
ORIGINAL RESEARCH ARTICLE
published: 04 February 2015

doi: 10.3389/feart.2015.00002

Eruption and emplacement timescales of ignimbrite
super-eruptions from thermo-kinetics of glass shards
Yan Lavallée1*, Fabian B. Wadsworth1,2, Jérémie Vasseur2, James K. Russell3,

Graham D. M. Andrews4, Kai-Uwe Hess2, Felix W. von Aulock1, Jackie E. Kendrick1, Hugh Tuffen5,

Andrew J. Biggin1 and Donald B. Dingwell2

1 Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK
2 Earth and Environment, Ludwig Maximilan University of Munich, Munich, Germany
3 Volcanology and Petrology Laboratory, Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
4 Department of Geology, California State University Bakersfield, Bakersfield, CA, USA
5 Lancaster Environment Centre, Lancaster University, Lancaster, UK

Edited by:

Luis E. Lara, Servicio Nacional de
Geología y Minería, Chile

Reviewed by:

Luca Caricchi, University of Geneva,
Switzerland
Roberto Sulpizio, Università degli
Studi di Bari, Italy

*Correspondence:

Yan Lavallée, Experimental
Volcanology Laboratory, Earth,
Ocean and Ecological Sciences,
Jane Herdman Building, 4 Brownlow
Street, Liverpool, L69 3GP, UK
e-mail: yan.lavallee@liverpool.ac.uk

Super-eruptions generating hundreds of cubic kilometers of pyroclastic density currents
are commonly recorded by thick, welded and lava-like ignimbrites. Despite the huge
environmental impact inferred for this type of eruption, little is yet known about the
timescales of deposition and post-depositional flow. Without these timescales, the critical
question of the duration of any environmental impact, and the ensuing gravity of its
effects for the Earth system, eludes us. The eruption and welding of ignimbrites requires
three transects of the glass transition. Magma needs to: (1) fragment during ascent, (2)
liquefy and relax during deposition, agglutination and welding (sintering), and (3) quench
by cooling into the glassy state. Here we show that welding is a rapid, syn-depositional
process and that the welded ignimbrite sheet may flow for up to a few hours before
passing through the glass transition a final time. Geospeedometry reveals that the basal
vitrophyre of the Grey’s Landing ignimbrite underwent the glass transition at a rate of
∼0.1◦C.min−1 at 870◦C; that is, 30–180◦C below pre-eruptive geothermometric estimates.
Application of a 1-D cooling model constrains the timescale of deposition, agglutination,
and welding of the basal vitrophyre to less than 1 h, and possibly even tens of minutes.
Thermo-mechanical iteration of the sintering process indicates an optimal temperature
solution for the emplacement of the vitrophyres at 966◦C. The vitrophyres reveal a
Newtonian rheology up to 46 MPa, which suggests that the ash particles annealed entirely
during welding and that viscous energy dissipation is unlikely from loading conditions
alone, unless shear stresses imposed by the overlying ash flow were excessively high
and sustained over long distances. The findings underline the value of the term “lava-like”
flow to describe the end rheology of Snake River-type ignimbrites, fully consistent with
the typical lithofacies observed.
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INTRODUCTION
Large explosive (super-) eruptions of silicic magma commonly
generate extensive pyroclastic density currents, preserved in the
geologic record as ignimbrites, classically termed pumice-and-
ash-flow tuff (Sparks, 1976; Sparks et al., 1978; Walker et al.,
1981; Wilson and Walker, 1982; Walker, 1983; Wilson, 1985;
Fisher et al., 1993; Freundt and Schmincke, 1995; Kobberger and
Schmincke, 1999). During deposition from the pyroclastic density
currents, agglutination, sintering, and welding of liquid glob-
ules of ash and pumice lapilli likely change the flow behavior
from particulate to coherent and non-particulate (Branney and
Kokelaar, 1992; Gottsmann and Dingwell, 2001a). Architectural
descriptions of high-grade ignimbrites often provide evidence for
both syn- and post-depositional development of rheomorphic,
ductile shear zones and “lava-like” lithofacies (Schmincke and

Swanson, 1967; Chapin and Lowell, 1979; Branney and Kokelaar,
1992; Moore and Kokelaar, 1998; Kokelaar and Koniger, 2000;
Sumner and Branney, 2002; Andrews and Branney, 2011; Brown
and Bell, 2013). Welding textures have been reported from a
range of physical environments: in conduits (Tuffen et al., 2003;
Tuffen and Dingwell, 2005; Noguchi et al., 2008; Kolzenburg
et al., 2012; Lavallée et al., 2012), at the base of lava flows
(Manley, 1992, 1995, 1996), in impact crater ejecta blankets
(Dence, 1971; Kraut and French, 1971) and in ignimbrites, both
proximal (Mellors and Sparks, 1991) and distal (Quane and
Russell, 2005a; Andrews et al., 2008; Branney et al., 2008; Brown
et al., 2008; Trofimovs et al., 2008; Ellis et al., 2011). For the
case of ignimbrites, two end-member stages of rheomorphism
are postulated: syn-depositional/syn-welding flow (e.g., Branney
and Kokelaar, 1992; Andrews and Branney, 2011) and late-stage
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post-depositional compaction; welding and viscous flow (e.g.,
Schmincke and Swanson, 1967; Kobberger and Schmincke, 1999).
Microstructural studies of the deformation history outlining the
complex depositional dynamics of such rheomorphism have led
to the former scenario being favored (Andrews et al., 2008;
Andrews and Branney, 2011). The physico-chemical character
of the deposits, especially where developing into shear zones,
has direct rheological consequences for flow, where viscous
energy dissipation may cause heating by tens if not hundreds of
degrees (Robert et al., 2013). Recent work on ignimbrites has
provided greatly improved, detailed, process-oriented descrip-
tions of deposit formation (Andrews and Branney, 2011), but
the timescales of deposition and post-depositional flow remain
largely unconstrained. Here we take advantage of the fact that
vitrophyres—that is, the original glassy material formed on initial
quenching of the deposits—may hold invaluable kinetic con-
straints on the emplacement dynamics.

Rheologically (or kinetically) the eruption and welding of
ignimbrites requires three crossings of the glass transition (Tg)
(Gottsmann and Dingwell, 2001a). Magma needs to: (1) frag-
ment to ash during ascent and eruptive fountaining, (2) liquefy
and relax during transport, deposition, agglutination and weld-
ing at high temperature, and lastly (3) quench by cooling into
the glassy state. The structure of the glass frozen in at Tg reflects
kinetic information from the point at which structural relaxation
ceases (Dingwell and Webb, 1990). The cooling path dependence
of Tg and its role in forming glass thus holds information as
to the cooling rate of magma, which is experimentally accessi-
ble via geospeedometric approaches (Gottsmann and Dingwell,
2001a; Gottsmann et al., 2004). Here, we combine rheological
measurements, chemical analysis, glass geospeedometry and a
1D analytical thermo-mechanical model to assess the physico-
chemical evolution and, specifically, to constrain the duration of
eruption, deposition and cooling of a high-grade ignimbrite in
the Snake River Plain (USA).

GREY’S LANDING IGNIMBRITE
The Late Miocene Grey’s Landing member is a high-grade
ignimbrite resulting from Snake-River (SR)-type volcanism
(Branney et al., 2008), preserved in the Rogerson Graben and
inferred to originate several tens of kilometers to the east, on
the southern margin of the Twin Falls eruptive center (Figure 1;
Cathey and Nash, 2004; Andrews and Branney, 2011). Detailed
studies of the ignimbrite have described a 5–75-m thick deposit
unit divided into a (1) basal vitrophyre, overlain by (2) a thick,
parataxitic, lithoidal core, (3) a thin upper vitrophyre, and some-
times (4) a non-welded top (Andrews et al., 2008; Andrews and
Branney, 2011). The vitrophyres are generally continuous and
do not exhibit evidence of any large-scale folding or brittle fail-
ure resulting from vigorous post-depositional flow (c.f., Branney
et al., 2004). The basal and upper vitrophyres consist of a poorly
sorted mixture of densely-welded (∼0.075 and 0.095 pore volume
fraction, respectively) glass shards with mildly eutaxitic fabrics
and containing small amounts (<5%) of microlites of andesine,
pigeonite, augite, hypersthene, and titanomagnetite (Figure 2).
Previous geothermobarometry study on pigeonite-augite crys-
tal pairs suggests pre-eruptive magmatic temperatures ranging

between 900 and 1050◦C (Andrews et al., 2008)—a temperature
range constrained by setting pressure to 5 kbar (Cathey and Nash,
2004), based on on isotopic analysis for these high-temperature,
low d18O rhyolite work (Leeman et al., 2008).

GEOCHEMICAL ANALYSIS
On the basis of bulk whole-rock analysis, the Grey’s Landing
ignimbrite comprises an anhydrous, metaluminous rhyolite with
72.5 wt% SiO2 (Table 1; Andrews et al., 2008). The chemical
composition of the interstitial glass and, importantly, its volatile
content provide some first order constraints on its melt rheology.
The glass, as measured by electron probe micro-analysis, is also a
metaluminous rhyolite and here we constrain its rheology using
the model for hydrous, metaluminous melts (Hess and Dingwell,
1996).

We quantified the volatile content of the glass using a simulta-
neous differential scanning calorimeter/thermal gravimetric anal-
yser (DSC-TGA) with exsolved gas analysis (mass spectrometer,
MS). Standard procedures for DSC-TGA analysis were followed
(Newman et al., 1986; Denton et al., 2009) with two heating cycles
to 1250◦C at 5◦C.min−1.

During the first heating cycle the sample lost 2.61 wt%, indica-
tive of its total volatile content (Figure 3). Insignificant weight
loss during the second heating cycle bears testimony to the
near-complete nature of the degassing occurring during the first
heating cycle. Degassing occurred over a broad temperature range
from 200 to 500◦C. The rate of weight loss peaked at 298◦C
and corresponded well with the peak H2O count recorded in
the MS, indicating that the weight loss was dominated by water,
although CO2, F, and Cl loss also occurred (at concentrations
carrying minor rheological impacts on silicate liquids, Hess and
Dingwell, 1996; Morizet et al., 2007). Using the relative magni-
tudes of the MS species counts water is estimated to comprise
92% of the volatiles lost, giving an estimated water content of 2.39
wt.%. Water loss predominantly occurred at low temperatures,
indicating that molecular water concentrations greatly exceeded
those of hydroxyl (Denton et al., 2009, 2012). The water spe-
ciation is therefore typical of low, significantly sub-magmatic
temperatures (e.g., Stolper, 1989). We propose that molecular
water entered the sample pore space at temperatures <500◦C
during post-depositional hydration (Denton et al., 2009), due to
the high solubility, yet low diffusivity of water in silicate glass at
low temperature (Zhang et al., 2007), and that little disassociated
magmatic water was present. An important implication is that a
trivial amount of magmatic volatiles were present in the melt as
it last crossed the glass transition, suggesting that degassing was
near-complete in this explosive super-eruption.

ROCK-MAGNETIC SIGNATURE
We employed a magnetic measurements variable field trans-
lation balance (VFTB) to measure the Isothermal Remanent
Magnetisation (IRM), backfield, hysteresis and thermomagnetic
curves to help identify the magnetomineralogy and domain state
in the basal vitrophyre as well as constrain the conditions at
which the sample hydrated (Figure 4). For this purpose, small
cylinders of vitrophyre (6 mm diameter and 5 mm high) were
subjected to varying applied magnetic fields and the resulting
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FIGURE 1 | Extent of the Grey’s Landing ignimbrite (shaded in gray) in the Rogerson Gragen, Snake River Plain, Idaho, USA.

FIGURE 2 | Photomicrogragh of the Grey’s Landing basal vitrophyre

showing a dense agglomerate of eutaxitic glass shards with moderate

aspect ratio (3:5). The glass hosts a small amount of plagioclase (Pl),
pyroxene (Px), oxide (in white) and pores.

Table 1 | Chemical composition of the Grey’s Landing basal

vitrophyre.

Oxides Glass 1 Glass 2 Bulk

SiO2 79.088 78.876 72.543

Al2O3 11.965 12.050 11.812

Na2O 1.862 1.754 2.995

K2O 5.897 5.934 5.174

MgO 0.000 0.006 0.239

CaO 0.295 0.264 1.448

TiO2 0.330 0.357 0.499

Fe2O3 0.442 0.497 3.501

MnO 0.005 0.027 0.064

P2O5 0.019 0.035 0.082

Cl 0.030 0.027 –

LOI – – 1.911

Total 99.932 99.826 100.267

The interstitial glass was analyzed with a CAMECA SX100 electron microprobe,

using a defocused beam [15 kV, 20 nA scanning box mode (102 μm2)] and the

calibration standards: Na, albite; K, orthoclase; v12, rhyolite. Bulk rock analysis

were obtained by XRF (Andrews et al., 2008).
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magnetisation was measured both before (hysteresis) and after
(IRM and backfield) switching the field off. Subsequently, the
samples were placed in a constant field of 240 mT and heated in
air to 700◦C and then cooled back down to room temperature.
The dataset was analyzed using the RockMagAnalyzer software

FIGURE 3 | Thermal analysis showing weight loss and mass

spectrometer count for H2O (AMU 18) associated with heating at a

rate of 5◦C.min−1 from 50 to 1250◦C. The strong correlation shows that
degassing is dominated by the loss of molecular water from the sample.

by Leonhardt (2006). We find a good consistency between all
samples. IRM and backfield curves (Figures 4A,B) show evidence
for both low and (minor) high coercivity phases with saturation
not fully achieved by 800 mT. The hysteresis loop (Figure 4C)
also shows some “wasp-waisting” (Tauxe et al., 1996) suggest-
ing that phases with very different coercivity are present within
the sample. The bulk hysteresis properties give a remanent mag-
netization/ saturation magnetization (Mrs/Ms) of 0.19 and the
coercivity of remanence/coercive force (Bcr/Bc) of 5.6 placing it
within the pseudo single-domain (PSD) region of the Day et al.
(1977) plot close to the single-/multi-domain (SD/MD) mixing
line of Dunlop (2002). All thermomagnetic heating and cooling
curves (undertaken in air) show at least two Curie Temperatures
in the basal vitrophyre (Figure 4D). The first is at 210–230◦C,
likely representing an Fe-Ti oxide (potentially a near-primary
titanohaematite), and the second at 550–580◦C indicating near-
stoichiometric magnetite.

The difference in shape of the cooling and heating curves
suggests that during laboratory heating, the Fe-Ti oxide grains
were variably oxidized to have more distributed, higher Curie
Temperatures and higher saturation magnetisation values. The
results suggest that this rock was originally subject to oxi-
dation of its primary magnetic phases at elevated tempera-
tures but that it cooled too quickly to achieve equilibrium.
We do not find evidence for (titano) maghaemite which sug-
gests the oxidation was confined to temperatures at least above

FIGURE 4 | Magnetic properties of the basal vitrophyre, measured

in a variable field translation balance (VFTB). (A) IRM curve, and
(B) Backfield IRM curve: both showing evidence for both low and
(minor) high coercivity phases with saturation not fully achieved by

800 mT; (C) Hysteresis loop, used for estimating a Mrs/Ms of 0.19
and a Bcr/Bc of 5.6; (D) Thermomagnetic Curves (undertaken in air)
show at least two Curie Temperatures at 210–230◦C, and at
550–580◦C.
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200◦C. Similarly, the presence of a Ti-rich phase and its readi-
ness to alter under laboratory heating supports limited (or no)
primary oxidation occurring above 700◦C. This iron oxida-
tion temperature constraint is concordant with the observation
that sample dehydration reaction around <500◦C (Figure 3)
may reflect a late, post-magmatic hydration phase by meteoric
water.

GEOSPEEDOMETRY
A differential scanning calorimeter (DSC) was used to quan-
tify the glass transition temperature and to derive the natural
cooling rate of the interstitial glass. 55.99 mg of crushed glass
were selected, washed with acetone and oven-dried at 110◦C for
60 min. Specific heat capacities of the glass shards (placed in a lid-
ded platinum crucible) were measured in argon atmosphere in a
DSC calibrated against a single crystal sapphire of similar mass
in identical measurement conditions. The samples were treated
to 950◦C in successive heating/cooling runs at matching cool-
ing and heating rates of 10/10, 10/10, 20/20, 15/15, 10/10, and
5/5◦C.min−1 (details of the method and volcanology applicabil-
ity can be found in Scherer, 1990; Wilding et al., 1995, 1996;
Gottsmann and Dingwell, 2001a,b). Geospeedometry requires fit-
ting the raw heat capacity curve of the first heating cycle (from
original samples with an unknown, natural cooling rate) by mod-
eling the heat capacity peaks associated with the glass transition
of each cooling/heating cycle of a known rate.

During the first heating run, we observe a broad peak in heat
capacity at 250–600◦C and a narrow peak associated with the
transition of the glass to a supercooled melt at 800–920◦C, which
peaks at 870◦C (Figure 5A). We attribute the low-temperature
DSC peak to devolatilisation of molecular water, as it coincides
well with the temperature range of degassing in TGA measure-
ments. In the following runs, the low-temperature peak is absent
and only the glass transition peak remains, although the mea-
sured heat capacities progressively diminish. Extrapolation of the
glass transition peaks can be used to estimate the natural cool-
ing rate of a liquid as it vitrifies. Note that it remains possible
that the accuracy of geospeedometric estimates may be jeopar-
dized if post-depositional hydration were to modify the structure
originally trapped in at the glass transition; no rheological stud-
ies yet account for such a phenomenon. Here, application of
geospeedometry provides us with an estimate of the cooling rates
of the basal vitrophyre at ∼0.1◦C.min−1 (Figure 5B).

“LAVA-LIKE” RHEOLOGY
The viscosity of the Grey’s Landing melt was investigated through
dilatometric measurements. Cylindrical disks with heights and
diameters of 8 mm were placed in the dilatometer and heated
at a rate of 10◦C.min−1 to various temperatures (870, 900, 930,
960◦C). Once the sample was thermally equilibrated after 10 min,
a small indenter was released onto the sample and the rate of
indentation was used to calculate the temperature (T) depen-
dence of the viscosity (η0 in Pa·s; Figure 6). In the narrow
temperature span the measurements constrain the viscosity to:

Log10 (η0) = 9601

T − 195.7
− 3.545 (1)

FIGURE 5 | Geospeedometric analysis. (A) Calorimetric measurements
during a series of heating/ cooling intervals at different rates. The first
heating interval show a calorimetric peak at about 300◦C which correlates
with the dTGA peak (see Figure 3). The second calorimetric peak at 870◦C
is associated with the crossing of the glass transition. (B) Modeled best-fit
of the heat capacity of the natural glass, which constrains the depositional
cooling rate through Tg at 0.1◦C.min−1.

This temperature dependence of the viscosity is in agreement
with the description of a low water content (0.2–0.25 wt.%)
metaluminous rhyolite (Hess and Dingwell, 1996).

The strain rate dependence of the Grey’s Landing melt rhe-
ology was investigated using a high-temperature (<1300◦C),
high-pressure (1–300 kN) uniaxial press equipped with acoustic
sensors (see Hess et al., 2007; Lavallée et al., 2008, for detail on
the technique). Large cylindrical cores with heights and diame-
ters of 50 and 25 mm, respectively, were prepared and a set of
three 2-mm wide holes was drilled along the sample axis to permit
the insertion of thermocouples. The sample was placed between
the pistons of the press, heated up to given temperatures (900,
920, 940◦C) and thermally equilibrated for 9 h. Subsequently, a
series of loads of 8.0, 16.0, and 24.0 kN (equivalent to stresses of
15.5, 31.0, and 46.5 MPa) were consecutively applied, the piston
displacement was monitored, and the rheology was evaluated.
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FIGURE 6 | Temperature dependence of viscosity of the vitrophyre

within the eruptive temperature window as constrained by

geothermometry (gray field) and the glass transition (Tg ). The
deposition temperature (Templacement ) constrained in Figures 6, 7 is also
shown. The solid circles show data obtained by micropenetration and the
open circles represent data obtained through the parallel-plate method
adapted for a uniaxial press, operating under different applied stresses
(15.5, 31.0, and 46.5 MPa) and thus, strain rates. The narrow range of
measured viscosities, at a given temperature and despite the range of
applied stresses, suggests that the vitrophyre is a Newtonian fluid which
does not undergo significant viscous heating within the applied stress
conditions.

During the experiments there were no detectable acoustic
emissions that would be expected to accompany microcracking
of the sample; this implies that all strain was viscously accom-
modated (e.g., Lavallée et al., 2008). Moreover, we monitored
no temperature increase, which would have arisen from any
significant viscous heating. Analysis of high-resolution (20 μm)
neutron tomographic images was used to further investigate the
deformation mechanism (Online Supplementary Material). Even
in samples with up to 33% strain, we observed viscous defor-
mation of glass shards and an absence of microcracks. Again,
this argues for strain during the deformation experiments to be
accommodated by viscous flow.

An equation developed for parallel plate measurements (Gent,
1960) was used to calculate the apparent suspension viscosities η:

η = 2πFh5

3V
dh

dt

(
2πh3 + V

) (2)

where V is the initial volume of sample (m3), h is the length (m),
and dh/dt is the rate of length change (m.s−1). [Note that we use
the term apparent viscosity to describe the general rheology of
the suspension consisting of liquids, crystals, pores (see Lavallée
et al., 2007) without reference to the stress - strain rate descrip-
tion of the rheology]. The calculated viscosities are in reasonably
good agreement with the viscosities obtained by dilatometry
(Figure 6). We observed no stress (or strain rate) dependence of
the apparent viscosity, which could have been associated with an
abundance of crystals (Lavallée et al., 2007), with the deforma-
tion of pores between glass shards (Quane and Russell, 2005b),

viscous heating (Hess et al., 2008) or failure (Lavallée et al.,
2008). The observed Newtonian rheology indicates that the basal
vitrophyre behaved as coherent viscous liquid typical of low-
crystallinity, low-porosity lavas once the pores collapsed to the
observed end-fraction.

TIMESCALE OF THE GREY’S LANDING IGNIMBRITE
ERUPTION
The combination of geothermometry, based on equilibrium
crystallization temperature of the mineral assemblage, and
geospeedometry, based on glass transition analysis in the welded
glass shards, is used to constrain the timescale of eruption and
emplacement of the Grey’s Landing ignimbrite. Pre-eruptive tem-
perature estimates of 900–1050◦C (Andrews et al., 2008) and a
measured glass transition temperature of 870◦C allow for a max-
imum temperature window for cooling of the material during
eruption, transport and deposition of 30–180◦C. A complemen-
tary rheological study has proposed that viscous energy dissipa-
tion during intense shearing may have increased the temperature
conditions for rheomorphism by tens of degrees and perhaps up
to 250◦C (Robert et al., 2013). It remains that upon cooling,
the basal vitrophyre cooled through the glass transition at a rate
of ∼0.1◦C.min−1.

We apply an analytical approach combining a 1D model for
conductive heat transfer with a viscoelastic mechanical model
to account for progressive changes in heat conductivity in a
porous magma undergoing compaction. Our assumptions are (1)
that the ignimbrite was deposited instantaneously and (2) that
it experienced no deformation during aggradation. Our model
is a simplification of nature as it has been constrained that the
deposition of pyroclastic density currents results from progressive
aggradation (e.g., Branney and Kokelaar, 1992), yet we assume
that deposition is extremely rapid and that deposition tempera-
ture may be relatively uniform, in order to use current mechanical
models. Thus, the starting conditions of the model are homoge-
neous initial temperature and total porosity. The heat transfer
is governed by conservation of energy following the 1D heat
equation:

∂T

∂t
= κ

∂2T

∂z2
(3)

for which z represents the vertical distance (m) perpendicular to
the surface of the deposit and κ the thermal diffusivity (m2.s−1) of
the porous material. The classical definition of the thermal con-
ductivity assumes a pore-free material and, here, we refine this
definition to consider the insulation provided by the porosity of
the material (e.g., Connor et al., 1997):

κ = k

ρCp (1 − φ) + ρf C
f
pφ

(4)

where k is the thermal conductivity (W.m−1.K−1), φ the total
porosity, ρ and Cp the skeletal density (kg.m−3) and specific heat

capacity (J.kg−1.K−1) of the solid respectively, and ρf and C
f
p the

density and the specific heat capacity of the pore fluid (Table 2).
The pore fluid pressure is assumed to be atmospheric, which is
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Table 2 | Initial thermal parameters.

Variable Value Melt/Glass Country rock Pore fluid

k0 (m2.s−1) – 1.59 1.59 0.025

ρ (kg.m−3) – 2900 2330 1.275

Cp (J.kg−1.K−1) – 1000 1000 1007

φt 0.5 – – –

λ 3.6 – – –

reasonable considering the lack of confinement to prevent expan-
sion. The thermal conductivity is also a function of the porosity
of the material considered. Some empirical models have been
proposed to relate the thermal conductivity of a porous rock to
its pore-free thermal conductivity k0 (Bagdassarov and Dingwell,
1994):

k = k0

(
1 − φ

1 + φ

)
(5)

Analytical solution of Equation (3) for geological systems has
most commonly been achieved by assuming self-similarity of
solutions (Carslaw and Jaeger, 1947). Assuming homogeneous
initial temperature, Carslaw and Jaeger (1959) treat the problem
of a cooling magma body in contact with a county rock at z = 0
and which solidifies at and below its solidus temperature. In our
case we use the glass transition temperature in place of the solidus.
A derived solution of Equation (3) for the temperature profile in
the melt is as follows:

Tmelt (z, t) = Ti + Tg − Ti

erfc

(
λ

√
κg

κm

) erfc

(
z

2
√

κmt

)
(6)

where Ti and Tg are the initial and the glass transition tempera-
ture (K) of melt respectively, κm and κg the thermal diffusivity of
the melt and the glass respectively, and λ a non-defined thermal
constant. Carslaw and Jaeger (1959) have shown that the temper-
ature profile in the solid portion, here, glass, can be described by
the following equation:

Tglass (z, t) = Tg

kg
√

κc + kc
√

κgerf (λ)[
kg

√
κc + kc

√
κgerf

(
z

2
√

κg t

)]
(7)

where κc is the thermal diffusivity of the underlying country rock.
The solidification surface occurs following zglass(t) = 2λ

√
κmt.

This thermal approach is further combined with a mechanis-
tic and kinetic description of the compaction of the deposited
ash (Quane and Russell, 2005b, 2006; Quane et al., 2009). The
porosity evolution with stress σ , viscosity of the material at zero
porosity η0 and time t can be derived using the empirical equation
(Quane et al., 2009):


t = η0

ασ (1 − φi)

[
exp

(
− αφ

1 − φ

)
− exp

(
− αφi

1 − φi

)]
(8)

where

φ (t) = β

β − α
(9)

and

β = ln

(
ασ

η0 (1 − φi)
t + exp

(
− αφi

1 − φi

))
(10)

Here, φi is the initial total porosity and α an empirical constant.
Following Quane et al. (2009) we use α = 0.78 for packing of
volcanic ash. The stress distribution across the entire deposit is
described by the overburden as σ (z) = ρ(1 − φ)gz where g is the
gravitational acceleration (m.s−2).

This set of Equations (4–10) provides the tools to iterate
a thermo-mechanical model describing the feedbacks between
compaction via destruction of porosity, temperature (and thus
viscosity) and stress upon deposition. Using a set of constrained
glass parameters (Table 2), we simulate the progression of com-
paction as a function of time and initial temperature (Figure 7).
The model results suggest that for the pyroclasts at a strati-
graphic height of z = 0.3 m to reach the measured φ = 0.075 at
T = Tg , and a constrained cooling rate of 0.1◦C.min−1, a little
under 1 h is required. Due to the interplay between cooling and
compaction, we can further deduce that ∼966◦C is the idealized
deposition temperature Ti to meet the measured conditions of
porosity, stratigraphic position and cooling rate (Figure 8). This
compaction time estimate may be faster if syn-depositional shear-
ing (e.g., Robert et al., 2013) were to have achieved higher stresses
than the overburden load considered in our model.

The welding timescale calculated here agrees well with the
12–120 min proposed by similar rheological modeling by Robert
et al. (2013) but is significantly shorter than the 10–15 h pro-
posed for the Bishop Tuff (Long Valley Caldera, California, USA)
by Wilson and Hildreth (1997). In contrast it is orders of magni-
tude more rapid than the thermo-mechanical constraints on the
Bandelier Tuff (Valles Caldera, New-Mexico, USA) estimated at
1–5 days (Quane et al., 2009), the Rattlesnake Tuff estimated
at 10 s of days (Riehle et al., 2010), the Bishop Tuff estimated
at 10–100 s of days (Wilson and Hildreth, 1997; Sheridan and
Wang, 2005; Riehle et al., 2010), and on a rheomorphic phonolitic
fallout deposit (Las Cañadas Caldera, Tenerife, Spain) estimated
at 25–54 days (Soriano et al., 2002). The study constrains that
welding is not, as previously suggested, decoupled from cool-
ing (e.g., Sheridan and Wang, 2005) but rather is synchronous
with cooling. Here we demonstrate that welding (i.e., sintering
and formation of eutaxitic textures) reflects the temperature-time
window in which the erupted products remain in the liquid state
(above the glass transition temperature of the glass fraction of the
pyroclasts).

The general agreement between the onset temperature of weld-
ing (966◦C) and the geothermometric constraint (900–1050◦C)
suggests that little cooling took place during eruption and trans-
port (unless frictional processes contributed in large amounts;
e.g., Robert et al., 2013; Lavallée et al., 2014). In this sense,
there are strong parallels between large ignimbrites and tuff-
isites within silicic lava-filled conduits, which exhibit similar
dense welding textures (Tuffen et al., 2003). In tuffisites, minimal
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FIGURE 7 | The results of the 1D analytical thermo-mechanical model for

the lower half of the deposit at the sampling location. (A) Overburden
stress and time-dependent temperature in the deposit after homogeneous

initial conditions of 966◦C and 0.5 porosity. (B) Porosity evolution during
viscous compaction and cooling between 10 s and 5 h. (C) Cooling rate (black
line) and porosity (gray line) locked in the glass as the melt crosses Tg .

FIGURE 8 | Estimation of the temperature of deposition and the

timescale to reach the measured porosity at a stratigraphic height of

30 cm in the deposit. (A) Intersection of a cooling rate of 0.1◦C.min−1 (black

line) and a porosity of 0.075 at a height of 30 cm (shaded region) constrains
an initial deposition temperature of ∼966◦C. (B) The time required to produce
the porosity observed at a height of 30 cm whilst cooling ∼966◦C is 55 min.

cooling occurs between fragmentation and sintering due to iso-
lation from the atmosphere in intrusive pyroclastic channels.
The inference is that for large-volume ignimbrites the bulk of
the magma is similarly thermally insulated from the atmosphere
(Suzuki and Koyaguchi, 2010; Sulpizio et al., 2014), despite
degassing to near-atmospheric pressure; a similar insulation
has been postulated from examination of ignimbrite emplaced

sub-aqueously (Kokelaar and Koniger, 2000). This must reflect
minimal entrainment of surrounding fluids (air or water) during
pyroclastic fountaining and flow. It may also reflect a wide source
vent (e.g., Legros et al., 2000). Cooling of pyroclasts may there-
fore be largely prevented until deposition (e.g., Lesti et al., 2011),
thus supporting the view that the thermal history of explosive
eruptions and emplacement are decoupled.
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CONCLUSION
The experimental and analytical constraints described above help
to unravel the timescales of deposition of large-volume high-
grade ignimbrites. The narrow temperature window between the
residence in the reservoir and the transition to a glass indi-
cates a high discharge rate, rapid post-fragmentation transport
and deposition, and rapid agglutination, welding, and rheomor-
phism. We estimate the timescale of sintering (welding) and rheo-
morphism of the basal vitrophyre at a little under 1 h and further
constrain that deposition and onset of sintering occurred when
the ash particles approximated 966◦C. Our rheological experi-
ments confirm that, at their original emplacement temperature,
the vitrophyres exhibit Newtonian properties at applied stresses
up to 46 MPa (corresponding to a 2 km thick deposit). Thus, the
use of the term “lava-like” is physically reasonable for describing
the rheological properties of the vitrophyres of high-grade ign-
imbrites; moreover, it suggests that viscous heating may be min-
imal for such flow unless applied stresses are significantly higher
than those exerted by the overburden. Together, rheological and
analytical measurements may serve to constrain the temporal and
physico-chemical evolution framework of ignimbrite eruptions
and, in the case of the Grey’s Landing ignimbrite, support a short
timescale of emplacement.
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