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The Earth’s rotation can change as a result of several internal and external processes,

each of which is at a different timescale. Here, we present some possible connections

between the Earth’s rotation variations and the geomagnetic reversal frequency rates

over the past 120 Myr. In addition, we show the possible relationship between the

geomagnetic field reversal frequency and the 18δ O oscillations. Because the latter

reflects the glacial and interglacial periods, we hypothesize that it can be used as a

possible indicator to explain the length of day (LOD) variations and consequently the

reversal field frequency over the past 510 Myr. Therefore, our analysis suggests that the

relationships between the geomagnetic reversal frequency rates and the Earth’s rotation

changes during the Phanerozoic. However, more reversal data are required for periods

before the Kiaman Reverse Superchon (KRS) to strengthen the perspective of using the

geomagnetic reversal data as a marker for the LOD variations through geological times.

Keywords: geomagnetic field reversals, Earth’s rotation variation, length of day, Earth’s temperature variation,

Phanerozoic

Introduction

The Earth’s rotation can be understood through internal and external processes that act upon the
planet. External processes include: gravitational interactions with the Moon, the Sun and the plan-
ets; orbital and rotation axis variations; and position of the solar system relative to the galactic
spiral arms. Internal processes include: the redistribution of densities in the mantle because of
the lithospheric plate subduction and mantle convection; distribution of continents; variations
caused by glacial and interglacial periods (e.g., Lambeck, 1980; Hide and Dickey, 1991; Gross,
2007).

The variations in Earth’s rotation can be studied using the principle of conservation of angular
momentum for the Earth system. The solid Earth rotation varies as a result of the applied exter-
nal torques, internal mass redistribution and transfer of angular momentum between the solid
Earth and its fluids (Gross, 2007). Regarding the fluids, hydrodynamic and magneto hydrodynamic
torques strongly act at the solid and fluid parts of planet Earth (e.g., Hide et al., 2000). Rotation vari-
ations are often expressed as length of day (LOD) variations, which have been observed at decadal
timescale and are considered a result of the angular momentum transfer from the outer core zonal
flow to the mantle (e.g., Holme and De Viron, 2005, 2013; Holme, 2007). Large LOD variations
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over decadal time scales arise from the exchange of angular
momentum between the solid mantle and the fluid core (Holme,
1998).

The main geomagnetic field is generated in the Earth’s liq-
uid metallic outer core. Driven by buoyancy forces from the
action of gravity on density heterogeneities, the core motions
are strongly affected by Coriolis forces because of the Earth’s
rotation and geometry of the coupling surfaces (e.g., Lambeck,
1980; Hide and Dickey, 1991; Hide et al., 2000; Miyagoshi and
Hamano, 2013). A link between the decadal geomagnetic field
and LOD variations has been treated (e.g., Yoshida and Hamano,
1995; Dumberry and Bloxham, 2006); however, the relationship
between the geomagnetic field and LOD variations has not been
explored for the geological timescale. Geomagnetic field rever-
sals are the most important field features that have been observed
throughout the geological timescales. The Earth’s magnetic field
irregularly reverses, and the reversal frequencies are highly vari-
able: there are periods with high reversal frequencies and periods
of remarkable stability, i.e., the superchrons (e.g., Merrill et al.,
1998). The reason for this apparent discrepancy in reversal fre-
quencies remains in debate, and the variations in Earth’s rotation
can play an important role during the geological times.

Here, we present some possible connections between the
Earth’s rotation variations and the geomagnetic reversal fre-
quency rates over the past 120 Myr. In addition, we show the
possible relationship between the geomagnetic field reversal fre-

quency and δ18Ooscillations. Because the latter reflects the glacial

and interglacial periods, we hypothesize that it can be used as a

possible indicator to explain LOD variations and consequently
the reversal field frequency over the past 510Myr. In this case, we

FIGURE 1 | Geomagnetic reversal rates over the past 120 Ma period, which were calculated according to Pavlov and Gallet (2005) and compared with

the LOD time derivative variations from Greff-Lefftz (2011).

suggest that the superchrons can be the Earth’s internal markers
for LOD oscillations through the Phanerozoic.

Magnetic Field Reversal Frequency and the
Earth’s Rotation Variations

The field reversal rate changes can be obtained based on the geo-
magnetic polarity time scale (GPTS), which is well constrained
for the 0–160 Ma period using high-resolution sea-floor mag-
netic anomalies. For the period prior to 160 Ma, the GPTS is
obtained from lower-resolution, paleomagnetic measurements in
sedimentary and igneous rock records (Ogg, 1995). The cur-
rent GPTS database spans approximately the past 540 Ma and
indicates periods of high and low reversal rates according to
Pavlov and Gallet (2005) (see Figures 1, 2). For the past 540
Ma, three periods without reversals are observed at approxi-
mately 125-83 Ma (the Cretaceous Normal Superchron—CNS),
at approximately 314-267 Ma (the Kiaman Reverse Superchon—
KRS) and at approximately 482-463 Ma (the Moyero Reversal
Superchron—MRS), although some reversals may have occurred
within these intervals (e.g., Ogg, 1995; Granot et al., 2012). High-
frequency reversal periods have been determined before and after
the CNS and KRS.

Each external or internal cause for rotation change acts at a
certain timescale (Lambeck, 1980). Creer (1975) suggested that
there might be a connection between changes in the predominant
geomagnetic polarity reversals and Earth rotation variations,
which were obtained from coral growth data. Greff-Lefftz (2011)
constructed a 120 Ma model for the length of day (LOD) vari-
ations, where the change components are attributed to mantle
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FIGURE 2 | Geomagnetic field reversal rates over the past 510 Myr from Pavlov and Gallet (2005) compared with the δ
18O (delta O18) variations from

Veizer et al. (2000) and Price et al. (2013).

density heterogeneities (i.e., upwelling domes and sinking plates)
and viscoelasto-gravitational deformations according to Ricard
et al. (1993) and Rouby et al. (2010). In that work, the LOD per-
turbation was estimated as 0.4µs per year, which is an order of
magnitude smaller than the effects of the last glaciation. Figure 1
shows the LOD time derivative from Greff-Lefftz (2011) and the
geomagnetic reversal rates for the past 120 Ma. The two curves
are similar from ∼80 Ma until the present, although between
approximately 115 and 80Ma, which coincides with the CNS, the
LOD variation and reversal rates (Figure 1) are approximately
constant. Prior to approximately 115 Ma, both the LOD and
reversal rate variations show a similar trend, which can be ascer-
tained by the strong correlation (r = +0.82) between both curves
(Figure 1). In addition, both phenomena vary at the identical
timescale (i.e., at Ma), which indicates that the geomagnetic field
reversals “instantaneously respond” to the LOD changes. These
observations clearly suggest a possible direct connection between
the LOD variations and an internal process in the Earth’s core
(geodynamo).

Comparison with δ
18O data

At a Phanerozoic time scale, the variations of the Earth’s rota-
tion can be a result of glacial isostatic adjustment (GIA) (e.g., Wu
and Peltier, 1984; Nakada and Okuno, 2003; Martinec and Hage-
doorn, 2014). The glacial-interglacial transitions induce varia-
tions in sea level and temperature. The δ18O values for the
Phanerozoic calcitic and phosphatic shells from all continents
(Veizer et al., 1999, 2000) have been used as a proxy for sea
level and temperature variations (Miller et al., 2005; Shaviv, 2005;
Müller et al., 2008; Price et al., 2013; Shaviv et al., 2014). A

correlation between the sea level and the rotation caused by
glacial-interglacial transitions can follow from the Earth’s angu-
lar momentum conservation, when large displaced water masses
induce changes in the inertia tensor, which consequently causes
variations in rotation. The geomagnetic field responds to the
rotation changes because one of the main forces in the geody-
namo dynamical equation (Navier-Stokes) is the Coriolis force.

Figure 2 shows a comparison between the Phanerozoic geo-
magnetic reversal frequency variation and δ18O values. The δ18O
curve is adapted from Veizer et al. (2000) and Price et al. (2013).
The curve shows detrended running averages with steps of 10
Myr and windows of 20 Myr. The reversal frequency curve was
linearly interpolated with an interval of 10 Myr. The data were
divided into three time intervals: 0–120 Ma, 120–270 Ma and
270–510 Ma. The first time interval is shown in Figure 1. The
second interval is a continuation of the first interval, for which
many reversal frequency data are available. The third interval has
little available geomagnetic reversal data. The computed corre-
lation coefficients between the reversal frequency rate and δ18O
variations are +0.79 and +0.72 for the 0–120 Ma and 120–
270 Ma intervals, respectively. In these cases, the correlations
between both curves indicate a similar trend, and both CNS
and KRS superchrons coincide with temperature maxima val-
ues from δ18O values. These temperature maxima correspond to
the inertia momentum maxima and rotation minima during the
Phanerozoic. For both intervals (0–120 and 120–270 Ma), the
statistical significance of the calculated correlation coefficients
was tested using Student’s test. The results indicate that the cal-
culated correlation coefficients are reliable considering the 95%
confidence level. For the 270–510 Ma interval, the correlation
coefficient is −0.26, and the significance test indicates that the
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95% confidence level has not been reached. This result may have
been strongly affected by the lack of reversals data. This is not an
evident clue for the relation between the geomagnetic field rever-
sal rate (consequently, LOD variations) and δ18O oscillations for
this time interval.

Final Remarks

The LOD variations over the past 120 Myr show a close rela-
tionship with the geomagnetic field reversal frequency. This rela-
tionship is ascertained by strong similarities between both curves
with a correlation coefficient of+0.82. Because geomagnetic field
variations can be an “instantaneous direct response” of the LOD
oscillations, they can be used as a marker for other phenomena.
According to the LOD modeling, it causes perturbations in the
Earth’s rotation that are approximately one order of magnitude
smaller than those caused by the last glaciation. If this assump-
tion is correct, the glacial-interglacial transitions directly affect
the LOD variations. In this case, the reversal frequency rate can
be used to compare with climatic proxies such as δ18O data.

The comparison between δ18O and the geomagnetic reversal
frequency presents similar trends during 0–120 Ma and 120–270
Ma. For these two periods, the CNS and KRS superchrons
coincide with the temperature maxima, which correspond to
the inertia momentum maxima and rotation minima. The MRS

superchron also corresponds to a temperature maxima, although
the correlation between the two curves is low due to scarcity of
data. These rotation variations (LOD) can occur because of the
hydrodynamic changes (water and ice mass displacements) on
the Earth’s surface. These hydrodynamic variations consequently
reflect the observed glacial and interglacial transitions during the
510 Ma period. There is a fourth Phanerozoic temperature max-
imum, where reversal data are scarce, that could correspond to a
Devonian Superchron.

Therefore, our analysis suggests relationships between the
geomagnetic reversal frequency rates and the Earth’s rotation
changes during the Phanerozoic. However, more reversal data
are required for periods before the KRS to strengthen the per-
spective of using geomagnetic reversal data as a marker for LOD
variations through geological times.

Acknowledgments

IP is thankful for a CNPq Research Fellowship; GH is thankful for
CNPq (454609/2014-0) and CAPES (AUXPE 2043/2014) grants.
We would like to thank the Instituto de Astronomia, Geofísica
e Ciências Atmosféricas of the Universidade de São Paulo
(IAG/USP) the Universidade Federal do Pampa and the Coor-
denação de Geofísica of the Observatório Nacional (COGE/ON)
for the institutional support.

References

Creer, K. M. (1975). “On a tentative correlation between changes in geomagnetic

polarity bias and reversal frequency and the earth’s rotation through Phanero-

zoic time” in Growth Rhythms and the History of the Earth’s Rotation, eds G. D.

Rosenbeg and S. K. Runcorn (London: John Wiley and Sons), 559.

Dumberry, M., and Bloxham, J. (2006). Azimuthal flows in the Earth’s core and

changes in length of day at millennial timescales. Geophys. J. Int. 165, 32–46.

doi: 10.1111/j.1365-246X.2006.02903.x

Granot, R., Dyment, J., and Gallet, Y. (2012). Geomagnetic field variability

during the Cretaceous Normal Superchron. Nat. Geosci. 5, 220–223. doi:

10.1038/ngeo1404

Greff-Lefftz, M. (2011). Length of day variations due to mantle dynamics

at geological timescale. Geophys. J. Int. 187, 595–612. doi: 10.1111/j.1365-

246X.2011.05169.x

Gross, R.S. (2007). “Earth rotation variations—long period,” in Treatise on Geo-

physics, Vol. 3, Geodesy, eds G. Schubert and T. Herring (Amsterdam: Elsevier),

239–294.

Hide, R., Boggs, D.H., and Dickey, J.O. (2000). Angular momentum fluctuations

within the Earth’s liquid core and torsional oscillations of the core–mantle

system. Geophys. J. Int. 143, 777–786. doi: 10.1046/j.0956-540X.2000.01283.x

Hide, R., and Dickey, J.O. (1991). Earth’s variable rotation. Science 253, 629–637.

doi: 10.1126/science.253.5020.629

Holme, R. (1998). Electromagnetic core–mantle coupling—I. Explaining decadal

changes in the length of day. Geophys. J. Int. 132, 167–180. doi: 10.1046/j.1365-

246x.1998.00424.x

Holme, R. (2007). “Large-scale flow in the Core,” in Treatise on Geophysics, Vol. 8,

Core Dynamics, eds G. Schubert and P. Olson (Amsterdam: Elsevier), 107–131.

Holme, R., and De Viron, O. (2005). Geomagnetic jerks and a high-resolution

length-of-day profile for core studies. Geophys. J. Int. 160, 435–439. doi:

10.1111/j.1365-246X.2004.02510.x

Holme, R., and De Viron, O. (2013).Characterization and implications of

intradecadal variations in length of day. Nature 499, 202–204. doi:

10.1038/nature12282

Lambeck, K. (1980). The Earth’s Variable Rotation. Cambridge: Cambridge Univer-

sity Press.

Martinec, Z., and Hagedoorn, J. (2014). The rotational feedback on linear momen-

tum balance in glacial isostatic adjustment.Geophys. J. Int. 199, 1823–1846. doi:

10.1093/gji/ggu369

Merrill, R.T., McElhinny, M.W., and McFadden, P.L. (1998). The Magnetic Field

of the Earth: Paleomagnetism, the Core, and the Deep Mantle, Vol. 63 (Interna-

tional Geophysics Series.). Amsterdam: Elsevier; Academic Press.

Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz,

M. E., et al. (2005). The phanerozoic record of global sea-level change. Science

310, 1293–1298. doi: 10.1126/science.1116412

Miyagoshi, T., and Hamano, Y. (2013). Magnetic field variation caused by rota-

tional speed change in a magnetohydrodynamic dynamo. Phys. Rev. Lett. 111,

124501. doi: 10.1103/PhysRevLett.111.124501

Müller, R. D., Sdrolias, M, Gaina, C., Steinberger, B., and Heihe, B. (2008).

Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319,

1357–1362. doi: 10.1126/science.1151540

Nakada, M., and Okuno, J. (2003). Perturbations on the Earth’s rotation and their

implications for the present day mass balance of both polar ice caps. Geophys.

J. Int. 152, 124–138. doi: 10.1046/j.1365-246X.2003.01831.x

Ogg, J. (1995). “Magnetic polarity time scale of the Phanerozoic,” inAGU Reference

Shelf, Vol. 1, Global Earth Physics: A Handbook of Physical Constants, ed T. J.

Ahrens (Washington, DC: AGU), 240–270.

Pavlov, V., and Gallet, Y. (2005). A third superchron during the Early Paleozoic.

Episodes 28, 78–84.

Price, G.D., Twitchett, R.J., Wheeley, J.R., and Buono, G. (2013). Isotopic evi-

dence for long term warmth in the Mesozoic. Nat. Sci. Rep. 3, 1438. doi:

10.1038/srep01438

Ricard, Y., Richards, M., Lithgow-Bertelloni, C., and Le Stunff, Y. (1993). A

geodynamic model of mantle density heterogeneity. J. Geophys. Res. B98,

21895–21909. doi: 10.1029/93JB02216

Rouby, H., Greff-Lefftz, M., and Besse, J. (2010). Mantle dynamics, geoid, iner-

tia and TPW since 120 Myr. Earth Planet. Sci. Lett. 292, 301–311. doi:

10.1016/j.epsl.2010.01.033

Frontiers in Earth Science | www.frontiersin.org 4 April 2015 | Volume 3 | Article 14

http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive


Pacca et al. Geomagnetic reversals and Earth’s rotation

Shaviv, N. J. (2005). On climate response to changes in the cosmic ray flux and

radiative budget. J. Geophys. Res. 110, A08105. doi: 10.1029/2004JA010866

Shaviv, N. J., Prokoph, A., and Veizer, J. (2014). Is the solar system’s galactic

motion imprinted in the phanerozoic climate? Sci. Rep. 4, 6150. doi: 10.1038/

srep06150

Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., et al. (1999).
87Sr, 86Sr, d13C and d18O evolution of Phanerozoic seawater. Chem. Geol. 161,

59–88. doi: 10.1016/S0009-2541(99)00081-9

Veizer, J., Godderis, Y., and François, L.M. (2000). Evidence for decoupling of

atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408,

698–701. doi: 10.1038/35047044

Wu, P., and Peltier, W.R. (1984). Pleistocence deglaciation and the Earth’s

rotation: a new analysis. Geophys. J. R. Astr. Soc. 76, 753–791. doi:

10.1111/j.1365-246X.1984.tb01920.x

Yoshida, S., and Hamano, Y. (1995). Geomagnetic decadal variations caused by

length-of-day variation. Phys. Earth Planet. Int. 91, 117–129. doi: 10.1016/0031-

9201(95)03038-X

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Copyright © 2015 Pacca, Frigo and Hartmann. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Earth Science | www.frontiersin.org 5 April 2015 | Volume 3 | Article 14

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive

	Possible relationship between the Earth's rotation variations and geomagnetic field reversals over the past 510 Myr
	Introduction
	Magnetic Field Reversal Frequency and the Earth's Rotation Variations
	Comparison with δ18O data
	Final Remarks
	Acknowledgments
	References


