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Objective: To improve a previously developed prediction model that could assist in
the triage of individual case safety reports using the addition of features designed
from free text fields using natural language processing.

Methods: Structured features and natural language processing (NLP) features were
used to train a bagging classifier model. NLP features were extracted from free text
fields. A bag-of-words model was applied. Stop words were deleted and words that
were significantly differently distributed among the case and non-case reports were
used for the training data. Besides NLP features from free-text fields, the data also
consisted of a list of signal words deemed important by expert report assessors.
Lastly, variables with multiple categories were transformed to numerical variables
using the weight of evidence method.

Results: the model, a bagging classifier of decision trees had an AUC of 0.921 (95%
CI = 0.918–0.925). Generic drug name, info text length, ATC code, BMI and patient
age. were most important features in classification.

Conclusion: this predictive model using Natural Language Processing could be used
to assist assessors in prioritizing which future ICSRs to assess first, based on the
probability that it is a case which requires clinical review.
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1 Introduction

Before a medicine receives marketing authorization, evidence of its safety and efficacy is
limited to the results from clinical trials, where patients are selected carefully and followed up
under controlled conditions for a limited period of time. This means that at the time of a
medicine’s authorisation, the information about its safety profile is limited. After authorisation
the medicine may be used by a large number of patients, for a long period of time, in patients
with comorbidities that warrants the use of other medicines. New information on adverse drug
reactions (ADRs) may emerge in such circumstances (Stricker and Psaty, 2004; European
Medicines Agency, 2022). It is therefore essential that the safety of all medicines is monitored
throughout their lifecycle. Pharmacovigilance in this perspective is the science and activities
relating to the detection, assessment, understanding and prevention of adverse effects or any other
medicine-related problem (European Medicines Agency, 2022).
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A safety signal in this context is information on a new or known
adverse event that may be caused by a medicine and requires further
investigation (European Medicines Agency, 2021). Safety signals can
be detected from a wide range of sources, such as spontaneous
reports, clinical studies and scientific literature. Spontaneous
reporting systems remain the most efficient and fastest way to get
insight in the safety profile of drugs and vaccines (Raine et al., 2007;
Lester et al., 2013; Klungel and Pottegård, 2021; Lo Re et al., 2021;
Rudolph et al., 2022). Recently, for the COVID-19 vaccines
important signals such as thrombosis with thrombocytopenia
syndrome for the viral vector vaccines were signalled based on
cases (Lane and Shakir, 2022).

Signal detection solely based on the review of individual case
safety reports (ICSRs), also called case-by-case analysis or
qualitative signal detection, has proven its value (Egberts, 2007).
However, it is becoming increasingly time consuming given the
growing volumes of data in pharmacovigilance and can become
more complex as co-variates may play a role (Egberts, 2007). In the
past decades a lot of experience has been gained with the use of
different types of disproportionality analyses in signal detection
(Bate et al., 1998; van Puijenbroek et al., 2002; Orre et al., 2005;
Seabroke et al., 2016). These methods have earned their place in the
signal detection process, although they have their limitations. First,
they do not take into account the clinically relevant parameters
present in the individual reports and should always be followed by
clinical review of cases (Scholl, 2022). Secondly, they are prone to
certain types of bias (de Geaaf et al., 2003; Pariente et al., 2007) and
lastly, a minimum number of cases is needed before a statistical
signal can be detected.

Netherlands Pharmacovigilance Centre Lareb relies on both case-
by-case analyses and statistical based methods in order to find
potential signals. A statistical screening method based on a
prediction model is used to identify potential combinations of
drugs and adverse drug reactions (ADRs) which require further
review (Scholl et al., 2018). In addition, methods such as time-to-
onset analysis (Van Holle et al., 2014; Scholl and van Puijenbroek,
2016; Scholl et al., 2019) and topic modelling (Lösch et al., 2022) have
been employed, with varying success in finding new signals. The
majority of signals is currently still found by cases-by-case analyses in
which trained pharmacovigilance assessors, mostly medical doctors
and pharmacists, review ICSRs and discuss them during a weekly
Signal Detection Meeting (SDM). In order to lower the burden of
having to assess all individual cases, Lareb has relied on methods such
as triage to decrease the set of reports which needs clinical review by
assessors. This triage is performed manually by trained assessors;
however, automation of this process could further reduce the
workload.

Previously, others have attempted to tackle identifying
important cases for signal detection in an automated manner;
Munoz et al. (Muñoz et al., 2020). Developed and validated a
model predictive of an ICSR’s pharmacovigilance utility based on
the United States Food and Drug Administration (FDA) database.
The strongest predictors of ICSR inclusion in this study were
reporting of a designated medical event (DME) and positive
dechallenge. Their validated model showed modest
discriminative ability (Muñoz et al., 2020), (Cherkas et al.,
2022). Developed a machine learning-based model that can
predict the likelihood of a causal association of an observed
drug–reaction combination in an ICSR. The model performed

well in predicting the causality assessment of drug–event pairs
compared with clinical judgment. It should be noted that a causal
relationship for a drug-event combination in an ICSR is not the
same as having signal value. ICSRs with signal value need to have a
certain degree of causality but not all ICSRs with a causal
relationship are potential signals. The principle of using
elements of information relating to causality assessment in an
automated manner was also tested on the French
pharmacovigilance database. However, the authors looked at
drug-event pairs and not individual ICSRs (Berbain et al., 2020).

Recently, Lareb has published their first efforts to develop a
prediction model to identify ICSRs that require clinical review.
This was defined by identifying reports which were taken to the
Signal Detection Meeting (SDM) and investigating the features of
these ICSRs [26]. Most important features in this prediction model
were: “absence of ADR in the Summary of product
characteristics,” “ADR reported as serious,” “ADR labelled as
an important medical event,” “ADR reported by physician” and
“positive rechallenge.” An AUC of 0.75 (0.73–0.77) was obtained,
which can be seen as moderate model performance (Gosselt et al.,
2022).

The aim of this study is to improve a previously developed
prediction model that could assist in the triage of individual case
safety reports using the addition of features designed from free text
fields using natural language processing.

2 Materials and methods

2.1 Source of data and ICSRs

ICSR reports received from 20 to 03-2019 to 30-04-2022 were
extracted from Lareb’s ICSR database. This time period was
chosen since different criteria were used to label reports as case
or non-case in earlier reports. Reports on vaccines were excluded
from our analysis because also for these reports different criteria
were used.

2.1.1 Outcome
The binary outcome is defined as ICSRs marked as ‘case’ or ‘non-

case’ by scientific assessors. Cases are ICSRs that need in depth clinical
review whereas non-case reports can be coded and directly stored in
the database without clinical review.

2.2 Features

2.2.1 Structured features
The features were chosen from Lareb’s ICSR database based on

how informative they were perceived by expert assessors. Of these
features all were included into the training data except for: 1) non-
informative features, such as the safety report identification number
and 2) features with small variances (≤0.0001) with respect to cases or
non-cases, as these were unlikely to be useful to discriminate between
cases and non-cases.

2.2.2 Natural language processing features
The “additional information” text field contained Dutch

descriptions of the ADR that patients experienced and any
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potential other relevant information such as treatment, contact with
a healthcare professional or thoughts on causality made by the
reporter (Rolfes et al., 2015). Because the semantic content of this
text field could be informative for the prediction, NLP features were
extracted from this text field using sklearn (Pedregosa et al., 2011)
and nltk (Bird et al., 2009), which are libraries for predictive data
analysis and statistical NLP developed for the python programming
language.

First, a bag-of-words model was used with tokenization without
stemming to assess NLP features, considering the frequency of the
words mentioned. Stop words were excluded and a maximum word
frequency of 0.2 was set to exclude structured text that was present
in many ICSRs. Stop words refer to words that occur commonly in
reports, but hold little semantic value. Secondly, the 2000 most
frequent words (excluding stop words) in the additional info text
field of case and non-case reports were compared. The words that
were present in case - but not in non-case reports were
subsequently stored on a list. These words were assessed on
their usefulness by two independent Lareb pharmacovigilance
experts. Also, words that were not yet on the list, but which at
least one of the experts considered important, were added.
Subsequently, the list was used as a vocabulary for the bag-of-
words model and resulting features were appended to the existing
feature set.

Lastly, the feature “info_length” was added. This feature
represented the number of characters in the additional text field
and was based on the assumption that cases would have more text
in the additional text field as compared to non-cases.

2.2.3 Weight of evidence feature engineering
Categorical variables that could be equal to more than two

different levels were changed into numerical variables using the
weight of evidence (WOE) method. WOE is a feature engineering
method and has been proven useful for predictive modelling (Dahal
et al., 2008; Cao et al., 2021).

The benefits of using the WOE method is that you have one
variable instead of multiple dummy variables for each level. This
makes it easier to check the feature importance as you have to check
only one variable opposed to multiple dummy variables.

The WOE is calculated for each level of a variable. For example,
the variable primary_source has multiple levels: physician, phar{
macist, .., consumer or other non − health professional}. The WOE
can then be calculated using the following formula:

WOE � ln
P Case( )

P NonCase( ){ }
where P(Case) and P(NonCase) refer to the proportion of case and
non-case reports respectively. If a level has a positive WOE value then
the proportion of case reports is higher than the proportion of non-
case reports.

2.3 Sample size

The dataset contained 49928 reports of which 18,236 (36.5%)
were cases. Various resampling strategies (random upsampling
of the minority class, random downsampling of the majority
class and Synthetic Minority Over-sampling Technique
[SMOTE; generating synthetic samples from the minority

class]) were tested using imblearn library (Lematre et al.,
2017) to balance the number of samples of both classes in the
training set.

2.4 Missing data

Relatively many features were compulsory for the ICSR reporter to
answer, hence little data was missing. Missing data fields can be
explained by reports send on paper/letter, or from other origins
such as registers. Also, new features have been introduced to the
reporting form over time and others have been removed, resulting in
features with missing values. Variables containing missing data where
age in years, weight in kg and length in cm. These variables were
imputed using k nearest neighbor imputation (k = 2 neighbors) using
the KNNImputer function from the sklearn package (Pedregosa et al.,
2011).

2.5 Statistical analyses

2.5.1 Models
Multiple models were trained and tested, including logistic

regression, Extreme Gradient Boosting (XGBoost), support vector
machine, random forest, decision tree classifier and bagging
classifier of decision trees. The bagging classifier was optimized
using the parameters : n estimators, maxfeatures, and criterion
where n estimators � 50, 100, 200, 500, 1000{ } refers to the amount
of base estimators; maxfeatures � 10, 50, 100, 120{ } refers to the
number of features to draw from the training data to train each
base estimator. Lastly; criterion � Gini, entropy, log loss{ } refers to
the criterion to be optimized by the model. Best model parameters
were chosen using 5-fold cross-validation and found using the
RandomizedSearchCV function from the scikit-learn package
(Pedregosa et al., 2011).

2.5.1.1 Model training and test set
Firstly, the data was divided into a training set (70%) and a test set

(30%) where a fixed proportion case reports/non-case reports in each
set was ensured using the RandomOverSampler from the imblearn
package (Lematre et al., 2017). Model performance was assessed on the
test set using accuracy, precision, recall, f1-score and area under the
curve (AUC). The threshold for which the precision and recall were
reported was chosen such that Youden’s index was the highest. Feature
importance was determined by looking at what features were selected
in every base classifier and how important that feature was for the
prediction. This was provided by the bagging classifier from scikit-
learn package (Pedregosa et al., 2011). These results were then
summed for all base classifiers to get an idea of overall feature
importance.

All data analysis was performed using Python 3.10.

3 Results

The training set contained 34,589 ICSR reports (70%) of which
12,634 (36.5%) were cases. Random upsampling of the minority class
in the train set resulted in the best performance (data not shown) and
was therefore applied to train the models.
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The list of content-related words from the additional_info text that
were frequently present in cases and not in non-cases did not improve
classification performance of the model. Most words on the list that
were acquired using this method were considered irrelevant by two
Lareb pharmacovigilance experts. The experts added another 33 words

that they considered important in the classification of cases and non-
cases. An overview of the final list of words is given in Supplementary
Table S1.

In total 175 features were used for prediction. An overview of all
the features in the final feature set and a short description of every
feature are given in Table 1.

The best-performing model was a bagging classifier of decision trees.
The optimal number of base estimators was 100, where each estimator
selected a maximum of 100 features out of the 175 for prediction.
Performance was good with an f1 score of 0.89 and AUC of 0.921
(95% CI = 0.918–0.925) (Table 2). The ROC curve as well as precision-
recall curve showing all cut-off values are presented in Figure 1.

The top 50 most important features for prediction are shown in
Figure 2.

The plot shows the relative importance of the variables in the
model. The direction of the relation is “present.” This means that for
example the variable “ziekenhuis” (hospital) can take the values 1 or

TABLE 2 Performance of the bagging classifier on the test set.

Measure

Accuracy (%) 84.8

Precision (%) 89.3

Recall (%) 86.4

F1 Score 0.89

AUC (95% CI) 0.921 (0.918–0.925)

TABLE 1 Features in the final data set.

Feature name Description

Features extracted from database used for prediction

adr_count The number of adverse drug reactions (ADR) reported

ATCode Classification for drugs. The more similar the code, the more closely-related the drugs

comedication_count The number of drugs that are used in addition to the suspect drug(s)

Dechallenge If the ADR stops after stopping medication

drug_action_taken The action that was taken corresponding to the drug when the side effects occurred

drug_brand_name The brand name of a drug

drug_generic_name The generic name of a drug

drug_suspect_interacting_count The number of drugs that are suspected to have caused the adverse drug reaction(s)

Indication The reason for taking a drug

IME Important Medical Event, adverse drug reactions that deserve extra attention

Impact based on a Likert scale 1–5 Severity of the adverse drug reaction

latency_start If the time between starting medication and the onset of the ADR is known, or can be
calculated

latency_stop If the latency between stopping/reducing medication and the onset of ADR is known, or
can be calculated

patient_sex Sex of the patient

patient_age_year Age of the patient

patient_body_weight_kg Weight of the patient

patient_height_cm Height of the patient

primary_source The professional or consumer that reported a signal

primary_source_function Specific role of the professional that reported the signal

reaction_outcome The outcome of the side effect

rechallenge If after a dechallenge medication is taken again and the same ADR occurs again

Spc If the ADR is in the Summary of Product Characteristics of the drug

seriousness_case_report_level Whether the adverse drug reaction was considered to be serious or non-serious. If
multiple ADRs were reported, the seriousness of the most serious ADR was reported here

treatment If the ADR has been treated

medication_previously_used Whether the drug was used before by the patient according to the additional info text
field

primary_source_reaction (1 feature per unique ADR, 99 in total) The primary ADR of the patient as reported in the additional info text field. Because this
is written in natural language text, every type of ADR is a separate feature: if that ADR
occurs in the additional info text field or not (hence 1 feature per ADR)

seriousness_death Whether seriousness_death was set to true in the additional info text field

seriousness_disabling Whether seriousness_disabling was set to true in the additional info text field

seriousness_hospitalization Whether seriousness_hospitalization was set to true in the additional info text field

Newly created features

expert-identified signal words (1 feature per word, 33 in total) For every expert-identified signal word, if it occurs in the additional info field (hence
1 feature per signal word)

info_length The total number of characters in the additional info text field
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FIGURE 2
Feature importances of top 50 features. A longer bar indicates greater importance.

FIGURE 1
ROC curve (A) and precision recall curve (B).
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0 where 1 means that the presence of the word “ziekenhuis” in the
report is predictive of whether a report is a case or non-case. For
“patient_gender” a value of 1 refers to male and a 0 to female. The
most important features comprised structured fields (non-NLP),
describing patient characteristics (e.g., patient BMI or age), or drug
descriptions (e.g., drug name, ATC code). (Figure 2). Other structured
features that were important where related to the reporter (reporter
function) or the ADR (number of ADRs, seriousness, latency,
rechallenge/dechallenge). Additionally, the NLP feature “info_
length” was of importance. Cases seem to have longer text lengths
in the additional information field as compared to non-cases. Other
NLP features, or expert signal words also contributed to classification,
but were less important.

4 Discussion

Predictive modeling can be used for the identification of
previously unrecognized risks of medicines in
pharmacovigilance ICSRs. These methods have been applied on
association level, for instance in “Vigirank” which was developed
by the Uppsala Monitoring Centre as a data-driven predictive
model for emerging safety signals (Caster et al., 2017). We have
developed a prediction model using a combination of structured
data fields and unstructured text fields to distinguish case reports
from non-case reports with good performance [AUC of 0.92 (95%
CI = 0.92–0.93), Precision of 0.89 and recall of 0.86]. The model
could be used to assist clinical assessors in ranking the reports on
importance. For future reports, the model can predict the
probability that the report is a case report based on the different
features in the model. A report with long texts in the additional
information fields, about a patient with multiple ADRs that are not
mentioned in the SmPC, for instance will have a higher probability
of being a case report than a report with no additional information,
reporting a single ADR that is labelled in the SmPC of the reported
drug. Reports with higher probabilities could then be manually
reviewed first. Moreover, the cut-off value for which probability the
reports should be manually reviewed could be adjusted to the
number of reports received. In case the number of reports is
increasing and resources are the same, only reports with very
high probabilities of being a case report could be reviewed. This
is in line with a recent study where a machine learning-based model
was developed with the aim to predict the likelihood of a causal
association of an observed drug–reaction combination in an ICSR
and thus assisting in pharmacovigilance ICSR case processing
(Cherkas et al., 2022).

Current model with NLP performed better than our previously
developed model that had an AUC of 0.75 (95% CI: 0.73–0.77). In
addition, upon visual inspection of the precision and recall plot it
was found that the current model also outperformed the previous
model which was only based on structured fields (non-NLP
features) (Gosselt et al., 2022). From the feature importance plot
it can be seen that the feature ‘info_length’ seemed of high
importance to distinguish case reports from non-case reports.
This is not surprising, since also the follow-up information is
added to the additional information, which is more often
requested for interesting cases. The list of words defined by
pharmacovigilance experts on the other hand, only minimally
contributed to the model, however these still contributed more

than other techniques that we have tried including: extracting
words and compare the frequency between cases and non-cases.
This indicates the relevance of domain knowledge for this model.
To better understand why some features are high in the feature
importance plot, it would be interesting to further assess which
reports are classified as case reports. For instance, ATC code or
generic drug name are quite high in the list, which indicate that
certain drugs are more often reported as case. These could be new
drugs for example. Also, in contrast to our previous model, BMI is
high in the list. An explanation for this could be that BMI may be
related to other features in the dataset, such as the seriousness of an
ADR, since high BMI is a risk factor for many complications
(Alomar, 2014; Modesto et al., 2020). However, it is also
possible that BMI was selected by chance, hence further
assessment is required to better understand this result.

Beside the addition of NLP features, the outcome was slightly
different defined as compared to our previous model. In our previous
model, all reports discussed at a signal detection meeting were
classified as “case.” In current study only reports that were
potentially important for signal detection were marked as case.
This may have created more homogeneous groups of reports
which may also have improved the model in classifying the
reports. Besides, current dataset contained more reports (49928 as
compared to 30424) and the outcome was more balanced with 36.5%
cases as compared to 4.7% in our previous study. This lead to a
higher number of training instances, which may have also improved
the model performances. To limit the scope and complexity of the
model, we excluded the “receive_date” of an ICSR in the feature set
and made the model ‘static’ for the current time period. However,
given that classification criteria may also change over time, it would
be interesting to explore the use of continual learning models in
future work (Lee and Lee, 2020).

The development of this method is part of a variety of methods
such as auto-coding (Létinier et al., 2021; Martin et al., 2022) and
automated case classification (Ball et al., 2018) to improve in the
processing and signal detection of large amounts of ICSRs in
pharmacovigilance databases.

5 Limitations

A limitation of our study is that we assessed single extracted NLP
words. These single words were not assessed in relation to other
words in the text and were taken out of context. It would be
interesting to explore part of speech tagging, as this considers the
context of the extracted words (Chiche and Yitagesu, 2022). Also, the
use of sentiment analysis, which is a tool to extract opinions,
perceptions or sentiments from free text (Birjali et al., 2021;
Marcec and Likic, 2022). This could be an interesting tool to
further explore, because the sentiment of the reporter could be of
importance for signal detection. Lastly, the NLP was applied to one
unstructured field. The Lareb database has more unstructured fields
so in future modelling exercises these other fields could be explored
using NLP as well.

Another limitation is that, even though, the definition ‘case
report’ as defined by scientific accessors is more specific as
compared to all reports discussed at a signal detection meeting,
this is still a subjective measure and heterogeneity between assessors
may exist. Scientific assessors decide whether the report is a case or
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non-case based on their interpretation of the report using their
expert knowledge. This process is hard to capture using a machine-
learning model, which is why this is the best measure we have so far.
That is also why the tool could be used to assist the assessors in
ranking the reports on importance, while the reports still need
clinical review by the assessors.

In conclusion, Natural Language Processing only minimally
contributed to the predictive performances of the model. Yet,
current model could be used to assist assessors in prioritizing
which future ICSRs to assess first, based on the probability that it
is a case which requires clinical review.
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