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The detection and understanding of the movement of magma at very shallow levels
remains one of the most fascinating challenges of modern volcanology, because such
information allows us to identify and circumscribe the most probable location where
future eruptive vents will open. Unfortunately, it is rarely possible to observe any detail
of the internal structure of the feeder system of recent eruptions; in only very few cases,
geological observations in dissected volcanoes can help us imagine how magma moved
and evolved inside the feeder system. In this paper, we describe the 1809 eruption of
Mt. Etna, Italy, which represents one historical and rare case in which it is possible
to closely observe the internal structure of the feeder system. This is possible thanks
to the presence of two large pit craters located in the middle of the eruptive fracture
field that allow studying a section of the shallow feeder system. Along the walls of one
of these craters, we analyzed well–exposed cross sections of the uppermost 15–20 m
of the feeder system and related volcanic products. Here, we describe the structure,
morphology and lithology of this portion of the 1809 feeder system, including the host
rock which conditioned the propagation of the dyke, and compare the results with other
recent eruptions. Finally, we propose a dynamic model of the magma behavior inside a
laterally–propagating feeder dyke, demonstrating how this dynamic triggered important
changes in the eruptive style (from effusive/Strombolian to phreatomagmatic) during the
same eruption. This is therefore an exceptional case to understand how basaltic magmas
move during the propagation of an eruptive fissure, which furnishes fundamental elements
for the modeling of superficial intrusive processes. Our results are also useful for hazard
assessment related to the development of flank eruptions, potentially the most hazardous
type of eruption from basaltic volcanoes in densely urbanized areas.
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INTRODUCTION
Lateral eruptions are potentially one of the most dangerous types
of eruption especially in densely–urbanized contexts, since the
rapid propagation of a dyke in the volcano flanks can feed lavas in
the lower slopes in a very short time (Gudmundsson, 1987; Rubin
and Pollard, 1987; McGuire and Pullen, 1989; Gudmundsson
et al., 1992; Komorowski et al., 2002; Acocella and Neri, 2003;
Acocella et al., 2006a,b). The style of flank eruption can change
rapidly as the magma feeding system evolves with the propaga-
tion of a feeder dyke (Bousquet and Lanzafame, 2001; Tedesco
et al., 2007; Neri et al., 2008, 2011; Soriano et al., 2008). Many fac-
tors, including changes in the dyke size, temporal variations in the
magma flux, progress of vesiculation, fragmentation, drain–back,
erosion of the conduit walls and hydromagmatic interaction,
can all affect the evolution of the eruption style. These factors
may also interact with each other during the evolution of an
eruption. Comparison between these processes in a feeder dyke
and the evolution of the eruption at the surface is therefore
fundamental to understand the role played by dykes during flank
eruptions.

Even if it is impossible to directly observe details of the inter-
nal structure of the feeder system during an eruption, geological
observations in dissected volcanoes can provide insights into the
structure of shallow feeder systems (e.g., Acocella et al., 2006a,
2009; Keating et al., 2008; Geshi et al., 2010; Geshi and Oikawa,
2014). The links between the underground plumbing system and
volcanic activity can be ascertained through a combined analy-
sis of historical eruptions, eruptive products and structure of the
feeder systems. Unfortunately, there are few examples of the out-
cropping feeder systems that preserve both the feeder dyke and its
eruptive products of historical eruptions (e.g., the feeder of the
1983 eruption of Miyakejima; Wada, 1992).

Here, we present one good example of well–exposed cross sec-
tions, namely from the 1809 eruptive fissure at Mt. Etna, Italy
(Figure 1) along the crater walls of two pit–craters in the NE Rift
zone of the volcano. The outcrops show the cross sections of the
uppermost 15–20 m of the explosive vents, along the central por-
tion of the eruptive fissure system. We describe the structure of the
shallow feeder system of this eruption, comparing it with the his-
torical record of other recent eruptions, and propose a dynamic
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FIGURE 1 | Map of the 1809 eruption, which affected the NE Rift of Mt.

Etna volcano (modified after Gemmellaro, 1860; Garduño et al., 1997;

Branca et al., 2011). Most portions of the higher (between 3300 and
2500 m asl) and lower (between 1300 and 750 m asl) lava flows are today
buried by younger volcanic products. (A) The lava flows are shown in red.
The eruptive fissures are indicated in blue and numbered 1 to 3 from top to
bottom, according to the chronology of opening. Yellow areas highlight the
main cinder cones and explosive vents (see text for details). Contour lines
are in metres. (B) The main rift zones of Etna and the location of the
studied area. 1. volcanics; 2. sedimentary basement.

model of the magma behavior inside a laterally–propagating
feeder dyke. The overall aim of the paper is to demonstrate the
influence of magma dynamics inside fractures on the evolving
eruptive behavior, also with a view toward hazard assessment.

GEOLOGICAL SETTING
Mt. Etna is the highest active volcano in Europe (3329 m above sea
level—asl. Figure 1) located on the eastern coast of Sicily. It began
to be active ∼500 ka on the front of the Apennine–Maghrebian
Chain, and lies on clayish–sandy Pliocene–Pleistocene fore-
deep deposits (Lanzafame et al., 1997; Branca et al., 2011, and
references therein).

Etna today has a central conduit that feeds four summit craters
named Voragine (VOR; formed in 1945 inside the former Central
Crater), Northeast Crater (NEC; 1911), Bocca Nuova (BN; 1968)
and Southeast Crater (SEC; 1971); the latter has been the most
active in recent decades with the growth of a huge new cone on its
southeast flank, named the New Southeast Crater (NSEC; 2007;
Del Negro et al., 2013). Volcanic events from any of these summit
craters are known as summit eruptions (Acocella and Neri, 2003,
and references therein).

Flank eruptions occur along radial fissures centered on three
main “rift zones”: the NE Rift, the S Rift and the W Rift
(Figure 1B; Acocella and Neri, 2003; Cappello et al., 2012). These
eruptions are fed by shallow (1–3 km) dykes, which start from the

central conduit and propagate laterally into the rift zones (Rubin
and Pollard, 1987; Neri et al., 2011). A second, much less frequent
type of flank eruption is triggered by magmatic intrusions directly
fed by the reservoir beneath the volcano and named “eccentric” or
“peripheral” eruptions (Acocella and Neri, 2003), since they are
independent of the central conduit.

Summit activity is almost continuous, while flank eruptions
occur at irregular intervals though, during the last 130 years, they
seem to take place in cycles lasting one or two decades (Behncke
and Neri, 2003a; Allard et al., 2006).

The NE Rift is a network of N– to NE–striking, closely spaced,
subparallel eruptive fractures extending from the NEC to the Mt.
Rosso area at ∼1400 m asl. The Rift is 0.5 km wide and more than
7 km long (Figure 1). The NE Rift is also the NW margin of a wide
sector of Mt. Etna involved in seaward displacement (Ruch et al.,
2010, 2013; Solaro et al., 2010 and references therein), affecting
an onshore area of >700 km2 (Neri et al., 2004) and a thickness
of 1–4 km (Siniscalchi et al., 2012). During the last 110 years, the
NE Rift eruptions lasted 21 days on average, with 7 m3s−1 erup-
tion rates. The eruptive fissures propagated at an average speed of
0.053 ms−1, reaching the a maximum length (3825 m) in ∼1 day
(Neri et al., 2011).

The possible relationship between flank deformation and
eruptive activity has recently been highlighted by several authors,
i.e., acceleration of flank deformation may trigger flank eruptions
and vice versa (Acocella et al., 2003; Neri and Acocella, 2006;
Bonforte et al., 2011; Ruch et al., 2012, and references therein),
and both (during the last century) are concentrated in time inter-
vals lasting 10–20 years (Behncke and Neri, 2003a; Allard et al.,
2006).

CHRONOLOGY OF THE 1809 ERUPTION
The 1809 eruption was one of the major flank eruptions of Etna
during the 19th Century. It was characterized by earthquake
swarms, exceptionally long and fast eruptive fissures and highly
fed lava flows. The inhabitants on the northern side of the volcano
were considerably troubled by the eruption, especially on wit-
nessing large areas of the territory invaded by lava (Gemmellaro,
1860).

A few days before the onset of the eruption, the Central
Crater was very active (Figure 1A). It was characterized by
Strombolian activity coupled with intense and abundant ash
emissions. This activity was also accompanied by strong earth-
quakes that were felt in particular in the northern sec-
tor of the volcano, between the villages of Castiglione and
Linguaglossa.

The seismic swarms intensified until the opening of the first
NNE–aligned eruptive fissure (Fissure “1” in Figure 1A), located
on the northern side of the Central Crater (> 3200 m asl), on
27 March 1809. From this first fissure a lava flow emerged and
began to spread over the high northern flank of the volcano. In the
following hours, the fracture field propagated rapidly along the
high part of the NE Rift, accompanied by intense seismic swarms.
On the morning of March 28, it reached the area of Mt. Pizzillo
(2350 m asl, Figure 1A), extending for a length of ∼4250 m. The
width of the fracture field ranged between 200 and 1100 m, from
the top down.
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Between 10.00 and 18.00 on March 28, the lower portion of
the fracture field became eruptive, forming several explosive and
effusive vents; the lava flows erupted mainly from two fissures,
one located on the eastern edge of the NE Rift, while a smaller
eruptive fissure (about 1200 m long) opened on the opposite
side of the rift, west of Mt. Pizzillo (Fissure “2” in Figure 1A).
Consequently, the lavas expanded in two distinct directions: the
lava flow erupted from Fissure “1,” descended along the north-
ern slope of the volcano and remained active for about four
days, reaching a maximum length of ∼5500 m and a minimum
altitude of 1710 m asl, just above Mt. S. Maria (Figure 1A).
A second lava flow expanded eastward, approached the south-
ern slope of Mt. Nero delle Concazze and halted at an altitude
of 1800 m asl, reaching a maximum length of about ∼2900 m
(Figure 1A).

On March 29, the fracture field propagated abruptly further
down, rotating approximately 15◦ to the East and following the
alignment of the lower portion of the NE Rift (Fissure “3” in
Figure 1A). An additional 18 vents formed on Fissure 3, which
expelled dense clouds of gas and ash violently, though without
erupting lava flows. At ∼21.00 the same day, this fracture reached
1400 m asl, covering a distance of more than 5500 m from the
craters “A” and “B” located near Mt Pizzillo (Figure 2). Along
the lower segment of the fracture field, between 1450 and 1325 m
asl, five new eruptive vents opened that fed lavas flowing toward
the northeast. These lava flows remained active until April 9 and
reached the minimum elevation of 670 m asl, having covered a
distance of ∼5500 m.

FIELD OBSERVATIONS OF THE FEEDERS OF THE 1809
ERUPTION
In this section, we describe our methodological approach, which
is mainly based on the structural mapping of the area, and the
results. We analyze in detail the 1809 feeder system and the host
rock lithology. Then we distinguish the main lithological facies,
the structure and size of the feeder system, and the eruptive
mechanisms related to the feeder.

DESCRIPTION OF THE OUTCROP
Today, we can observe the 1809 feeder system in four outcrops
exposed along the walls of two adjacent craters (A and B in
Figure 2), that were formed during the later stage of the eruption.
Hereafter, we identify the outcrops of the feeder system as A–S at
the southern wall of the crater A, A–N at the northern wall of the
crater A, B–S at the southern wall of the crater B, and B–N at the
northern wall of the crater B, respectively. The most important
and clear outcrops are inside crater A and for this reason we focus
particularly on the description of this crater. Only the uppermost
part of the feeder system is exposed in crater B.

Craters A and B are located along the uppermost part of the
eruptive Fissure 3 (Figures 1A, 2). These two craters and other
small ones form a ∼450 m long segment of the eruptive fissure
that still crops out (although partially buried by younger volcanic
products), between 2390 and 2340 m asl (Figure 2). The outcrop
A–N is at the center of this segment and A–S is at the peripheral
part, ∼150 m from the center. The alignment of the craters indi-
cates that the strike of the feeder dyke is 020◦, parallel to the strike

FIGURE 2 | Geological map of the central portion of the 1809 volcanics

and structures, between 2440 and 2260 m asl. The 1809 lavas and
pyroclasts are partially buried by younger volcanics. (A,B) are the main
craters described in the text. Unit 1. talus deposit; Unit 2. post–1960 lavas
(a) and cinder cones (b), dates indicate the age of the eruption; Unit 3.
Volcanic products of the 1809 eruption, analyzed in the present paper:
dykes (a), cinder cones (b), lithic material erupted by phreatomagmatic
(Surtseyan) activity (c), lava flows (d); Unit 4. cinder cone of unknown age
(between 1624 and 1809); Unit 5. 1614–1624 lava flows; Unit 6. Volcanics
belonging to the Ellittico volcanic center (∼15 ka). 7. Eruptive fissures:
buried craters (a), outcropping craters (b), dry and/or buried fractures (c).
Note the en–echelon arrangement of the lower portion of fissure F2 (left)
and the higher portion of fissure F3 (right), as indicated in Figure 1.

of the central portion of the NE Rift (Figures 1,2). We should
define some key terms used in this paper to avoid any confu-
sion. A “feeder system” connects to a vent and includes the entire
magma plumbing system below the original ground surface. The
term “dyke” is used only for a vertical intrusive body that fills a
fracture in the host rock.

Host rock lithology
The walls of crater A and B consist of four different layers of
volcanic rocks (Units 3, 4, 5, and 6) described in the following
paragraphs (see Figures 2, 3). Unit 3 relates to the product of
the 1809 eruption. The basement of Unit 3, namely the original
ground surface before the 1809 eruption, is inclined ∼15 degrees
eastward.

The host rocks of the feeder system are made up of three dif-
ferent layers of volcanic rocks of varying age (Units 4, 5, and 6,
from top to the bottom; Figure 3). All these units are exposed in
the outcrop A–S, while Unit 4 is not exposed in the outcrop A–N
and in crater B.

Unit 4 is made up of a partially welded pile of spatters
(Figure 3A). The maximum thickness (∼7 m) is at the south-
ern wall of the crater A, and decreases to zero toward the East
(Figure 4). In crater B, this unit crops out nearly continuously
along its walls. Unit 4 consists of a pile of basaltic scoriaceous
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FIGURE 3 | Outcrops of the feeder system of the 1809 eruption along

the walls of the crater A (see Figure 2 for location). (A) Southern
wall (A–S); (B) northern wall (A–N). The two pictures at bottom illustrate
the stratigraphic interpretation. The names of geological units are the

same as Figure 2. The host rock of the feeder system is marked with
red lines. Yellow lines show the unit boundaries. Blue lines are
sub–boundaries inside the same unit. Boxes with dashed lines show the
areas in Figures 4–6 and 8.

FIGURE 4 | Proximal deposit of the 1809 eruption (Unit 3) at the

southern wall of crater A. White dashed line shows the base of Unit 3b,
which is the original ground surface before the 1809 eruption.

bombs up to 0.5 m in diameter, dark–reddish in color due to
oxidation and partly welded to each other. At the top, Unit 4 is
made up of a volcanic ash layer of 0–0.5 m thickness (Unit 4′ in
Figure 4). The age of Unit 4 is not identified; most likely it belongs
to an eruption occurring between 1624 and 1809, judging from its
position in the stratigraphic succession of the area.

A massive lava flow (Unit 5) is located under Unit 4 and
the contact between the two units is erosive (Figures 3, 5).
Distribution of Unit 5 is limited to the southern half of the crater
A, where the thickness is ∼7 m. It consists of a coherent central
part (maximum thickness of ∼5 m), bounded by basal and top
clinker layers. Semi–vertical joints develop sparsely in the cen-
tral massive part. The thickness of clinker layers is ∼0.5 m at the
base and ∼1 m at the top. At the top, the lava flow is covered by

an unconsolidated volcanic ash layer (∼0.8 m thick; Unit 5′ in
Figure 5). Distribution of Unit 5 implies that it corresponds to
the lava flow of the 1614–1624 eruption.

An erosional contact separates the lavas belonging to Unit 5
and the underlying Unit 6 that corresponds to the deeper and
older stratigraphic layer cropping out in the craters A and B. This
deeper unit consists of a partially welded pile of spatters and sco-
riaceous bombs up to 0.5 m in diameter, which probably belongs
to the younger eruptive products of Ellittico (∼15 ka; Garduño
et al., 1997). The thickness of Unit 6 is more than 10 m, though
the bottom is not exposed. The top of Unit 6 is made up of a layer
of unconsolidated volcanic ash (∼1 m thick; Unit 6′ in Figure 5),
reddish in color due to the thermal metamorphism induced by
the overlying Unit 5.

Ejecta from the feeder system
Unit 3 is the eruptive product of the 1809 eruption and forms a
cinder cone around the craters. It is subdivided into four parts: 3a,
3b, 3c, and 3d, each of them characterized by different structure
and lithology (Figures 4–7).

Unit 3a is the vent–fill deposit distributing inside the feeder
system (Figures 5, 6). It consists of coherent basaltic lava at the
margin and unconsolidated scoriaceous breccia at the central
portion of the vent.

Units 3b, 3c, and 3d are the fall–out deposits surrounding
the craters A and B (Figures 2, 4, 5). Units 3b and 3c consist of
basaltic bombs and welded breccia and occupy the lower half of
the deposit. Unit 3d is characterized by abundant lithic blocks and
consists of the upper half of the deposit.

In detail, Unit 3b and 3c consist of a pile of juvenile bombs
and contain very small amounts of lithic fragments. Unit 3b is
made up of unconsolidated—weakly consolidated breccia, while
Unit 3c is a welded breccia. The boundary between 3b and 3c is
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FIGURE 5 | Close-up view of the feeder system on the southern wall of

the 1809 crater A (outcrop A–S). The outlines of the feeder system are
highlighted with red lines. White solid lines show the unit boundary.
Dashed lines show the sub–boundary in each unit. Boundary between
Units 3b and 4 represents the ground surface at the beginning of the 1809
eruption. See text for lithological details.

gradual and Unit 3c is enclosed by 3b (Figure 4). The deposit of
Unit 3b is well–sorted and lacks the fine–grained component. The
bombs have a reddish color due to oxidation; their prevailing size
is 0.2–0.5 m in diameter. Well defined basaltic bombs are difficult
to identify in Unit 3c owing to strong welding.

Unit 3d consists of a lithic–rich volcanic breccia with a small
amount of basaltic spatter. The maximum size of lithic frag-
ments is 0.5 m. This deposit is unsorted and unconsolidated and
exhibits no evidence of welding. It contains volcanic sand–ash.
Unit 3d overlies Unit 3b. The boundary between Unit 3d and the
underlying 3b is gradual.

Distribution of these fall–out deposits (Units 3b, 3c, and 3d) is
asymmetric, probably due to the oblique ejection. The thickness
of Unit 3b and 3c in the lower half of the deposit is greatest at the
eastern rim of the crater A, ∼100 m from the feeder, whereas Unit
3b decreases to zero ∼20 m west of the eruption site, in both the
craters A and B. Even if Unit 3d covers the entire crater rim, the
thickness is greater in the eastern rim (∼30 m) and thinner in the
western rim (<2 m).

FIGURE 6 | Close-up view of the feeder system on the northern wall of

the 1809 crater A (outcrop A–N). The outlines of the feeder system are
highlighted with red lines. White solid lines show the unit boundaries. The
dashed line represents the ground surface at the beginning of the 1809
eruption. See text for lithological details.

STRUCTURE OF THE FEEDER SYSTEM
The cross section of the feeder system of the 1809 eruption,
consisting of a feeder dyke and a sill in the lowest portion, the
diatreme, crater and the scoria cone, is well–exposed only on
the walls of crater A (Figure 3). The exposure of the feeder sys-
tem in crater B is limited only to the diatreme part owing to the
development of the talus deposit.

In the outcrop A–S, the feeder system up to 22 m deep from
the existing, original ground surface before the 1809 eruption
(bottom of Unit 3b) is exposed (Figure 5). The feeder system
is divided in three portions: the deeper part consists of a dyke
cropping out >16 m below the ground. Between 16 and 15 m in
depth, the feeder forms a horizontal intrusion (hereafter “sill”) in
Unit 6’, immediately under the base of overlying Unit 5. The shal-
lower part of the feeder system is made up of an upward–flaring
diatreme. The feeder system is almost vertical at depths greater
than 15 m from the original surface. It inclines∼75◦ westward
within the uppermost 15 m, and is perpendicular to the original
ground surface (the base of Unit 3b inclined ∼15◦eastward; see
Figures 3, 5).

In the outcrop A–N, the feeder system exposes its uppermost
15 m (Figure 6). The feeder system shifts from a dyke around
15 m deep to an upward–flaring diatreme. The feeder system
inclines ∼75 degrees westward, and is perpendicular to the orig-
inal ground surface (the base of Unit 3b inclined ∼15 degrees
eastward).

In the outcrop B–S, the feeder system exposes its uppermost
7–8 m, in which the feeder system shows an upward–flaring dia-
treme. No feeder dyke is exposed. At the base of the outcrop, the
width of the feeder is 16 m and increases to 30 m at the base of
Unit 3.
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FIGURE 7 | Variations of the width of the feeder system in the southern (A–S) and northern (A–N) walls of the 1809 crater A. Red lines and symbols
show the width of the feeder. Black lines show the shape of the crater and the cavity in the dyke.

The uppermost 15 m of the feeder system is exposed in the
outcrop B–N. The whole feeder system in this outcrop is made
of the diatreme and no feeder dyke is exposed. The width of the
feeder system at the bottom of the outcrop is 3.6 m and the width
increases to 22 m at the base of Unit 3.

The thickness of the feeder system depends on the host rock
lithology (Figure 7). The feeder in the outcrop A–S has an almost
constant thickness (0.2 m) in the central part of Unit 6. The thick-
ness increases to 0.6 m in the volcanic ash layer at the top of Unit
6, and then converts to a 4 m width sill. The feeder intrudes in
Unit 5 with almost constant thickness of 0.75 m. The feeder flares
toward the original ground surface in Unit 4. The thickness of
the feeder increases from 2 m at the base of Unit 4 to 13 m at the
original ground surface.

The feeder system in the outcrop A–N increases its thickness
from ∼0.5 m at the deepest portion to ∼25 m at the original
ground surface (Figure 7). The dyke thickness gradually increases
between 15 and 10 m deep, then remains at 4–5 m between 10
and 5 m deep. The thickness increases rapidly toward the surface
in Unit 4, within 5 m from the original ground surface.

COMPONENTS OF THE FEEDER SYSTEM
The feeder system cropping out along the A–S section can
be divided into marginal parts (rim) and inner parts (core)
(Figure 8). The rim develops below 7.5 m from the original topo-
graphic surface, i.e., the ground level at the beginning of the
1809 eruption (see Figure 5). It develops continuously below
14 m from the original surface, whereas it is truncated in sev-
eral parts between 7.5 and 14 m. The rim consists of coherent
intrusive rock, without any significant evidence of fragmentation
(Figures 8A,B). The vesicularity in the rim is 32–43%. The typi-
cal size of bubble ranges from 0.5 to 4 mm. The shape of bubbles
is flat and elongated along the nearby dyke wall. On the dyke

wall, the bubbles form sub–horizontal lineaments (∼10◦dipping
to South).

The inner parts are filled with pyroclastic materials (basaltic
bombs, lithic blocks and finer volcanic sand and ash). Interstices
of the blocks are partially filled with lapilli and sands, which show
sub–horizontal bedding (Figure 8C). Some hollows and empty
spaces are also found in the inner part (Figure 8D).

The feeder dyke at the base of the outcrop A–N consists of
coherent intrusive rock, without any clear evidence of fragmen-
tation. The upward–flaring part within 15 m from the original
ground surface is filled with pyroclastics.

In outcrops B–N and B–S, all the exposed parts of the feeder
consist of diatreme filled with pyroclastic materials. The transi-
tion between dyke and diatreme is not exposed.

SILL
The sill developing in Unit 6′ crops out only on the walls of crater
A–S. It exhibits a lens–like shape (4.5 m in length along the hor-
izontal section) and a maximum thickness of 0.6 m (Figure 9A).
Both edges of the sill show rounded shape inflating toward the
surrounding volcanic ash layer. The sill also consists of a marginal
and inner part. The marginal part consists of coherent intrusive
rock with relatively high vesicularity (49–53%). The typical size
of bubble ranges from 0.5 to 6 mm. The shape of bubbles is flat
and elongated sub–parallel to the outline of the sill. The bubbles
also show the oblique alignment against the nearby wall of the sill
(Figure 9B).

SIZE OF THE FEEDER SYSTEM
The horizontal width of the feeder system is larger at the original
topographic surface, due to its upward–flaring shape in each cross
section (Figures 3, 5, 7). The width of the feeder is larger (∼30 m)
at the outcrop B–S (Crater B, see Figure 2), located at the center
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FIGURE 8 | Marginal portion of the feeder in the outcrop A–S (A and B).

(A) The dyke margin along the eastern wall of the feeder ∼14 m below the
original ground surface. (B) The eastern tip of the sill. Arrows indicate the
intrusive surface of the dyke and sill. Cavities in the center of the feeder
dyke (C,D). White arrows indicate the cavities. (C) The cavity filled with the
breccia in the southern wall (outcrop A–S), (D) cavity at the center of the
feeder dyke ∼20 m from the original ground surface (outcrop A–S).

of the segment of the eruptive fissure here examined (∼450 m in
length, between 2440 and 2260 m asl), and decreases toward both
ends of the structural segment (Figure 10A). At the base of each
outcrop the dyke thickness is almost constant, varying from 0.4 m
(A–N and B) and 0.5 m (A–S).

The thickness of Unit 3b and 3c, which represent the mag-
matic products of the fissure in the first half of the eruption, is
also greater at the outcrop B–S and then decreases toward A–S and
B–N in the margins of the eruptive fissure. The width of the feeder
correlates with the thickness of the scoriaceous tephra (Unit 3b
and c) at the rim of the feeder (Figure 10B).

DISCUSSION
GROWTH PROCESS OF THE FEEDER SYSTEM
The propagation of the eruption fissure during the 1809 erup-
tion indicates the dyke was fed from the shallow portion of the
central conduit beneath the summit Central Crater (Figure 1A)
and intruded horizontally along the northern rift zone, as also
occurred during the recent flank eruptions in the NE Rift
(Garduño et al., 1997; Andronico et al., 2005; Neri et al., 2011).

FIGURE 9 | View of the sill of the feeder system cropping out along the

southern wall of the 1809 crater A (outcrop A–S). (A) The close up view
of a sill developing in Unit 6. Outline of the dyke and sill is shown by white
dotted lines. Yellow circle shows the position of the sample for the analysis
of preferred orientation of bubbles. (B) The vertical cross section of the sill
along the strike of the feeder system. Distributions of the bubble elongation
in upper and lower part of the section are shown on right. Boxes with
dashed line show the area for the bubble orientation.

The strike (toward NNE) and dip (subvertical) of the feeder
observed in the outcrops of the craters A and B reflect the entire
structure of the feeding system in the NE Rift zone. The pre-
ferred orientation of the bubbles in the feeder dyke (Figure 9B)
indicates the sub–horizontal movement of the magma in the shal-
low portion, which is consistent with the outward and centrifugal
propagation of the eruptive fissure.

During the approach to the topographic surface, the feeder
dyke was temporally halted and deflected at the base of the
lava layer (Unit 5; see stage 2 in Figure 11). As the overly-
ing Unit 5 consisting of massive lava has greater stiffness than
the underlying scoriaceous deposit, this mechanical discontinuity
acts as a temporary mechanical barrier for the dyke propagation
(Gudmundsson, 2006, 2011). On increasing the internal mag-
matic pressure, the blocked dyke intruded along the base of Unit
5 and formed a small sill (Figures 5, 9A, 11).

The vertical dyke re-injected from the sill into the overlying
Unit 5 when the internal magmatic pressure became high enough
to break the overlying Unit 5 (stage 3 in Figure 11). The re-
propagation of the dyke into the overlying layer caused a drop
in the internal excess pressure of the dyke and, consequently may
have stopped the horizontal growth of the sill. The development
of the feeder parallel to the joints system developing in Unit 5
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FIGURE 10 | (A) Distribution of the maximum width of the feeder at the
original ground surface (scale on left) and the thickness of the scoriaceous
tephra at the crater (A and B) margin (scale on right). Distance is measured
along the eruptive fissure 3 from its southern edge. (B) Thickness of the
scoriaceous tephra at the crater (A and B) margin plotted against the width
of the feeder at the original ground surface.

(Figure 5) suggests that the dyke intruded along a pre-existing
fracture in Unit 5. The inclined propagation of the uppermost
part of the dyke caused the oblique eruption that formed an
asymmetric scoria cone around the crater (Unit 3b, c, and d).

FRAGMENTATION IN THE CONDUIT
The texture of the components of the feeder system and the ejecta
indicates the fragmentation of magma started the moment the
vent opened. The feeder dyke was temporarily halted and formed
a sill at the base of Unit 5 before reaching the surface (Figure 12,
stage 2). Therefore, the cooled margin at the tip of the sill is
a trapped magma which preserves the texture of magma before
the eruption. The cooled margin consists of coherent intrusive
rock without any evidence of fragmentation (Figure 8B). This
suggests that the magma intruded the very shallow part without
fragmentation. High vesicularity in the cooled margin indicates
that the ascending magma reached high bubble–content before
the vent opening. The existence of the coherent dyke margin
up to 7.5 m from the original topographic surface indicates that
the magma reached the surface within 10 m in fluid form (non-
fragmented) before the opening of the vent. On the contrary,
all the products cropping out at the rim of the crater (Unit 3b)
are pyroclasts (basaltic spatters and welded breccia) and no lava
flow was formed (Figure 4). This means that magma reaching the

FIGURE 11 | Evolution of the central portion of the 1809 eruptive

fissure system (∼2350 m elevation asl). Stage 1: the eruptive fissure
propagated from the Central Crater of Mt. Etna into the NE Rift; the dyke
propagated at shallow level forming a graben–like structure at the surface.
Stage 2: the dyke met the lava layer creating a small temporary sill, while
part of the graben (at higher elevation) becomes eruptive. Stage 3: the
dyke progressively propagated downslope, passing the lava layer and
forming a new vent.

ground surface was already fragmented and erupted as a spatter
from the onset of the eruption. This also implies that the frag-
mentation in the conduit started the moment the vent opened at
the surface.

The fragmentation of the magma can be caused by rapid
decompression in the conduit by the opening of vent at the sur-
face (e.g., Alidibirov and Dingwell, 1996). Rapid decompression
accelerates magma ascent and may cause strain–induced frag-
mentation (e.g., Papale, 1998). Formation of the sill at the base
of the stiff layer (lavas of Unit 5) indicates that magma had a cer-
tain excess pressure before the arrival of the dyke at the surface
(Gudmundsson, 2011). Release of the pressurized magma at the
ground surface caused an explosive emission of magma.

The ejection speed of the pyroclastic clasts represents the rising
speed of magma at the vent. This ejection speed can be evaluated
from the incline angle of the conduit and from the distribution of
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FIGURE 12 | Model of dyke propagation of the 1809 eruption, between

2500 and 1300 m asl. On 28 March, the dyke from the Central Crater
(∼3200 m asl) propagates downslope (A), erupting at the lower portion of
the fracture field (F1–3); at this stage the dyke is too shallow to involve the
groundwater. On 29 March, the dyke propagates downslope reaching a
minimum elevation of 1450–1325 m asl (B), where a new explosive and
effusive vent formed. During the propagation, the dyke became deeper and
magma interacted with the groundwater when the fragmentation level was
roughly at the same elevation as the aquifer, generating phreatomagmatic
(Surtseyan) activity along the higher portion of Fissure 3. It cannot be
excluded that other shallower aquifers interacted with the dyke during its
deepening and propagation downward. The position of the impermeable
sedimentary basement is modified from Siniscalchi et al. (2012).

the ejecta, assuming the ballistic flight of the volcanic bombs. The
relationship between the inclination of the conduit (75◦ toward
East) and the maximum thickness of the ejecta (Unit 4b) at
∼80 m from the eruption site indicates the mean ejection speed at
∼40 ms−1, neglecting the air resistance and slope of the ground.
The ascent speed before the vent opening is typically several ms−1

judging from the typical propagation speed of the eruption fis-
sure at the NE Rift (Neri et al., 2011, and references therein). This
implies that the magma ascent rate accelerated at the opening of
the vent and this acceleration triggered the explosive emission of
fragmented magma.

EROSION OF THE WALL OF THE FEEDER SYSTEM
The upward–flaring shape of the feeder observed in the eruptive
system of the 1809 eruption is commonly observed in explosive
feeder systems (e.g., Keating et al., 2008; Geshi and Oikawa, 2014).
The width of the feeder and the size of the eruptive crater at the
surface are determined by the shape of the uppermost part of
the feeder. Several mechanisms are proposed for the formation of
upward flaring feeder systems (e.g., Valentine and Groves, 1996).
Among them, erosion from particle collision and conduit wall
collapse due to variations in magma pressure and/or shock waves
are possible prime mechanisms for the feeders of the 1809 erup-
tion, judging from the variation of width of the feeder reflected
in the host rock lithofacies (Figure 8). In the outcrop A–S, the

feeder begins increasing in width ∼15 m deep from the origi-
nal ground surface. The rapid increase of the width from the
boundary between Unit 5 (lava) and overlying Unit 4 (pyroclasts)
suggests that the feeder was enlarged particularly in the less con-
solidated host rock, since the mechanical erosion processes, such
as particle collision and wall collapse, are more effective in the less
consolidated host materials.

The positive correlation between the width of feeder system
and the thickness of the tephra erupted (Figure 9B) also sug-
gests the vigorous mechanical erosion by particle collision and
wall collapse during the explosive emission of tephra. The greatest
thickness of tephra at A–N and B–S outcrops indicates the larger
magma flux at the center of the segment. The feeder was widened
by the vigorous emission of pyroclastic materials during the fis-
sure eruption. Conversely, the widening by the erosion was less
effective in the peripheral zone (Figure 10A).

DRAIN–BACK IN THE LATER STAGE OF THE ERUPTIVE FISSURES
PROPAGATION
The existence of a partially–filled hollow at the center of the
feeder (Figures 8C,D) and the change in eruption style recorded
in chronicles and manifested in the erupted products (Figure 4),
suggest the withdrawal of magma from the erupting conduit and
the abrupt termination of the eruption in the zone of the craters
A and B (Figure 12). The change of eruption style is testified by
the erupted products exposed along the walls of the craters A
(Figure 4) and B. The eruption style changed from the oblique
lava fountaining, which produced Unit 3b and 3c, to the explo-
sive activities and crater enlargements that formed the lithic–rich
Unit 3d. The eruptive vent exposed at the outcrop A–S is cov-
ered with Unit 3d (Figure 5). This suggests that the eruption was
terminated by the withdrawal of magma, as also testified by the
feeder outcrop in A–S.

According to the historical chronicles (Gemmellaro, 1860),
the propagation of the eruptive fracture system lasted about two
days, from March 27 to 29, but the final step of this migration
(from ∼2400 to ∼1400 m asl) occurred in a few hours, covering a
distance of ∼5500 m. Therefore, this migration lowered the erup-
tive vents by about 1000 meters with respect to the craters A and
B (see Figure 12). This dramatic and sudden drop in the level
of the magma would have brought the magma into contact with
the main groundwater contained in the volcanic body, which is
located just above the contact surface between the volcanic pile
and its impermeable (clay–rich) basement. In the central zone
of the NE Rift, the impermeable basement is at ∼1200–1300 m
asl (Branca and Ferrara, 2012; Siniscalchi et al., 2012). Therefore
we assume the level of magma fragmentation may have inter-
acted with the aquifer when the vents shifted from ∼2400 to
1450–1325 m asl, generating phreatomagmatic (Surtseyan) activ-
ity along the higher portion of Fissure 3 (see Figure 12B). On
the other hand, we cannot exclude that other shallow and dis-
continuous aquifers interacted with the magmatic dyke during its
migration downward.

Similar magma–groundwater interactions were recently doc-
umented during the 2001 flank eruption on the southern slope
of Mt. Etna (Behncke and Neri, 2003b; Calvari and Pinkerton,
2004), when the 2570 m eccentric vent was the site of powerful
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phreatomagmatic activity as the dyke cut through a shallow
aquifer. This phenomenon did not occur during the 2002–2003
flank eruption, which affected the NE Rift (Andronico et al.,
2005). In this case, the eruptive fractures propagated from the NE
Crater area (∼3300 m) downward to ∼1800 asl, i.e., the magmatic
dyke did not migrate deep enough to interact with the groundwa-
ter. Yet, eruptions of this type – rapid propagation of unusually
long eruptive fissure systems – have occurred at Etna a few times
per century, most recently in 1923, 1928, and 1981 (Acocella and
Neri, 2003; Neri et al., 2011).

Scenarios where dykes show various types of interaction
with aquifers can be envisaged in many basaltic volcanic set-
tings worldwide, ranging from monogenic volcanic fields as
Auckland (New Zealand) to large polygenic volcanoes, including
the Hawaiian shield volcanoes. In particular, the rapid propaga-
tion and drainage of a dyke, as in the case of Etna’s 1809 eruption,
represents a potential hazard because of the enhanced possibil-
ity of a sudden and unexpected magma–groundwater interaction.
Phreatomagmatic activity not only represents a threat to people
within a certain distance from the eruptive vents, but it is also
capable of producing abundant quantities of volcanic ash, which
would affect much wider areas and potentially disrupt air traffic.

CONCLUSIONS
The 1809 eruption of Mt. Etna is fairly typical of the flank
eruptions occurring along the NE Rift, but with a fundamental
difference: the development of the fracture field was character-
ized, in its central sector, by an abrupt change in eruptive style,
testified by the outcrops exposed along the inner walls of some
craters. In addition, the eruptive style characterizing the final part
of the eruptive activity of these craters resulted in an unusually
but clear exposure of the shallow feeder system. This is there-
fore a highly important case to understand just how basaltic
magmas evolve and move during the propagation of an eruptive
fissure.

Based on the results of this study, it is evident that the ampli-
tude of the feeder system at shallow levels is affected by the
lithology of the host rock. The dyke is some tens of centime-
ters thick when it crosses compact rocks such as lava, but widens
up to several meters in portions contained by non–welded pyro-
clastic products, in this second case easily erodible. In addition,
the contact between pyroclasts (below) and lavas (above) creates
favorable conditions for the development of small sills.

The transition between the initial effusive/Strombolian phase
to a more explosive phreatomagmatic one created the formation
of cavities in the feeder system. Phreatomagmatic activity was
probably triggered by the interaction between the magma and
the aquifer of the volcano, just when magma migrated abruptly
downwards. During this last activity, the dyke was no longer only
formed by compact lava but contained unconsolidated scoria-
ceous breccia and fragmented lavas.

Due to the rapid withdrawal of magma in the feeder system,
which dropped by about 1000 m in altitude, the walls of the feeder
were no longer sustained by the magma, so they partially col-
lapsed (at shallow levels), facilitating the formation of the two
large pit craters A and B during the final stage of the propagation
of the eruptive fissures.

The understanding of these mechanisms sheds new light on (a)
the propagation mechanism of eruptive fractures in basaltic vol-
canoes such as Mt. Etna, (b) how magma moves inside the feeder
systems and (c) how the dynamic of the magma creates condi-
tions of variability of eruptive styles during the same eruption.
These results are also useful in terms of hazard assessment, since
they allow predicting different eruptive scenarios according to the
dynamics of the structural system feeding the eruptions, a cru-
cial factor in highly urbanized volcanoes. These results would in
particular be helpful for the production of detailed maps showing
the probability of the opening of new vents and the simulation
of lava flows, which is of particular relevance in areas of basaltic
volcanism that are subjected to rapid urban expansion.
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