landscape of antibody sequence generation for mutations.
Pretrained models like AntiBERTa and AbLang influence
antibody sequence databases to learn language-like patterns (Gao
et al., 2024). These models enable the generation of synthetic
antibody libraries, the prediction of structural features from
sequences, and the scoring of sequences for humanness, which is
essential to the ADC developmental pipeline. For example, Hu-mAB
is designed using ML classifiers that can discriminate between
human and non-human antibody variable domain sequences
using the larger available repertoire data (Marks et al., 2021). As
discussed earlier, recent extensions of these models incorporate
paratope conditioning and allow for targeted CDR diversity,
which is aimed at antigens and optimizes workflows (Peng and
Yang, 2022).

In silico affinity maturation and humanness, scoring have also
been transformed by integrating experimental deep mutational
scanning (DMS) datasets with computational optimization
strategies. Early work demonstrated that mutation libraries

FIGURE 4
The diagram outlines three components of generative modeling for ADC design. (A) Model types (B) Conditioning inputs incorporate structural and
functional constraints (C) Output candidates are antibody variants optimized for CDR loop structure, developability, humanness, antigen specificity, and
linker-payload compatibility.
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coupled with binding assays could map affinity and excel in this area
(Barderas et al., 2008). Building on these computational frameworks,
such as computational affinity maturation (CAM)models, has led to
the development of models that predict point mutations that
enhance antigen-binding affinity without compromising solubility
or how it works (Koenig et al., 2015). These approaches allow ADC
developers to simulate mutations in silico, guiding rational design
for affinity and developability improvements.

Introducing diffusion-based generative models into antibody
engineering has been a paradigm-shifting development. For
example, EvoDiff, a diffusion-based model developed for protein
generation, has recently been adapted for antibody design tasks,
enabling the controllable generation of novel binders with desired
paratope features (Alamdari et al., 2023). Similarly, DiffAb, a
diffusion model trained specifically on antibody structural
ensembles, allows users to sample structurally diverse yet
functionally plausible antibody variants, providing new avenues
for ADC diversification (Luo et al., 2022). These emerging
models offer a path toward more integrated structure-function
co-design, enabling the simultaneous optimization of sequence
and structural properties. Traditional antibody modeling
workflows often separate sequence optimization from structural
validation. Diffusion models can generate sequences directly
constrained by desired structural outcomes, such as loop angles,
epitope curvature, or solvent accessibility parameters relevant to
ADC linker engineering and payload accessibility.

Case applications and platforms

Case applications further showed the impact of AI-driven ADC
design. In human epidermal growth factor receptor 2 (HER2)
targeted ADCs, machine learning predicts optimal conjugation
sites that maintain receptor affinity while maximizing
internalization and endosomal escape efficiency. DL frameworks
trained on antibody-antigen complex structures have guided the
selection of paratope configurations that preserve epitope
accessibility after conjugation, improving both binding and
cytotoxicity (Sobhani et al., 2024; Dewalker et al., 2025). For the
cluster of differentiation 30 (CD30) targeted ADCs, AI-based
classification models have aided in predicting trafficking behavior
and lysosomal delivery, leading to improved cytotoxic payload
delivery in hematologic malignancies (Goeij et al., 2016). Another
example is the epidermal growth factor receptor (EGFR) targeted
ADCs, convolutional neural networks (CNNs) and graph-based
models have been applied to forecast receptor expression
heterogeneity across tumor subtypes, guiding rational selection
and payload tuning to avoid off-target toxicity (Zhang et al., 2024).

Tools such as the ADCdb provide a curated repository of
structural, functional, and clinical metadata for over 200 ADCs,
which serves as a valuable foundation for multi-tasking learning
models that integrate linker chemistry, payload class, and efficacy
metrics (Shen et al., 2023).

Recent studies have demonstrated the efficacy of Neural
Ordinary Differential Equations (Neural-ODEs) with an example
of ADCnet, a deep neural network of the model, in capturing the
dynamic behavior of ADCs, including intracellular trafficking, linker
cleavage kinetics and payload release over time (Ahmed et al., 2022;

Losada and Terranova, 2024; Bram et al., 2023).These continuous-
time models are well suited for simulating the nonlinear kinetics
observed in lysosomal degradation and drug activation. They
provide valuable insights into structure-activity relationships
relevant to payload potency and release (Jin et al., 2023), while
IgFold, DeepAb, and DiffAb support rapid antibody structure
prediction and paratope design specific for stable conjugation
(Luo et al., 2022; Ruffolo et al., 2023; Ruffolo et al., 2022).
Generative tools such as EvoDesign facilitate the structure-guided
design of the antibody variant compatible with linkers and drug
loading, while Mabtope aids in identifying conjugation-tolerant
epitopes and evaluating developability and immunogenicity
(Pearce et al., 2019; Bourquard et al., 2018; Tahir et al., 2021).
Prihoda et al. (2022) This is to name a few, but we have provided
Table 1 with a more in-depth explanation to others in the Antibody
and ADC pipeline that are accessible as open source and through
the industry.

Challenges and future directions in AI-
Driven ADC design

Integrating AI/ML into ADC design faces several challenges
despite growing enthusiasm for their potential to accelerate
discovery (Visan and Negut, 2024). One of the issues is the
scarcity of high-quality, publicly available data. Much of the
experimental information surrounding ADCs, such as
conjugation chemistry, drug-to-antibody ratio (DAR), linker
stability, pharmacokinetics, and toxicity, is either proprietary or
inconsistently reported, limiting the development of generalizable
models (Mckertish and Kayser, 2021). Even when data is available,
the inherent complexity of ADCs poses unique modeling difficulties.
Unlike traditional small molecules or monoclonal antibodies, ADCs
comprise three interdependent components: the antibody, the
chemical linker, and the cytotoxic payload, which can influence
efficacy, stability, and safety in nonlinear and context-dependent
ways (Dewalker et al., 2025). Current models often struggle to
capture these multimodal interactions, especially when detailed
3D structural information of the complete ADC is lacking
(Sapoval et al., 2022). Additionally, AI models developed for
small molecule or biologic therapeutics frequently fail to translate
to ADCs, as they inadequately predict developability factors such as
aggregation, solubility, and clearance (Chen et al., 2023). Off-target
effects and antigen heterogeneity complicate predictive modeling,
particularly when simulating tumor selectivity or toxicity across
diverse patient populations (Zhang and Liu, 2025). The reliance on
black-box neural networks also introduces interpretability and
regulatory acceptance issues, particularly in safety-critical
environments (Hassija et al., 2023).

Future progress in AI-driven ADC development will rely on
integrated, multi-scale modeling approaches that bridge protein
structure prediction, systems pharmacology, and real-world
clinical and omics data. Recent advancements such as
AlphaFold3 enable structural inference of antibody–ligand
complexes, including glycan and payload binding, which can
support atomic-level modeling of full ADCs. (Abramson et al.,
2024) These structural insights offer a path toward more
predictive therapeutic design when coupled with system-level
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TABLE 1 Antibody and ADC design tools.

No Tools/Model Year Function/Role References

Structural Prediction of CDRs

1 AlphaFold3 2024 Structure prediction and modeling in complexes Abramson et al. (2024)

2 AbFlex 2024 CDR design method with a given antibody-antigen complex Jeon and Kim (2024)

3 ESMFold 2023 predicts protein structures directly from sequence using a language model
without relying on alignments

Lin et al. (2023)

4 AlphaFold-Multimer 2023 Models antibody-antigen complexes and multi-protein assemblies to assess
conjugation impact

Liu et al. (2020)

5 AbDiffuser 2023 Generation of antibody 3D structures and sequences Martinkus et al. (2023)

6 ImmuneBuilder/ABodyBuilder2/
NanoBodyBuilder2/TCRBuilder2

2023 Fv modeling, antibody structure modeling, TCR structure modeling,
nanobody structure modeling

Abanades et al. (2022)

7 IgFold 2023 Accurate antibody structure prediction Ruffolo et al. (2023)

8 tFold-Ab 2022 predicts antibody structures using ProtXLNet embeddings and a simplified
Evoformer, with attention to CDR loops and side-chain conformations

Wu et al. (2022)

9 xTrimoABFold 2022 Uses ProtXLNet embeddings and streamlined architecture to predict
antibody structures with improved CDR and side-chain accuracy

Wang et al. (2022)

10 DiffAb 2022 Diffusion model for generating structurally diverse antibody variants to
support ADC design

Luo et al. (2022)

11 ABLooper 2022 Antibody CDR loop structure prediction Abanades et al. (2023)

12 DeepSCAb 2022 Prediction of antibody backbone and side-chain conformations Akpinaroglu et al. (2022)

13 DeepAb 2022 Antibody structure prediction Ruffolo et al. (2022)

14 SMCDiff 2022 Protein backbones and motif-scaffolding Trippe et al. (2023)

15 DeepH3 2020 Prediction of CDR H3 loop Ruffolo et al. (2020)

16 RosettaAntibody 2018 Antibody modelling Adolf-Bryfogle et al.
(2018)

Optimization and Affinity improvement

17 IgDiff 2024 De novo antibody design Cutting et al. (2025)

18 AbGAN-LMG 2023 Higher-quality antibody library generation and optimization Zhao et al. (2023)

19 Ens-Grad 2020 CDR design Liu et al. (2023)

20 OptMAVEn2.0 2018 De novo Design of Antibody Variable Region Chowdhury et al. (2018)

21 OptCDR 2010 CDR designing Pantazes and Maranas
(2010)

22 MEAN 2023 Antibody design Kong et al. (2023)

Generating CDR Libraries

23 IgLM 2023 Generates full-length antibody sequences and Infilled CDR H3 loop libraries
generated

Shuai et al. (2023)

Optimizing CDR Immunogenicity

24 reportBERT N/A Optimizing CDR Immunogenicity Dewalker et al. (2025)

Binding site prediction and interaction

25 EquiPocket 2023 Binding site prediction Zhang et al. (2023)

26 AbAgIntPre 2022 Predict antibody-antigen interactions Huang et al. (2022)

27 DLAB 2022 Schneider et al. (2022)

(Continued on following page)
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TABLE 1 (Continued) Antibody and ADC design tools.

No Tools/Model Year Function/Role References

Predict antibody-antigen binding for antigens/binder/Virtual screening/
non-binder classifier

28 PECAN 2020 Predict binding interfaces on both antibodies and antigens Pittala and Bailey-Kellog
(2020)

Epitope and Paratope Prediction

29 Paragraph 2023 Antibody paratope prediction Chinery et al. (2023)

30 SEMA 2022 B-cell conformational epitope prediction Shashkova et al. (2022)

31 EPMP 2021 Joint epitope-paratope prediction Del Vecchio et al. (2021)

32 EvoDesign 2019 Epitope-guided sequence design optimizing paratopes for conjugation
compatibility

Pearce et al. (2019)

33 MabTope 2018 Structure-based epitope prediction supporting ADC-compatible
conjugation strategies

Bourquard et al. (2018)

Other Antibody/ADC Tools

34 AbSciBio 2024 De novo antibody design Shanehsazzadeh et al.
(2024)

35 ADCdb 2024 Aggregates structural, functional, and clinical data for over 200 ADCs to
enable modeling of design trends and outcomes

Shen et al. (2023)

36 ProGen2 2023 Modeling evolutionary sequence distributions, creating novel sequences, and
predicting protein fitness

Nijkamp et al. (2023)

37 Protpardelle 2023 Generative model for protein design Chu et al. (2024)

38 ADC-net (Neural-ODEs) 2022 DL framework integrating protein and small-molecule representations to
predict ADC activity

Ahmed et al. (2022)

39 AbLang 2022 Restores the missing residues of antibody sequences Olsen et al. (2022)

40 AbBERT-HMPN 2022 Generation of sequences and structures, focusing on the design of antigen-
binding CDR-H3 regions

Gao et al. (2022)

41 AntiBERTa 2022 Tracing B cell origins, quantifying immunogenicity, and predicting antibody
binding sites

Leem et al. (2022)

42 HERN 2022 Antibody docking and design Jin et al. (2022)

43 RFdiffusion 2022 Enables the creation of complex, functional proteins from basic molecular
conditions

Watson et al. (2022)

44 PROTAC-DB/PROTAC-Builder 2022 Originally for PROTACs, linker design tools adapted for ADC applications Li et al. (2022)

45 DiffDock 2022 Predicts how small molecules bind to proteins by generating binding poses
using a diffusion generative model

Corso et al. (2022)

46 AntiBERTy 2021 Understanding of immune repertoires/and affinity maturation/insights into
antigen binding

Ruffolo et al. (2021)

47 RefineGNN 2021 Optimization guided by specific properties to design new antibodies with
enhanced neutralization capabilities

Jin et al. (2022)

48 LSTM based study 2021 Antibody design and affinity maturation/Antibody Binding site prediction Sata et al. (2021)

49 Fold2Seq 2021 Designing protein sequences tailored to a specific target fold Cao et al. (2021)

50 UniRep 2019 Protein engineering and informatics Alley et al. (2019)

51 PEP-FOLD3 2016 De novo modeling of peptide linkers for spatially compatible conjugation
with antibody regions

Lamiable et al. (2016)

52 Glycam Builders/Glycoprotein/Carbohydrate 2005-
now

Provides tools for building and modeling 3D structures of carbohydrates and
glycoproteins linkers

Woods Group (2025)

AI/ML ADC Design Platforms/Pipelines

53 VERISIM Life 2025 VERISIMLife (2025)

(Continued on following page)
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models incorporating tumor heterogeneity, immune
microenvironment data, and patient-specific expression profiles.
Generative models based on diffusion processes and variational
inference are increasingly capable of proposing novel antibody
scaffolds, conjugation sites, and payload chemistries that conform
to structural and functional constraints (Corso et al., 2022). Transfer
learning from related biologic modalities, including multimeric,
bispecific antibodies, and nanoparticle conjugates, can further
improve predictive accuracy when direct ADC training data is
limited. Several methodological strategies have been introduced
to address constraints related to the limited availability of
training data and the narrow diversity of antibody sequences.
Transfer learning allows models trained on large-scale protein
datasets to be adapted to smaller, task-specific datasets through
fine-tuning. Data augmentation techniques, including in silico
mutagenesis and synthetic sequence generation, increase the
number of training examples while preserving biologically
grounded features. Self-supervised learning methods, such as
masked language modeling and contrastive representation
learning, are used to extract structural and sequence-level
patterns without requiring labeled outputs. These approaches are
designed to improve model performance under limited data
conditions and reduce overfitting by enhancing feature extraction
and sampling variability. Techniques such as federated learning
enable the development of multi-institutional models without
compromising data privacy, while active learning frameworks
prioritize the experimental validation of high-uncertainty
predictions to refine model performance iteratively.
Interpretability methods, including attention-based attribution
and saliency mapping, can help identify biologically relevant
features driving model outputs, facilitating mechanistic
understanding and regulatory transparency. Addressing these
challenges systematically will be essential to establish AI-
augmented workflows for the rational engineering multimeric
and next-generation ADCs.

Conclusion

AI/ML have begun to redefine the field of ADC design by
introducing advanced capabilities for prediction, optimization,
and iterative refinement across the development pipeline. Unlike
traditional trial-and-error approaches, AI/ML models can extract

subtle structure-activity relationships from complex, high-
dimensional data and identify candidate designs that might be
overlooked. These tools have already demonstrated utility in
predicting antigen-antibody interactions, optimizing
conjugation sites, forecasting pharmacokinetics and off-target
liabilities, and selecting linker–payload combinations with
improved stability and therapeutic index. As a result,
researchers are shifting toward a rational, data-driven
paradigm for ADC discovery, minimizing the need for
resource-intensive empirical screening.

With the emergence of next-generation ADCs, including
multimeric constructs, bispecific formats, and modular payload
systems, there is an urgent need for more advanced computational
frameworks capable of modeling their increased structural and
functional complexity. Multimeric ADCs, which incorporate
multiple antigen-binding domains or payload units, hold the
potential for enhanced avidity, dual-target engagement, and
improved tumor selectivity, particularly in heterogeneous or
resistant cancers. However, the design of these molecules
requires a detailed understanding of inter-domain spatial
orientation, linker flexibility, steric constraints, and payload-
release kinetics, all of which are challenging to assess
experimentally. AI-driven platforms, particularly those
employing graph neural networks, transformer-based
architectures, and multimodal representation learning, are well-
positioned to address these needs.

Recent breakthroughs such as AlphaFold3 offer
unprecedented accuracy in predicting antibody structures and
multicomponent protein complexes with bound ligands, glycans,
and small molecules. This capability enables the structural
modeling of full ADCs, including multimeric variants, at
atomic resolution, facilitating in silico evaluation of
conjugation strategies, epitope accessibility, and linker spatial
compatibility. Complementing these efforts, diffusion-based
generative models have emerged as powerful tools for the de
novo design of antibody scaffolds, linkers, and payload-
functional groups. These models operate by iteratively
denoising latent molecular representations, allowing for the
exploration of chemical and structural design spaces while
maintaining biologically relevant constraints. Generative
approaches, active learning, and experimental feedback
transform the ADC design process from an enumeration-based
approach to an intelligent, hypothesis-driven synthesis.

TABLE 1 (Continued) Antibody and ADC design tools.

No Tools/Model Year Function/Role References

Virtual clinical trial platform integrating PK/PD models, population
variability, and tumor-specific parameters

54 RADR (Lantern Pharma) 2025 AI platform identifying ADC targets and payloads using ML, aiding novel
ADC development

LanternPharma (2025)

55 BigHat Biosciences 2025 ML with high-throughput wet lab for iterative antibody optimization,
including ADCs

Biosciences (2025)

56 MabSilico 2025 AI-driven antibody discovery for accelerated ADC candidate optimization MAbSilico (2025)

57 Generate: Biomedicines 2025 ML-based protein design, including antibodies for therapeutic ADCs Generate: Biomedicines
(2025)
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Continued investment is required in standardized data
infrastructures, experimentally verified datasets, and regulatory
frameworks that support algorithmic validation and model
interpretability. However, increases in model complexity and
dataset size do not resolve fundamental limitations in statistical
learning. The performance of AI/ML models is influenced by data
quality, including annotation accuracy, measurement consistency,
and the completeness of molecular descriptors. Limitations in
training set diversity, class imbalance, and non-independent
sampling introduce bias, while improper separation of training
and validation sets, as well as test sets, reduces reliability and
inflate performance estimates. Without systematic evaluation
protocols and benchmarking against external datasets, model
generalizability remains constrained.

As AI/ML methods are incorporated into experimental and
preclinical workflows, their utility depends on the alignment
between the model structure, biological context, and the
design of the training and validation processes. Establishing
iterative feedback between in silico prediction and empirical
testing, alongside coordination across computational, chemical,
and clinical disciplines, become essential to enable the reliable
application of these technologies. Ultimately, AI/ML approaches
are positioned to transform the design and development of ADCs,
including multimeric and next-generation formats, by enabling
scalable and mechanistically grounded strategies. Approaches
such as transfer learning, data augmentation, and
representation learning can improve model performance in
data-constrained settings and be incorporated into AI
workflows without relying on large, labeled datasets. Their
impact, however, will depend on the integration of these tools
with high-quality datasets, validated model architecture, and
coordinated experimental feedback to ensure biological
relevance and translational applicability.
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