
Federated learning: a
privacy-preserving approach to
data-centric regulatory
cooperation

Alexander Horst1*, Paul Loustalot2, Sanjeev Yoganathan3,
Ting Li4, Joshua Xu4, Weida Tong4, David Schneider1,
Nicolas Löffler-Perez1, Erminio Di Renzo1 and Michael Renaudin1

1Swissmedic 4.0 and Medical Device Vigilance, Swissmedic, Swiss Agency for Therapeutic Products,
Bern, Switzerland, 2Quinten Health, Paris, France, 3Division of Medical Devices, The Danish Medicines
Agency, Copenhagen, Denmark, 4National Center for Toxicological Research, U.S. Food and Drug
Administration, Jefferson, AR, United States

Regulatory agencies aim to ensure the safety and efficacy ofmedical products but
often face legal and privacy concerns that hinder collaboration at the data level. In
this paper, we propose federated learning as an innovative method to enhance
data-centric collaboration among regulatory agencies by enabling collaborative
training of machine learning models without the need for direct data sharing,
thereby preserving privacy and overcoming legal hurdles. We illustrate how
Swissmedic, the Swiss Agency for Therapeutic Products, together with its
partner agencies, proposes to use federated learning to improve TRICIA, an AI
tool for assessing incoming reports of serious incidents related to medical
devices. This approach enables the development of robust, generalisable risk
assessment models that can potentially improve current processes. A proof of
concept was deployed and thoroughly tested during the 14th Global Summit on
Regulatory Science using synthetic data with participants from Swissmedic, the
U.S. Food and Drug Administration (FDA), and the Danish Medicines Agency
(DKMA), with promising initial results. This innovation has the potential to serve as
a roadmap for other regulators to adopt similar approaches to optimize their own
regulatory processes, contributing to a more integrated and efficient regulatory
environment worldwide.
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1 Introduction

Regulatory science, encompassing the scientific disciplines and methodologies used to
assess and ensure the safety, efficacy, and quality of medical products and devices, is
essential for developing effective regulatory policies and procedures. Collaboration between
regulatory authorities is critical to maintaining sound and effective oversight as these
partnerships promote harmonisation of standards and practices. This enables a more
coherent and comprehensive approach to the protection of public health.

At the interface of regulatory science and data science, various initiatives have been
launched to explore innovative use cases and develop best practices across organisations. An
example is the Large Language Model (LLM) Taskforce of the Global Coalition for
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Regulatory Science Research (GCRSR), which deals with the safe
and efficient use of LLMs in regulatory science (LLMs, 2024).
However, collaboration at the data level brings new challenges. In
particular, the sharing of sensitive personal data such as patient
information raises significant privacy issues and is therefore often
considered unethical (Sprenkamp et al., 2023). Strict regulations
such as the General Data Protection Regulation (GDPR) and the
Health Insurance Portability and Accountability Act (HIPAA),
which are intended to ensure the protection of sensitive personal
data, simultaneously limit the possibilities for collaboration.
Furthermore, additional confidentiality legislation, for example,
relating to trade secrets, may also apply. Consequently, direct
data sharing is frequently impossible.

Regulatory data can be shared using several privacy protection
methods, each with its own implications. One of the most common
is de-identification, which removes or obscures explicit personal
identifiers such as names or ID numbers. A more stringent variant is
anonymisation, which involves altering or generalizing data so that
individuals are no longer identifiable, even when combined with
other data sets. While these techniques preserve privacy, they can
end up removing important context; for example, removing
identifiers or fine-grained demographics can obscure important
risk factors and make it harder for algorithms to identify useful
patterns. Furthermore, data that has been treated as anonymised or
de-identified may still pose a risk of re-identification if an adversary
can link it to other data (Truong et al., 2021). In practice, true
anonymity is difficult to achieve, and there is generally a trade-off
between privacy and utility in such techniques.

Another approach is to share only aggregated information
rather than individual-level information. For example, regulatory
agencies may exchange summary statistics or trend reports rather
than the underlying raw data. Aggregated information, by definition,
reveals much less about a particular individual, which in turn
protects privacy (Sprenkamp et al., 2023). A drawback of over-
aggregation, however, is that it can mask subtle signals a model
could detect by ignoring individual data points in favour of averages
or sums. Synthetic data is an area that has recently been pursued by
regulators as an effective option. Synthetic datasets are artificially
created to reflect the statistical properties of real datasets, without
including real personal data. Collaboration is made possible because
real patient data is not revealed. However, synthetic data tend to lack
the heterogeneity and complexity present in real data, causing
models to miss critical subtleties or be biased (Synthetic Data,
2025). In general, the processes of de-identification/
anonymisation, aggregation and data synthesis help to facilitate
data sharing within privacy constraints, but each method has
inherent drawbacks.

Regulatory authorities face the challenge of finding a balance
between data utility and privacy to ensure effective regulatory co-
operation. In this paper, we propose federated learning as a solution
that maintains the decentralisation of data by sharing only
aggregated insights, ensuring privacy protection from the outset.
This approach enables a data-centric model of collaboration
between regulatory authorities and improves cooperation without
jeopardising data protection. Besides providing a theoretical
description of the approach a proof of concept was developed
during the 14th Global Summit on Regulatory Sciences organized
by the Global Coalition for Regulatory Science Research (GCRSR).

2 A primer on federated learning

Federated learning (McMahan et al., 2016), introduced by
Google in 2016, was developed in response to the increasing
computing power of devices (Poushter, 2024) (Anderson, 2024)
and the growing importance of data protection and data security
(Xie et al., 2020), (Gong et al., 2020). This machine learning (ML)
technology makes it possible to train models directly on
distributed devices or servers without having to collect or
transfer the data centrally. As the model learns locally from
the data without it being sent to a central location, federated
learning significantly improves data security and privacy
protection. This approach is particularly valuable in sensitive
areas such as healthcare, as it enables insights from multiple data
sources while preserving individual privacy.

Federated learning has been used in several projects through the
years. Google uses it for next-word prediction when typing on a
keyboard so that the model learns from each individual user (Hard,
2019). It has also been used in healthcare, for example, to predict
future oxygen requirements of patients infected with SARS-COV-
2 during the COVID-19 pandemic (Flores et al., 2021). Finally, it has
also be used in intergovernmental collaboration, for example, in the
case of the Ukrainian refugee crisis (Sprenkamp et al., 2024). To our
knowledge, no federated learning project has been implemented so
far by regulatory authorities yet.

In the practical implementation of federated learning, several
users, known as clients, are involved. Their communication with
each other is generally orchestrated by a central server. Each client
remains the owner of its data, which is not passed on to the central
server or other clients. The main goal of federated learning is to
optimise a commonmodel, the so-called global model, through local
training with the data of the individual clients. The central server
receives the locally updated models from the clients and merges
them into an improved global model.

Federated learning works through a process that takes place in
rounds (Figure 1) and consists of several successive steps. First, the
global model is distributed from the central server to the clients. In
each round, either all or a subset of the clients can participate in the
process. The participating clients train the model with their local
data. After training, each client sends its updated model back to the
central server. There, the different versions of the model weights are
aggregated into an updated global model. This updated global model
is then sent back to the clients so that they can evaluate it with their
respective test datasets.

Model aggregation plays a significant role in updating the
overall model in federated learning. In each communication
round, information, usually model parameters, are aggregated
from all participants. By aggregating only model parameters
rather than raw data, privacy is effectively protected. The
aggregation methods differ depending on the structure (Qi
et al., 2024). In centralised federated learning, a central server
collects and aggregates the models of the individual clients. In
contrast, decentralised federated learning relies on peer-to-peer
communication for model aggregation, making a central server
superfluous. Research into different aggregation methods is
driving the advancement of federated learning with the aim of
optimising model performance, minimising communication
overhead while addressing data security and privacy concerns
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(McMahan et al., 2016). In each aggregation, the weights of the
clients are weighted proportionally to the number of data points
used for training and then averaged with the weights of the other
clients participating in the round.

Federated learning facilitates the development of models
using data from different institutions without the need to
centralise this data. This approach takes advantage of the
growing amount of health data collected by different regions
and organisations. By integrating diverse and heterogeneous
datasets, federated learning aims to improve the
generalisability and performance of models. In addition,
federated learning enables continuous learning and updating
of models in real time without the need for data transfer. This
makes it particularly suitable for dynamic and constantly
evolving health science datasets. This ensures that the best
performing model is always available, while more traditional,
static approaches could become outdated or obsolete over time.

3 A critical review from the perspective
of a regulatory authority

The implementation of federated learning within a regulatory
framework requires careful consideration of several important
security, legal and ethical aspects. Regulatory authorities must ensure
that the use of data andmodelling of learning outcomes is traceable and
that these processes comply with the GDPR and other relevant data
protection laws. A key aspect is securing the communication channels,
e.g., by using the Transport Layer Security (TLS) protocol to protect
data transmission, including model weights and performance metrics
(Sun et al., 2021), (Hidayat et al., 2023). In addition, legal and ethical
accountability requires that modelling decisions and more generally,
expert decisions based on the output of a ML model are transparent to
all stakeholders and can be explained in a comprehensible manner
which is particularly important in a regulatory context. Additionally,
every decision of an AI model must be judicially reviewable, which

FIGURE 1
Schematic diagram of a federated learning process. This figure describes themain elements of the process (clients, central server, global model) and
the four steps: (a) the global model is sent to all clients; (b) the clients train the model on their own data; (c) they send the updated weights to the central
server; (d) central server aggregates the updated weights to create an updated global model.
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means that the machine output must be transparent in the sense that it
must be comprehensible to humans. Rapid technological progress also
brings ethical and regulatory challenges, including global inequalities
and privacy risks (Hassan et al., 2021). In addition to this, the newly
introduced (European Union, 2024) may impact the requirements for
implementing federated learning. While federated learning itself is not
explicitly regulated by the AI Act, its use in AI systems is subject to the
Act’s provisions. Depending on the specific implementation, an AI
system utilizing federated learning could be classified as a high-risk
product, necessitating strict adherence to protocols to ensure
compliance with the Act. Although there is a potential for AI
systems employing federated learning to be categorised as high-risk,
this approach aligns well with the principles of the GDPR. Federated
learning emphasizes privacy-by-design and secure data handling—both
of which are reinforced by the requirements outlined in the AI Act. The
most important aspects to consider when developing a federated
learning use case in a regulatory context are explained below.

3.1 Data protection and confidentiality

Regulatory authorities work with highly sensitive information,
including personal health data and trade secrets. As a result, the data
pool of a typical regulatory authority is covered by both data
protection and confidentiality legislations. Federated learning
supports compliance with strict data protection and
confidentiality regulations such as the General Data Protection
Regulation (GDPR) in the European Union, the Health Insurance
Portability and Accountability Act (HIPAA) in the United States,
and the revised Data Protection Act (DSG) in Switzerland by storing
sensitive health data on local servers or devices and transmitting
only aggregated model updates (Truong et al., 2021). By training
models locally and only aggregating updates, federated learning
significantly reduces the risk of data breaches and unauthorised
access. This enables effective collaboration between different
healthcare providers, research organisations and regulatory
authority without the need to share sensitive data directly which
is a cornerstone to regulations such as the GDPR. However, these
regulations require more than just ensuring data security by
establishing and documenting a valid legal basis for processing
personal data. Each of the participating agency must
independently obtain an adequate legal basis, such as explicit
consent, contractual necessity, legal necessity, protection of
essential interests, or legitimate interest, before processing
personal data (Nišević et al., 2022). The overarching federated
research or joint endeavour must also ensure that it collectively
complies with these legal requirements, thereby meeting the GDPR
requirements holistically.

In addition, differential privacy is increasingly being used to
improve privacy in federated learning systems. Common
approaches include centralised, local and distributed differential
privacy (Zhang et al., 2023). Local differential privacy is particularly
popular as it provides strong privacy guarantees by adding noise to
local model updates before aggregation (Sun et al., 2021). However,
local differential privacy can have a significant impact on model
accuracy. Recent work has focused on optimising federated learning
techniques, such as adaptive Gaussian clipping, to strike a balance
between privacy and accuracy (Hidayat et al., 2023).

3.2 Model security

Although federated learning improves privacy and confidentiality
by preventing the direct sharing of data, the security of the globally
shared model remains a challenge. Recent research has shown that it is
in theory possible to extract potentially sensitive information from
language models (He et al., 2022). Although this is currently a manual
and tedious task and may only apply to certain model architectures, it
emphasises the need for a secure model repository.

Besides theft of the global modal, a second major threat is model
poisoning, where attackers could inject malicious data into the
training process (Xia et al., 2023). Model poisoning can lead to
compromised model accuracy and integrity, potentially embedding
harmful biases or vulnerabilities into the final aggregated model.

The AI Act highlights the need for resilience against these types of
adversarial attacks and threats. Since systems like federated learning can
be susceptible to threats or attacks like inference attack, where the
attacker could extract potentially sensitive information that is not
directly included in the training data (IBM, 2025), techniques such
as differential data protection or TLS via Multi Party Computation
(MPC) are both required to minimise this risk, and comply with the
regulation in order to ensure robustness and security. For instance,
differential privacy prevents sensitive training data from being extracted
frommodels by adding randommutations, often referred to as noise, to
the training data. Studies have shown that a noise content of up to 30%
in the training data can increase security, while the impact on model
performance is moderate (Xia et al., 2023).

3.3 Decentralised and heterogeneous data

Additional challenges for federated learning arise from the volume
and heterogeneity of the data. Effective model training requires large
amounts of data, which remain decentralised in federated learning. This
can lead to some clients not having enough data available, making it
difficult to improve the model. In addition, the data in federated
learning environments is often not independently and identically
distributed. In healthcare, for example, patient data varies
significantly from country to country and reflects different
population characteristics, which further complicates model training.
Furthermore, while regulatory processes within regulatory authorities
may be similarly structured, the specific predictions they seek to make
vary, requiring additional complexity in model fitting. For example,
multiple regulatory authorities may be interested in performing a risk
assessment on adverse event reports, but they may be interested in
different risk factors. The first may be interested in predicting the
severity of an event (patient harm), while the second agency may be
interested in predicting the likelihood of similar events occurring. These
differences in prediction goals mean that a single federated model must
accommodate multiple goals or label definitions, adding complexity to
model training.

3.4 Operational aspects relating to costs,
intellectual property and data ownership

Regulatory authorities also need to address the issue of information
asymmetry, especially in inadequately resourced environments, which
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may be at a disadvantage. To avoid conflicts in relation to the global
models used in federated learning, intellectual property rights and
ownership of the data need to be clearly defined (Sprenkamp et al.,
2023). Another important aspect is to ensure interoperability between
different systems and organisations, which is an essential prerequisite for
safe and effective collaboration, especially when multiple regulatory
authorities are involved.

In addition, the communication costs associated with federated
learning pose a major challenge. In systems with millions of clients, the
communication overhead for model updates can be significant, which
can affect the efficiency and scalability of the process (Zhang et al., 2021).

3.5 Computational resources

As the volume of data in regulatory science continues to grow, so
does the demand for the computational resources needed to perform
advanced analyses (Zhao and Li, 2011). Traditional machine learning
(ML) approaches that rely on centralised data pooling often require
extensive computational infrastructure, including high-performance
hardware such as multiple GPUs (Amaral et al., 2017). Federated
learning offers a promising alternative by leveraging distributed
computing resources across multiple agencies or stakeholders,
allowing complex models to be trained without centralising data.
This approach not only reduces the time and cost of the learning
process, but also addresses critical privacy and security concerns by
keeping data local to its owners. By optimising resource utilisation and
decentralising data management, federated learning provides a scalable
and cost-effective solution tailored to the unique challenges of regulatory
science, fostering collaborative innovation while maintaining
compliance with legal and ethical standards.

3.6 Performance evaluation

As mentioned earlier, different processes can result in not only
different data structures, but also different performance metrics worth
monitoring. These discrepancies affect both the ML metrics targeted
during training and business-related metrics, such as the percentage of
missed high-risk cases. Addressing what is considered a good enough
performance early on during an implementation project may highlight
the different perspectives of all involved, but it is unlikely to be sufficient.
Ongoing communication, reassessment and adjustment of thesemetrics
is critical to ensure meaningful alignment, as a one-off agreement can
lead to misaligned expectations and inconsistent model performance
across regulatory authorities.

3.7 Transparency, explainability and
governance

While federated learning offers significant advantages for
privacy-preserving AI system development, regulatory authorities
must establish clear guidelines for its use and for interpreting its
outcomes. This is particularly crucial in a regulatory context where
regulators might not fully understand the advantages and
disadvantages of federated learning, especially regarding the
quality of model outputs.

A sufficient level of explainability is necessary not only to act
upon a model’s decision but also to comprehend why that decision
was made. Ideally, in a regulatory framework, the model’s decision
should align with what an experienced regulator would decide in
similar circumstances. Even if the outcomes differ, a transparent
model that incorporates mechanisms for explaining
decisions—despite operating within a decentralized
framework—can provide regulatory authorities with the insights
needed to evaluate and respond appropriately to model outcomes.
This approach aligns with strategies observed in multi-database
studies, where local analyses allow participating entities to maintain
control over their data and perform analyses within their own
environments, thereby enhancing transparency and trust in
collaborative research efforts (Gini et al., 2020).

One method to achieve explainability in federated learning
involves each participating agencies generating feature
importance scores independently. For instance, regulatory
agencies working together on a federated model to identify high-
risk medical devices could independently evaluate which device
characteristics, such as product type or previous incident history,
significantly influence the model’s risk predictions on their own
data. These local insights, when summarised without revealing
sensitive or proprietary information, can then be securely shared
and combined, offering regulators a comprehensive yet privacy-safe
understanding of critical risk factors across the entire federation.
Importantly, federated learning does not remove the responsibility
of individual agencies to perform rigorous local explainability
analyses, which remains an essential task at the local level.

4 TRICIA: a use case for federated
learning in risk assessment

Based on the previous section, we believe that federated learning
is a promising solution to some of the challenges that regulatory
science faces in data-centric collaboration. To demonstrate this, we
present the federated learning use case TRICIA as a proof of concept.

4.1 Background

The global medical devices market size was valued at USD
518.46 billion in 2023 and is projected to grow from USD
542.21 billion in 2024 to USD 886.80 billion by 2032 (Medical
Devices Market Share, 2025). This development has a direct impact
on regulatory authorities. The Swiss legislation stipulates two
mandatory routes in the reporting process for serious incidents
involving medical devices (MedDO, 2020; IvDO, 2022). Any
professional who becomes aware of a serious incident when using
medical devices must report it to both the supplier and Swissmedic.
Likewise, the manufacturer of a device made available in Switzerland
must report all serious incidents to Swissmedic. If all parties comply
with their obligations, Swissmedic receives two reports of the same
serious incident: one from the user and one from the manufacturer.
This ensures that Swissmedic is informed about every serious
incident. Similar legislation exists in other countries and the
information to be reported is, at least in Europe, very similar
across jurisdictions.
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In 2023, Swissmedic received around 5,500 reported serious
incidents, which corresponds to an increase of 5.4% compared to the
previous year. The incoming reports are processed by a scientific
officer of the medical device vigilance department in a triage process
for later case handling. In this process, a risk score is assigned per
case according to an internal risk assessment process. The cases are
then handled on a risk-basis.

A part of the triage process was automated to assist the
scientific officers using a decision support system that assesses
three aspects of risk. This risk assessment includes: the harm that
occurred (severity), the number of serious incidents that have
occurred with the device in each period (probability) and whether
an issue of the medical device can be detected before a harmful
effect occurs (detectability). Using transformer ML models, an
accuracy of 81.44% for severity, 81.16% for detectability, and
92.82% for probability was achieved. Based on these results and
an extensive testing phase, the medical device vigilance
department decided to integrate the tool into their standard
operating procedures.

The tool has been presented at various conferences such as the
Global Coalition of Regulatory Sciences 2022 and has aroused the
interest of other regulatory authorities that are also interested in
tools to support their risk assessment. However, these regulatory
authorities cannot use the tool in its current form as the underlying
models are specific to Swissmedic as they were trained on reports
submitted from Switzerland. To increase the generalisability of the
models, they would have to be retrained or adapted using data from
other regulatory authorities. Furthermore, and as mentioned above,
regulatory processes within regulatory authorities may vary so that
the specific predictions they seek to make vary requiring additional
complexity in model fitting.

4.1.1 Objective
By using federated learning, the existing TRICIA models are to

be continuously improved with new data from our partner
regulatory authorities without the need for direct access to their data.

4.1.2 Data preparation
First, for each regulatory authority (i.e., for each client), the

serious incident reports must be extracted from the production
system. Augmenting real data with synthetic data has been
demonstrated to enhance the performance of federated learning
models (Using Foundation Models, 2024). Synthetic data can be
used to compensate for underrepresented risk classes, further
improving the generalisability and convergence of the model. In
such a scenario, synthetic data would be combined with real data to
make the model more robust and versatile. Finally, data must be
protected from training by differential privacy measures.

4.1.3 Round of federal learning
Once the volume of new data reaches a certain threshold, a new

round of federated learning can be started. First, the global model
with the latest version of the weights is sent to each agency. Each
authority trains the model with the new data and creates a local
version of the model. These local versions are then sent back to the
central server, which merges the weights and creates a new global
version of the model. This updated version can then be sent back to
all regulatory agencies for testing and use. It is expected that after

several rounds of learning, the model will continue to improve its
ability to classify reports by severity. Finally, the model will be used
to trigger alerts on new incoming reports in the production system
and make risk assessment more efficient.

4.2 Proof of concept implementation

At the 2024 Global Summit on Regulatory Sciences in Little
Rock, USA, several working groups collaboratively piloted
innovative technologies to assess their potential applications in
regulatory science. One of the working groups focused on
validating the TRICIA use case as a proof of concept by
deploying and testing an end-to-end TRICIA federated learning
pipeline. This pilot involved five participating clients from
Swissmedic, the US Food and Drug Administration (FDA) and
the Danish Medicines Agency (DKMA) (see Figure 2). The
objectives were to gain practical experience, demonstrate the
added value of federated learning in regulatory science, and
identify potential implementation pathways along with expanding
the use case of similar federated learning pipelines.

For demonstration and reproducibility purposes, we did not use
any sensitive data but used OpenAI’s GPT-4o model to generate five
synthetic datasets, each representing incident reports related to a
specific type of medical device, such as wearable medical devices,
software as a medical device, and different types of implants. Each
dataset contained 500 entries with class labels representing the
severity, maintaining a distribution consistent with natural
occurrence and following a similar few-shot prompting template1.
A validation set of 100 entries was randomly selected from these
synthetic datasets to ensure equal representation across the datasets.

The federated learning experiment was conducted using a
deep learning model (BiomedNLP-PubMedBERT) over three
training rounds. Each round comprised five epochs and
employed an 80/20 random train/test split performed on each
independent client. Individual clients, representing different
medical device types, demonstrated low predictive
performance, with the highest accuracy being 41.31% for the
“Software as Medical Device” client. However, the joint federated
model outperformed individual clients, achieving an overall
accuracy of 49.01%. Despite limitations such as the lack of
fine-tuning, the synthetic nature of the data and the small
sample size, these results highlight the potential of federated
learning to improve performance compared to standalone
solutions. The performance of the proof-of-concept federated
model appears modest, and several factors contributed to these
results. The limited dataset size was a key factor, as each client
had only 500 synthetically generated incident reports, resulting in
a total of less than 2,500 samples to train our classification model,
whereas this number should typically be several times higher. This
small, artificial dataset likely resulted in underfitting and high
variance, as it may not capture the nuanced patterns and noise of

1 In our case, few-shot promptingmeans that for eachmedical device, a few

example cases were created by hand and shown to the GPT-4o model to

aid its generation of synthetic incident reports.
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real-world data. In addition, the minimal training of the pilot study -
only three rounds with five local epochs per client and without
extensive hyperparameter tuning - likely underutilized some of the
model’s capacity. The inherently challenging task of predicting event
severity from free-text reports, potentially complicated by unbalanced
multi-class data and data heterogeneity across device types, also
contributed to the modest performance. Importantly, our primary
objective was not to achieve peak performance per se, but to
demonstrate that a shared global model can deliver measurable
improvements over isolated local models, thereby validating the
potential of federated learning.

4.3 Considerations and lessons learned

Here some key implementation considerations and
lessons learned are thoroughly discussed and summarized below:

Heterogeneity of the data: In addition to standardised data
classification, other data requirements must be met to ensure the
smooth functioning of the federated learning pipeline. All
participating organisations must maintain standardised data
structures and characteristics. In this application, the input
data is text data, which has the advantage that no features
need to be created or edited. However, text data may differ

FIGURE 2
Pipeline developed as a proof-of-concept in TRICIA federated learning. Five clients are participating in the round of learning. All clients use synthetic
data generated by OpenAI’s’GPT-4omodel. In addition to the federated learning process (described in Figure 1), the regulatory agencies are represented
as clients. During the process, regulatory agencies are responsible for aggregating their data, augment them with synthetic data and add differential
privacy layer to improve security.
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from one authority to another; for example, one authority may
submit reports with a significantly higher average word count or
use different terminology. In addition, different processes within
these agencies may result in different predictive labels or
different definitions of risk, meaning that the target variables
may not be consistent across clients. This can add complexity to
model training as the model has to account for these differences
in predictive targets and risk assessments. Although these
differences can improve the generalisability of the model and
do not necessarily need to be standardised, quantifying these
differences could provide valuable insights into the performance
of the model. Such analysis could help to assess the adaptability
of the model and understand how it responds to different textual
data, which could ultimately help to optimise the federated
learning pipeline.

Homogeneity of the data: Although the textual data may differ
between regulatory authorities, for certain use cases and in specific
economic markets, the same reports are often used in a structured
data format. Much of this data can be considered homogeneous
and could serve as an excellent candidate for federated learning. A
TRICIA-like use case, which automatically assesses incident
reports, could be expanded to several markets, including the
European Union, where the incident report format is
standardized. Since this form is harmonized across all EU
member states, a federated learning approach can particularly
benefit smaller countries with limited data. For example,
countries that receive fewer than a specified number of
incidents annually or those lacking robust databases for storing
national incident data related to medical devices could leverage
federated learning to improve analysis and decision-making. While
markets outside the EU may have different reporting criteria, most
regulatory authorities in fields such as medical devices already use,
or aim to use, structured coding to describe incidents. Another
potential use case arises where different markets utilize the same
structured information to make varied decisions. Federated
learning could facilitate a harmonized approach to assessment
or, at the very least, support the alignment of decision-making
processes across these markets. Although there are several benefits,
proper consideration of the impact of both the heterogeneity and
homogeneity of the data is crucial when evaluating whether
federated learning is the optimal choice for a regulatory
authority’s desired use case.

Number of clients: Since the clients of federated learning in our
feasibility are regulatory authorities, we work in a cross-silo2

configuration. Unlike cross-device configurations, which involve
many individual devices, in cross-silo federated learning a small
number of organisations work together to train models. These
participants are usually organisations with larger data sets and a
long-term interest in collaboration. However, cross-silo federated
learning comes with specific challenges, including incentivising
participation, ensuring security, confidentiality and privacy, and
optimising performance and scalability. As the number of
participating regulatory authorities is likely to be small, especially

in the initial phase, the absence of one or more regulatory authorities
in a learning round could significantly affect the performance and
further development of the model. In extreme cases, a regulatory
authority could repeatedly withdraw from the learning rounds and
still benefit from the global model that has been trained by the
others. To avoid such scenarios, trust between the participating
organisations is crucial, as it is not possible to track exactly which
clients are participating in each learning round. This trust forms the
basis for a fair and co-operative environment in which all
participants actively contribute to improving the overall model
and jointly benefit from the progress made.

Computational workload: As a BERT-based model with many
parameters, the TRICIA model requires considerable computing
resources for training. The regulatory authorities participating in the
federated learning process must therefore have sufficiently high
computing capacities, including access to GPUs. This
requirement poses a particular challenge as it could prevent some
regulatory authorities from participating in the process, especially if
they do not have the necessary infrastructure or the expertise
required for the effective use of AI/ML models within a federated
learning context. This could affect the diversity of data sources and
the quality of the global model. It is therefore important to develop
strategies that enable less well-equipped regulatory authorities to
participate in the federated learning process, e.g., by utilising
cloud services.

Alignment on downstream model trainings: Ultimately, the
regulatory authorities must establish a consensus regarding the
subsequent course of action following the conclusion of the
preliminary training phase. This entails determining whether the
global model should be maintained in its current, static form or
whether it should undergo periodic updates to reflect new insights
gained from other clients over time. It is vital that regulatory
agencies establish transparent and consistent protocols regarding
the frequency, governance, and criteria for updates. This will ensure
that the models perform consistently while minimising the risks of
data drift or bias. It is of the utmost importance that alignment is
achieved across agencies on these standards to foster trust and
interoperability in the use of federated learning for
regulatory purposes.

5 Conclusion

To summarise, federated learning is a promising way for
regulatory authorities to improve collaboration while preserving
data privacy. As the focus is on sharing model weights rather than
raw data, privacy concerns are inherently addressed in federated
learning. However, the successful integration of this approach
into the regulatory framework, as illustrated in the TRICIA use
case, requires careful consideration of legal, ethical and security
aspects. To ensure the integrity of this innovative approach,
accountability, compliance and secure communication
channels must be ensured.

To realise the full potential of federated learning, it is critical that
regulatory authorities not only collaborate on technical
implementation but also identify common use cases based on
shared interests and data sources. Especially in use cases where
the core task is considered similar and reporting criteria are identical

2 Cross-silo means a small number of highly trusted contributors participate

in the training process, each providing their own data as training source.
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to those in the EU market, federated learning can greatly benefit a
harmonized assessment procedure and enhance decision-making
through technology. Importantly, the effectiveness of federated
learning increases with the number of participating clients,
further emphasising the importance of joint efforts. The proof of
concept conducted at GSRS24 successfully demonstrated the
feasibility of the TRICIA federated pipeline, setting the stage for
future collaborations between regulatory authorities. However, the
full potential of this work will be realized as more authorities
participate in the project and the pipeline is widely deployed.
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