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1 Introduction

The “chemical space” (CS), “chemical compound space,” or “chemical universe” terms
are frequently used in drug discovery and other areas, including chemical synthesis,
catalysis, materials science, food chemistry, and agrochemistry, among others (Kim
et al., 2024). While the concept is often used intuitively or colloquially, CS is inherently
complex, and numerous formal definitions have been proposed and reviewed (Medina-
Franco et al., 2022). A commonly accepted notion of CS relates to the number of chemical
compounds that could theoretically exist—the “size” of chemical space—which varies
greatly depending on the classes of compounds considered (e.g., small organic molecules,
peptides, odorants). Another perspective views CS as a multidimensional space in which
molecular properties (both structural and functional) define coordinates and relationships
between compounds (Virshup et al., 2013; Martinez-Mayorga and Medina-Franco, 2014).
These definitions give rise to the concept of chemical subspaces (ChemSpas): subsets of the
broader chemical universe distinguished by shared structural or functional features. Within
this framework, the biologically relevant chemical space (BioReCS) comprises molecules
with biological activity—both beneficial and detrimental. BioReCS spans diverse application
areas such as drug discovery, agrochemistry, sensory chemistry (e.g., flavor and odor), food
science, and natural product research. It also includes compounds with reactive molecules,
including promiscuous and poly-active molecules, as well as those with highly detrimental
or undesirable effects, such as toxic and allergic compounds.

Chemical compound databases are key resources for exploring the CS and are central to
chemoinformatics (Williams and Richard, 2025). Numerous public databases—varying in
size and specialization—target specific regions of BioReCS. Table 1 provides representative
examples of freely available libraries across several domains. Comprehensive reviews of
chemoinformatic and bioinformatic databases have been published elsewhere (Rigden and
Fernández, 2025; de Azevedo et al., 2024).

A systematic study of CS requires molecular descriptors that define the dimensionality
of the space. The choice of descriptors depends on project goals, compound classes (e.g.,
metal-containing vs purely organic molecules), and the dataset size and diversity. Large and
ultra-large chemical libraries that are highly used today in drug discovery projects (Lyu
et al., 2019; Corrêa Veríssimo et al., 2024), for example, demand descriptors that strike a
balance between computational efficiency and chemical relevance (Warr et al., 2022). The
rise of machine learning has led to the development of novel molecular representations
(Wigh et al., 2022). Visualization is another critical tool for CS analysis, because these spaces
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often involve many dimensions; dimensionality-reduction
techniques are commonly used to project them into two or three
dimensions for interpretation. Recent reviews detail advancements
in the visualization of chemical space (Sosnin, 2025).

In this article, we offer an integrative perspective on BioReCS,
highlighting common considerations for its consistent and
meaningful exploration. We also address its size, historical
evolution, and future expansion.

2 BioReCS

2.1 Current view

In many research projects, the chemical universe—and by
extension, BioReCS—is explored through distinct sections of
chemical subspaces (ChemSpas). For instance, CS analyses may
focus specifically on small-molecule drug candidates, peptides (Orsi
and Reymond, 2024), or proteolysis-targeting chimeras (PROTACs)
(Danishuddin et al., 2023; Sincere et al., 2023). Other studies target
agrochemicals, odorants, natural products, or metal-containing
compounds. Some research initiatives are at the intersection of
multiple ChemSpas, such as investigating bioactive compounds that
straddle both natural product and food chemical domains (Avellaneda-
Tamayo et al., 2024) or studying the overlap between flavor and odor
chemicals (Cui et al., 2025). Analyzing these intersecting regions of
chemical space often requires integrating methodologies from diverse
disciplines. In this section, we highlight both heavily explored and
underexplored regions of BioReCS.

2.2 Heavily explored chemical subspaces

In drug discovery, widely used public databases such as ChEMBL
(Zdrazil, 2025) and PubChem (Kim et al., 2024) serve asmajor sources of
biologically active small molecules, primarily organic compounds. Owing
to their extensive biological activity annotations, these databases are
major sources of poly-active compounds and promiscuous structures.
Table 1 summarizes these and other key databases that cover different
regions of BioReCS. The chemical space of drug-like molecules,
particularly small organic compounds and natural products, has been
extensively studied. Closely related areas, such as small peptides and other
beyond Rule of 5 (bRo5) entities, are also well-characterized using
computational approaches (Price et al., 2024; Capecchi and Reymond,
2021; López-López et al., 2023). Importantly, to fully chart the boundaries
of BioReCS, it is crucial to include negative biological data—that is,
compounds known to lack bioactivity (Williams et al., 2016; López-López
et al., 2022). These data help define the non-biologically relevant portions
of chemical space. A notable example is dark chemical matter, a large-
scale dataset comprising small molecules from corporate compound
collections that have repeatedly failed to show activity in high-throughput
screening assays (Wassermann et al., 2015). Also, a recent development is

the generation of InertDB, a compound collection with 3,205 curated
inactive compounds obtained from PubChem (An et al., 2025). The
database also includes 64,368 putative inactivemolecules generatedwith a
deep generative artificial intelligence (AI) model trained on the
experimentally determined inactive molecules (An et al., 2025).

2.3 Underexplored chemical subspaces

Certain types of chemical structures remain underrepresented in
chemoinformatics due to modeling challenges. A prominent example is
metal-containing molecules, which are often excluded during data
curation because most chemoinformatics tools are optimized for
small organic compounds (Fourches et al., 2016; Bento et al., 2020;
Valle-Núñez et al., 2025). Metallodrugs, therefore, represent a
structurally and functionally important class that is commonly
filtered out by default. However, the difficulty of modeling a region
of BioReCS should not justify its exclusion. Similarly, various
compound classes are rarely targeted in drug discovery efforts,
including large and complex natural products, macrocycles
(compounds containing rings of ≥12 atoms), protein-protein
interaction (PPI) modulators or inhibitors, PROTACs, and mid-
sized peptides. Many of these molecules fall into the beyond Rule of
5 (bRo5) category (Price et al., 2024; Whitty and Zhou, 2015; Schaub
et al., 2021) (Table 1). Despite their complexity, interest in
characterizing these regions of chemical space is growing. Recent
studies have addressed the CS of peptides (Orsi and Reymond,
2024; Capecchi et al., 2019), agrochemicals (Zhang et al., 2018),
metallodrugs (Meggers, 2007; López López and Medina-Franco,
2025), macrocycles (Viarengo-Baker et al., 2021; Kim et al., 2025),
and PPIs (Zhang et al., 2014; Choi et al., 2021).

2.3.1 Dark regions of the underexplored BioReCS
Beyond beneficial regions, BioReCS also encompasses gray-to-

dark areas—zones that include compounds with undesirable
biological effects, such as toxic chemicals (Tihányi et al., 2025;
(Annex on Chemicals, 2025). Understandably, these regions have
received less attention than areas linked to therapeutic or beneficial
activity. Nonetheless, distinguishing the characteristics that separate
harmful compounds from beneficial ones is vital for the design of
safer, human-beneficial, and ecologically responsible molecules.

3 Common considerations to
explore BioReCS

In this section, we highlight common challenges associated with
exploring BioReCS, along with possible workarounds and emerging
directions. While not exhaustive, these topics are meant to illustrate
recurring issues and encourage a holistic consideration of the BioReCS.

3.1 Towards universal descriptors

The structural diversity across underexplored regions of BioReCS
presents a major challenge to define a consistent chemical space using
molecular descriptors. Traditional descriptors, tailored to specific
ChemSpas such as small molecules, peptides, or metallodrugs, lack

Abbreviations: AI, artificial intelligence; bRo5, beyond Rule of 5; ChemSpa,
chemical subspace; CS, chemical space; BioReCS, biological-relevant
chemical space; PROTACs, proteolysis-targeting chimeras; PPI, protein-
protein interaction.
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TABLE 1 Representative public compound data sets covering different regions of the BioReCS.a

Type of data set,
area covered

Exemplary data sets Size range Brief description

Drugs approved for
clinical use

DrugBank (Knox et al., 2023) | FDA
(Center for Drug Evaluation and Research,
2025)

17,481 entries | 4,563 approved chemical entities Comprehensive, manually curated resource
integrating detailed drug, drug–target, and
pharmacological data. The FDA set is
included in DrugBank

Metallodrugs MetAP DB (López López and
Medina-Franco, 2025)

61 Metal-based approved drug database.
Compounds are classified according to their
clinical uses: metallodrug, imaging,
radioimaging, radiotherapy, and
photodynamic

Compounds and tools for
drug repositioning

DrugRepoBank (Huang et al., 2024) Bioactive compounds: 49,652; Drug–target
interactions: 880,945; Drug–disease associations:
28,978; Drug–side effect associations: 109,698;
Target proteins: 4,221; Drug gene-expression
signatures: 473,647

A comprehensive, curated database and
discovery platform designed to accelerate
drug repositioning

Compounds in clinical trials ClinicalTrials (ClinicalTrials.gov, 2025) ≈530,000 entries Database of clinical research studies and
information about their results. Generated
by the U.S. National Institutes of Health
and other U.S. agencies. Data on clinical
entries from 200 countries

Compounds annotated with
biological activity

ChEMBL (Zdrazil et al., 2023; Zdrazil,
2025); PubChem (Kim et al., 2024);
CellMinerCDB (Shankavaram et al., 2009)

~2.4 M | > 322 M | >20,000 compounds Repositories of biologically annotated
compounds, integrating experimental
bioactivity data, clinical-phase molecules,
drug repurposing candidates, and chemical
probe information. | CellMiner Integrates
genomic and pharmacologic data for the
NCI-60 panel of 60 diverse human cancer
cell lines, representing 9 different cancer
types

Peptides Peptipedia v2.0 (Cabas-Mora et al., 2024) 3,983,654 sequences; 103,561 active labeled Largest bioactive peptide compilation
database to 2024, with more than
200 bioactivity types. Web-based tools
include secondary structure evaluation,
functional domain analysis,
physicochemical, and thermodynamic
properties

Proteomics ProteomicsDB (Schmidt et al., 2017) Number of LC-MS/MS experiments: ~19,000;
Human tissues/body fluids: ~41; Cell line
datasets: ~60

Protein-centric database designed for
exploration of large-scale quantitative mass
spectrometry proteomics data. Multi-omics
data types: transcriptomics, proteomics,
functional drug-sensitivity, and interaction
networks

Targeted covalent inhibitors
(TCIs)

CovBinderInPDB (Guo and Zhang, 2022)
CovalentInDB 2.0 (Du et al., 2024)

7,375 covalent modifications; 8,303 inhibitors Curated databases to support the design of
TCIs. Covalent interactions detailing
binders across diverse residues. Expand on
bioactivity data, target profiles, ligandability
predictions, and libraries of commercial
and natural product-derived covalent
compounds

Protein-protein interaction
(PPI) inhibitors

iPPI-DB (Torchet et al., 2021) | DLiP-PPI
(Ikeda et al., 2023) ref

2,374 compounds | 32,647 PPI-related
compounds

Manually curated, community-extendable
resource featuring annotated PPI
modulators and stabilizers | Newly
synthesized and literature-extracted
molecules, characterized by properties
tailored for PPI inhibition, along with
target-specific filtering, and activity data

Macrocycles MacrolactoneDB (Zin et al., 2020) ~14,000 Macrocyclic lactones integrating structural
and bioactivity data, designed to support
cheminformatics analysis and predictive
modeling of this compound class

Heterobifunctional degraders PROTACs (Srivastava et al., 2025) 10 Manual compilation of representative
PROTACs in clinical development

(Continued on following page)
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universality. However, there are ongoing efforts to develop structure-
inclusive, general-purpose descriptors. Notable examples include
molecular quantum numbers (Nguyen et al., 2009) and the
MAP4 fingerprint (Capecchi et al., 2020 ref), which is designed to
accommodate entities ranging from small molecules to biomolecules
and evenmetabolomic data.More recently, neural network embeddings
derived from chemical language models have shown promise in
encoding chemically meaningful representations that can reconstruct
molecular structures or predict properties (Lžičař and Gamouh, 2024).
However, there is still a pressing need to develop systematic molecular
fingerprints for the study of biomaterials and inorganic molecules.

3.2 pH-dependent chemical space

Many bioactive compounds, especially drugs, are weak bases, acids,
or ampholytes that can ionize depending on the pH of their
environment. Pioneering studies have reported that 62.9% of
compounds in the World Drug Index (n = 582) are ionizable, with
the majority being bases, fewer acids, and some ampholytes (Manallack,
2007), however, chemogenomic analyses on contemporary drugs (n =
3766) have shown that this percentage can reach 80% (Manallack et al.,
2013). In consequence, the ionization state—charged or neutral—of a
bioactive compound profoundly impacts its solubility, permeability,
absorption, distribution, toxicity, and binding, making this distinction
essential in drug development and computational modeling. However,
CS analyses typically assume molecular structures with neutral charge,
which may not reflect the actual bioactive species of compounds under
physiological or environmental conditions. Even when the structural

representation of an ionizable compound is accurate, chemoinformatics
tools often calculate molecular descriptors such as lipophilicity (logP)
based solely on the neutral species, overlooking the dominant ionic
forms. Computing lipophilicity using logD at physiological pH is much
more relevant than using logP for small molecules (Bhal et al., 2007;
Zamora et al., 2017), including standard amino acid residues (Zamora
et al., 2019) to non-standard residues (Viayna et al., 2024). Those
limitations underscore the need for implementing chemoinformatics
tools capable of calculating molecular properties contingent on the
ionization state of bioactive compounds as a function of
environmental pH in CS research (Bertsch et al., 2023; Bertsch-
Aguilar et al., 2024). This highlights that neglecting the pH-
dependent behavior of bioactive compounds could limit the
biological relevance of BioReCS. Consequently, future efforts should
aim to incorporate protonation state dynamics to enhance their
representativeness in pH-dependent CS analysis.

3.3 De novo generated libraries: expanding
the BioReCS

In drug discovery and beyond, there is growing interest in creating
on-demand, synthetically accessible virtual libraries for high-throughput
screening (Perebyinis and Rognan, 2022; Grygorenko et al., 2020;
Chávez-Hernández et al., 2023). Advances in generative models have
accelerated the enumeration of the large and ultra-large chemical
libraries, expanding the known chemical space and enabling the
design of extensive libraries guided by structure or property
constraints (Ye, 2024). However, evaluating the usefulness of such

TABLE 1 (Continued) Representative public compound data sets covering different regions of the BioReCS.a

Type of data set,
area covered

Exemplary data sets Size range Brief description

Pharmacogenomics PharmGKB (Gong et al., 2021) Drugs: 715; Genes: 1,761; Diseases/phenotypes:
227; Clinical dosing guidelines: 165; Drug labels
annotated: 784; Variant annotations:
>5,000 individual variant–drug summaries

It specializes in curated information about
how human genetic variation affects drug
response—covering clinical dosing
guidelines, drug label annotations,
variant–drug associations, and
gene–pathway data to support both
research and clinical precision medicine

Natural product compounds COCONUT (Chandrasekhar et al., 2024) |
LANaPDB (Gómez-García et al., 2024)

695,119 | 13,578 Compilation of curated natural product
databases

Food chemicals FooDB (Harrington et al., 2019) >3 M records and observations, corresponding to
128,283 different foods

Database focused on the chemical
composition of foods and their associated
health effects

Flavor molecules Kou et al. compilation (Kou et al., 2023) |
Compilation for FlavorMiner
(Herrera-Rocha et al., 2024)

>14,000 unique flavor molecules (8982 molecules
with known taste and 5,046 with known aroma) |
13,387 compounds

Compilation of 25 flavor molecule
databases published within the last 20 years
| Compilation of molecules with
experimentally validated flavor profiles

Odor chemical Pyrfume (Hamel et al., 2024) |
OlfactionBase (Sharma et al., 2021)

>20,000 odorants | 2,871 entries related to
odorant/pheromone binding

Unified dataset of stimulus-linked olfactory
datasets | Includes odors, odorants, and
odorless compounds and their interactions
with different receptors

Toxic chemicals TOXNET (Davis et al., 2020) | OPCW
schedules (Annex on Chemicals, 2025)

103,062,149 toxicogenomic data, including
chemical–gene/protein interactions,
chemical–disease and gene–disease relationships
| >35,000 chemical weapons

A publicly available database that aims to
advance understanding about how
environmental exposures affect human
health
| Substances are organized into two
categories: Toxic and precursors

aThe list of compound databases is not exhaustive. Exemplary databases are shown.
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libraries requires more than sheer size; chemical diversity, as assessed
through fingerprints, scaffolds, and physicochemical descriptors, is
equally critical. Notably, a recent historical analysis of ChEMBL,
PubChem, and DrugBank revealed that newer libraries are not
necessarily more diverse (Lopez Perez et al., 2025). A similar trend
could be observed for the continuously enumerated ultra-large chemical
libraries, highlighting the need to quantify their chemical diversity using
multiple structural representations. For BioReCS, we must consider not
only the scale and diversity of expansion but also its direction—whether
new molecules occupy unexplored regions or merely populate existing
subspaces. Depending on the application area (e.g., drug discovery), the
bioactivity profile should also be considered to avoid populating regions
of BioReCS with promiscuous compounds associated with undesirable
clinical effects.

3.4 Developing novel computational
approaches

As the concept and application of chemical space evolve, so too
must the computational tools used to explore it (Reymond, 2025).
Novel or less conventional regions of drug-like space, such as
bRo5 compounds discussed in Section 2.2, demand innovative
methodologies or adaptations of existing ones. For instance, a
recently developed hybrid fingerprint was designed specifically to
accommodate metal-containing molecules, extending traditional
organic-focused fingerprints by incorporating metal-specific features
(López López andMedina-Franco, 2025). Looking ahead, we anticipate
increasing use of hybrid computational workflows, which combine
descriptor-based, rule-based, and AI-driven methods (Medina-Franco
et al., 2024). In parallel, newmethods for analyzingmultiple dimensions
and types of information—such as chemical multiverse analysis and the
creation of consensus chemical spaces (Medina-Franco et al., 2022;
Medina-Franco et al., 2019; López-López and Medina-Franco, 2023)
—will enable more efficient use and integration of available data.
Finally, machine learning models trained in known regions of
BioReCS will play a pivotal role in navigating uncharted subspaces
and improving coverage of BioReCS.

4 Summary

In this opinion article, we offered a holistic perspective on the
biologically relevant chemical space (BioReCS) as a subset of the broader
chemical universe. Effective navigation of BioReCS requires not only
cataloging active compounds but also systematically reporting
biologically inactive molecules, which help define the limits of
relevance. While most of the explored regions focus on human-
beneficial activities—such as therapeutic development, agriculture,
and food sciences—BioReCS also includes dark regions populated by
undesirable or toxic compounds. Recognizing and learning from these
contrasts is essential for safer, ecologically responsible, andmore targeted
molecular design. The exploration of understudied ChemSpasmay drive
the development or refinement of computational tools, especially in cases
where current methods fall short. Broadening the scope of BioReCS
analysis—from both a structural and functional standpoint—could
reveal hidden subspaces containing compounds with novel or
unexpected biological activities. Importantly, training machine

learning models on known BioReCS data will enhance our capacity
to identify uncharted regions and optimize exploration strategies. As
chemical databases continue to grow, it is important to emphasize that
expansion alone does not equate to increased chemical diversity or
biological relevance. Future research should consider not only the scale of
these libraries but also their directionality, structural diversity, and
applicability to real-world biological contexts.
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