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Humans have more than doubled inputs of reactive nitrogen globally and greatly

accelerated the biogeochemical cycles of phosphorus and metals. However, the

impacts of increased element mobility on tropical ecosystems remain poorly quantified,

particularly for the vast tropical dry forest biome. Tropical dry forests are characterized by

marked seasonality, relatively little precipitation, and high heterogeneity in plant functional

diversity and soil chemistry. For these reasons, increased nutrient deposition may affect

tropical dry forests differently than wet tropical or temperate forests. Here, we review

studies that investigated how nutrient availability affects ecosystem and community

processes from the microsite to ecosystem scales in tropical dry forests. The effects

of N and P addition on ecosystem carbon cycling and plant and microbial dynamics

depend on forest successional stage, soil parent material, and rainfall regime. Responses

may depend on whether overall productivity is N- vs. P-limited, although data to test

this hypothesis are limited. These results highlight the many important gaps in our

understanding of tropical dry forest responses to global change. Large-scale experiments

are required to resolve these uncertainties.

Keywords: tropical dry forest, nutrient limitation, ecosystem processes, carbon cycling, decomposition, nitrogen

deposition, nitrogen cycling

Introduction

Not only have humans more than doubled the amount of reactive nitrogen (N) entering the global
N cycle through industry, energy use, and agriculture (Vitousek, 1994; Galloway et al., 2004), we
have also greatly accelerated the biogeochemical cycles of phosphorus (P) and metals (Smil, 2000;
Rauch and Pacyna, 2009). While ecosystem processes in the temperate zone are thought to be
primarily limited by the availability of N, a wide array of elements including N, P, and sodium
(Na) can control tropical forest productivity, decomposition, and tree species distributions (Kaspari
et al., 2009; Cleveland et al., 2011; Condit et al., 2013). The high biogeochemical heterogeneity of
tropical forests (Townsend et al., 2008) challenges our ability tomodel ecosystem carbon (C) cycling
and forest dynamics under rapidly changing climate and nutrient deposition regimes, and suggests
that research from temperate forests may not apply in the tropics.

Ecosystem state factors including climate, parent material, topography, biotic organisms, and
weathering affect the absolute and relative availabilities of different elements (Jenny, 1941).
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In general, ecosystem processes (e.g., net primary productivity,
NPP) are limited by N on geologically young soil substrates, such
as recently glaciated soils in the temperate zone or recent lava
flows in the tropics (Vitousek, 1999; Reich andOleksyn, 2004). By
contrast, older geologic substrates are depleted of rock-derived
elements such as P and cations [e.g., calcium (Ca), potassium
(K)]. As a consequence, it is generally thought that tropical
forests, which tend to have more highly weathered soils, are
primarily limited by P (Walker and Syers, 1976; Chadwick et al.,
1999; Cleveland et al., 2011). Indirect evidence tends to support
this generalization for tropical wet forests (Cleveland et al., 2011),
although stand-level fertilization experiments demonstrate that
N, P, and K additions all may influence tropical NPP (Wright
et al., 2011; Alvarez-Clare et al., 2013). Additionally, previous
land-use practices such as deforestation and burning may lead to
N limitation of young secondary forests (Kauffman et al., 1993;
Campo and Vázquez-Yanes, 2004; Davidson et al., 2007).

Tropical dry forests (TDFs) comprise more than 40% of
the potentially forested area in tropical latitudes (Murphy and
Lugo, 1986). In general, these forests have lower annual rainfall
compared to moist or wet tropical forests, and experience
a 3+ month dry season with little or no rainfall. As a
consequence, many dry forest species have unique adaptations
to seasonal drought such as deciduous leaf habits and deep roots
(Eamus, 1999). Despite their large area, nutrient limitation and
biogeochemical cycling in TDFs are relatively understudied (Gei
and Powers, 2014). Further, there are reasons to expect that
nutrient constraints and responses to anthropogenic nutrient
deposition may differ in dry vs. wet tropical forests because
of the strong water limitation and seasonally pulsed soil water
availability in TDFs (Lambert et al., 1980; Read and Lawrence,
2006).

Here, we review the few studies that investigate how nutrient
availability affects ecological processes in TDFs. Because of
rapidly increasing rates of N deposition across the tropics (Hietz
et al., 2011; Sullivan et al., 2014a), most of the studies included
in our review focus on effects of N addition. We develop a
conceptual model of how added N affects TDFs; because TDFs
may be N- or P-limited, our model considers how responses to N
addition may vary between forests with low or high P availability.
We compare these hypotheses with what is known about these
interactions in TDFs, integrate key lessons from temperate-zone
research and draw contrasts with tropical wet forests. Further,
when available, we point to studies that measure TDF ecosystem
responses to the addition of P or other elements. We conclude by
highlighting research gaps and priorities for future research.

Conceptual Model of Nutrients and
Ecological Processes in Tropical Dry Forest

Identifying which elements limit ecological processes in TDFs is
a high priority for several reasons. First, ecosystem responses to
nutrient enrichment and rising atmospheric CO2 depend upon
the identity of the limiting nutrient (Hall and Matson, 1999). For
example, N deposition may increase productivity in N-limited
forests, but have no effect in a P-limited forest. Second, because
rainfall is highly seasonal in TDFs, documenting interactions

between water and nutrient availability may be crucial to
accurately predict ecosystem responses to anthropogenic change.
Understanding the relationship between precipitation pulses
and element cycling poses a significant challenge for ecosystem
modelers (Manzoni et al., 2014), and therefore responses of
tropical wet forests to fertilization may not generalize to more
seasonal ecosystems. Last, TDFs typically contain trees with
diverse phenological strategies, from evergreen to drought-
deciduous trees (Eamus, 1999), and thesemay respond differently
to changing nutrient availability.

Our conceptual model of how increasing N deposition may
affect key ecosystem processes in TDFs includes multiple levels
of organization (Figure 1). This model summarizes hypotheses
about how N deposition interacts with underlying nutrient
limitation to generate a diversity of ecosystem responses. We
emphasize here that different plant functional or phenological
groupsmay vary in their responses to N deposition. Furthermore,
TDFs are notable for the high abundances and diversity of legume
trees that fix atmospheric nitrogen, and theory suggests legumes
will be less affected by added N (Hedin et al., 2009). Because
available evidence on TDF responses to water and nutrient
availability is so limited, we treat Figure 1 as a set of hypotheses,
and throughout the review we evaluate the extent to which
current literature for all biomes, and TDFs in particular, supports
our conceptual model (Table 1).

Communities: Microbial Composition and
Function

Because bacteria and fungi mediate soil element cycling,
microbial responses to N and P inputs may drive ecosystem-
scale responses to nutrient enrichment. For example, resource
stoichiometry influences microbial growth rates (Rousk and
Baath, 2007), substrate use efficiency (Sinsabaugh et al., 2013),
and the production of extracellular enzymes that degrade
soil organic matter (Mooshammer et al., 2012). In turn,
these microbial traits and processes affect soil C storage
(Cotrufo et al., 2013) and the availability of nutrients to
plants. Across the globe, the C:N:P ratio of microbial biomass
is fairly well-constrained despite substantial variation in the
environmental availability of these elements (Cleveland and
Liptzin, 2007). Therefore, background nutrient limitation will
determine microbial responses to nutrient enrichment in TDF.
The addition of limiting nutrients should augment the size
and/or growth efficiency of the microbial biomass (Schimel and
Weintraub, 2003; Geisseler and Scow, 2014), which in turn may
alter soil C storage (Bradford et al., 2013; Frey et al., 2014).

Limited evidence suggests that microbial biomass tends to be
more P-limited in tropical soils (Cleveland et al., 2002, 2003;
Waring et al., 2013; Turner and Wright, 2014; Warren et al.,
2015). Consistent with this hypothesis, P but not N addition
increased microbial biomass in a TDF in southern China (Li
et al., 2015a). However, because diffusion and osmotic stress
constrain microbial growth under dry conditions (Manzoni et al.
2014), nutrient uptake is strongly mediated by water availability.
The handful of studies that have examined microbial nutrient
limitation in TDF soils report that microbial responses to labile C
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FIGURE 1 | Conceptual model of how nitrogen addition affects

community dynamics and ecosystem processes in tropical dry forest

ecosystems initially limited by nitrogen (N) (A) or phosphorus (P) (B).

Our model includes the possibilities that there are multiple mechanisms that

account for N- or P-limitation (top bars). Arrows represent hypothesized

direction of change in pool or process under N deposition.

(Montano et al., 2007), N, and P (Galicia and Garcia-Oliva, 2004)
are dependent upon season and the intensity of plant-microbe
competition.

Mycorrhizal fungi deserve special mention. Mycorrhizae live
in close symbiosis with plants and their responses to nutrient
addition depend partially upon plant nutrient status as well as
background nutrient limitation (Treseder, 2004). N deposition
decreases arbuscular mycorrhizal biomass in both temperate and
tropical forests (Johnson et al., 2003; Treseder, 2004; Camenzind
et al., 2014; Krashevska et al., 2014; Wurzburger and Wright,
2015), but responses to N and P addition are context-dependent.
Ecological relationships between plants and their mycorrhizae
depend both upon soil C:N:P stoichiometry (Johnson et al.,
2015) and mycorrhizal type (e.g., arbuscular, ectomycorrhizal,
etc). Theory predicts that N deposition may lead to increased
mycorrhizal biomass and more parasitic phenotypes under N-
limitation and decreased biomass/more mutualistic phenotypes
under P-limitation (Johnson et al., 2015). Finally, because
mycorrhizae may enhance plant water uptake to different
degrees depending on nutrient availability and mycorrhizal type
(Auge, 2001, 2004; Lehto and Zwiazek, 2011), any change in
mycorrhizal colonization or composition related to nutrient
deposition may affect plant water relations during drought,
potentially leading to differential feedbacks on evergreen and
deciduous species in TDFs.

Communities: Plants

N deposition may reduce plant diversity in a number of
ecosystems (Bobbink et al., 2010). While large-scale studies

addressing this in TDFs are rare, a number of seedling
pot experiments have tested how particular functional groups
respond to increased nutrient availability (Lawrence, 2003). In
general, higher N availability enhances biomass and relative
growth rates and decreases root: shoot ratios (Huante et al.,
1995a; Mendieta-Araica et al., 2013). The response to elevated
nutrient availability is higher in light-demanding species
compared to shade-tolerants (Huante et al., 1995a), in small-
seeded species compared to those with larger seeds (Huante
et al., 1995b), in slow-growing compared to fast-growing
species (Khurana and Singh, 2004; Tripathi and Raghubanshi,
2014), and in non-legumes compared to legumes (Tripathi and
Raghubanshi, 2014). However, not all of these generalizations are
consistent among studies.

In field fertilization experiments in TDFs, seedling growth
and survivorship in fertilized plots was higher than controls
overall, but this effect was species- and site-specific (Salinas-Peba
et al., 2014). Additionally, seedling responses tended to be higher
for N vs. P addition (Salinas-Peba et al., 2014), suggesting that
ANPPmay be N-limited, at least for young plants. Fertilization of
regenerating TDFs in Mexico led to higher seedling recruitment,
survival and growth (Ceccon et al., 2003, 2004), increases in
herbivory, and increased leaf P or N content in trees (in young
and old sites, respectively) (Campo and Dirzo, 2003). In this
experiment, responses to fertilization were higher in young
forests with high light availability, but again, these depended on
particular species (Ceccon et al., 2003).

Altered nutrient availability may also impact the intensity
of interspecific competition, generating shifts in community
composition over time. Six years of fertilizing an abandoned
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TABLE 1 | List of processes, hypothesized changes under nitrogen deposition in tropical dry forests, and whether this change is supported by the

literature, along with key references.

Process Hypothesized response

to nitrogen deposition

Support for hypothesis Important mediating ecosystem

state factors

Relevant literature

Microbial biomass Increase in N-limited forest/

no change in P-limited forest

P addition increases microbial

biomass in TDF more than N

Water availability, plant-microbe

competition

Galicia and Garcia-Oliva,

2004; Montano et al., 2007;

Waring et al., 2013; Li et al.,

2015a

Microbial enzymes Increase hydrolytic enzymes

and decrease oxidative

Supported in wet tropical forests; no

data for TDF

Nutrient limitation of microbial

biomass

Cusack et al., 2010, 2011

Mycorrhizae Biomass decreases in

N-limited forests/increases

in P limited systems

Supported in temperature and wet

tropical forests /no data for TDF

Mycorrhizal type, underlying nutrient

limitation

Johnson et al., 2003;

Treseder, 2004; Camenzind

et al., 2014; Wurzburger and

Wright, 2015

Plant diversity Decrease Insufficient long-term data from

TDF/seedling growth and survival vary

with N and/or P addition

Light availability, species traits Huante et al., 1995a,b;

Ceccon et al., 2003, 2004;

Khurana and Singh, 2004;

Bobbink et al., 2010; Siddique

et al., 2010; Tripathi and

Raghubanshi, 2014

ANPP Increase on N-limited

soils/no change on P-limited

soils

Data are equivocal; results often

suggest P and N co-limitation and

species-specific responses

Soil age, successional stage Torres and Franco, 1994;

Campo and Vázquez-Yanes,

2004; Campo et al., 2012

BNPP Decrease No data for TDF/in savanna, N

addition did not change BNPP but PK

increased it

Soil age, successional stage Barger et al., 2002; Li et al.,

2015b

Litter decomposition Decrease Supported in TDF/P addition

increases decomposition and N

decreases it

Rainfall regime, plant species Campo et al., 2007; Powers

and Salute, 2011; Anaya

et al., 2012; Lv et al., 2014

Soil C stocks Slow pools increase/fast

pools decrease

No N effects but P addition

decreased soil C in young TDF,

increased soil C in old TDF/no TDF

data on soil C fractions

Mineralogy, ANPP responses, rainfall

regime

Gamboa et al., 2010;

Bejarano et al., 2014b

Soil N transformations

and N2fixation

Decrease N fixation, but

accelerate N

Soil N pools and mineralization rates

increased with N/no TDF data for

N2 fixation

Water availability, season,

successional status

Erickson et al., 2002; Solís

and Campo, 2004; Verma

et al., 2013

No empirical data from tropical dry forests is indicated in bold.

pasture with N and P in a highly seasonal region in
Amazonia favored the growth of a few nutrient-responsive early-
successional tree species, decreasing tree assemblage evenness
(Siddique et al., 2010). We hypothesize that higher nutrient
availability could impact species composition through similar
mechanisms in regenerating TDFs (Figure 1), though there
is a dearth of long-term experimental data that can clarify
community-wide impacts (Table 1).

Ecosystem Processes: Net Primary
Production

Responses of NPP to added N or P indicate whether primary
productivity is limited by N, P, or both (Figure 1). Fertilization
experiments can also offer mechanistic insight by demonstrating
how tree stem diameter growth, litterfall, and fine root

production each respond to increases in nutrient availability.

Fertilization experiments that measured ANPP in TDFs after
nutrient addition have yielded varied results. A fertilization

study in a plantation forest in Venezuela showed no effect of
P on wood production (Torres and Franco, 1994), while other

studies have demonstrated strong co-limitation of ANPP by N

and P (Campo and Vázquez-Yanes, 2004). In the latter study,
responses of litterfall to nutrient addition depended upon soil

type, underscoring that leaf and wood production may respond
differently to element availability. Complicating matters further,
the experiment in Mexico also showed that diameter growth
responses to added nutrients depended on species identity
(Campo et al., 2012).

Belowground NPP results are similarly heterogeneous. A
meta-analysis of fine root production across temperate and wet
tropical ecosystems showed decreases in fine root production
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with increases in N deposition, coupled with an increase in coarse
root stocks (Li et al., 2015b). By contrast, a savannah fertilization
experiment showed increased fine root production only in plots
fertilized with P, and not with N (Barger et al., 2002). While these
studies have done much to elucidate how N and P influence NPP,
more detailed fertilization experiments in TDF are needed that
address interactions between nutrient addition and factors that
modify forest responses including succession, edaphic gradients,
management, and water availability.

Ecosystem Processes: Decomposition

In general, decomposition rates are mediated by interactions
among climate, litter quality, and decomposer communities
(Meentemeyer, 1978; Kwabiah et al., 1999). Nutrient addition
could affect decomposition via changes in litter chemistry or
alterations to microbial community composition or function
(Hobbie and Vitousek, 2000; Campo et al., 2012). However,
within TDFs litterfall and soil nutrient availability are regulated
by intra-annual precipitation events (Anaya et al., 2012),
and as a result, decomposition may be primarily limited by
water availability (Lambert et al., 1980; Read and Lawrence,
2006).

Plot-scale fertilization with N and/or P changed both
litter nutrient concentrations and quantities in a TDF in
Mexico, although the magnitude of change depended on forest
successional age (Campo et al., 2007) and soil N availability
(Campo et al., 2012). This is consistent with evidence that
N addition effects depend on the form of added N (Lv
et al., 2013), litter chemistry or quality (Kwabiah et al., 1999),
and site-specific characteristics such as annual rainfall and
soil nutrient availability (Bejarano et al., 2014a). In another
fertilization experiment in a seasonal tropical forest in China,
added P increased decomposition rates while the addition of N
inhibited decomposition (Chen et al., 2013). Lab experiments
also find that P and micronutrients accelerate leaf litter decay
in TDF, while added N retards it (Powers and Salute, 2011).
The mechanisms for why added N decreases decomposition,
even in N-limited systems include both biotic and abiotic
explanations, and this pattern appears robust across ecosystems
(Treseder, 2008).

Ecosystem Processes: Soil Carbon
Dynamics

Soils contain the largest terrestrial carbon stock, thus changes
to the inputs, outputs, or turnover times of soil organic
carbon (SOC) may affect atmospheric CO2 concentrations and
climate (Schlesinger, 1997). Much research has been devoted
to understanding how N deposition affects SOC storage in
temperate ecosystems (Liu and Greaver, 2010; Lu et al., 2011),
and the mechanisms that mediate such changes (Li et al., 2015b).
If increased N deposition stimulates plant productivity, inputs
to the soil from leaf or root litter may increase. Furthermore,
N deposition may also repress lignolytic enzyme activity,
causing decreases in organic matter decay rates and enhancing

SOC storage (Eisenlord et al., 2013). Alternatively, changes in
nutrient availability may increase root exudation, “priming” the
decomposition of organic matter and decreasing soil C storage
(Phillips et al., 2011). Understanding the net effects of these
processes is further complicated by the fact that SOC is composed
of diverse compounds or fractions that vary in turnover times
and mechanisms of stabilization (Sollins et al., 1996), and labile,
slow, and stable SOC fractions may respond differently to N or P
addition (Cusack et al., 2010; Nottingham et al., 2015).

In an experiment in a wet tropical forest, long-termN addition
reduced labile SOC pools, corresponding to increased hydrolytic
enzyme activity (Cusack et al., 2010, 2011). However, overall
slow SOC pools (and thus total SOC) increased, as a function
of reductions in oxidative enzymes (Cusack et al., 2010, 2011).
By contrast, in a large-scale experiment in 10 and 60-year old
regenerating TDF in Mexico, 3 years of P fertilization decreased
total SOC in the young, N-limited forest, but increased it in
the P-limited older forest, with no significant effects of N or
N+P addition (Gamboa et al., 2010). Together with laboratory
incubation experiments (Bejarano et al., 2014b), these studies
emphasize that the response of SOC in TDFs to N depositionmay
be complex, and vary according to the nutrient limitation status
of plants and soil microbial biomass.

Ecosystem Processes: Nitrogen Cycling

N2 fixation, N mineralization, and (de)nitrification are all
regulated by the availability of N. Evidence from wet forests
suggests that legumes down-regulate symbiotic N2 fixation as
soil N becomes more available through secondary succession
(Batterman et al., 2013; Sullivan et al., 2014a). Similarly, rates of
free-living N2 fixation in soils and the forest floor may decrease
with increasing N availability, as seen in wet forests of Puerto
Rico (Cusack et al., 2009). However, water availability may be
a more important control on legume nodulation in TDFs (Gei
and Powers, 2015), in which case N2 fixation rates may change
little with nutrient addition. A fertilization study in a TDF in
India showed that N pools and mineralization rates increased
with added N (Verma et al., 2013); however, both nitrogen
cycling (Saynes et al., 2005) and nutrient addition effects on
N cycling in another TDF in Mexico depended on season and
forest successional status (Solís and Campo, 2004). Last, nitric
and nitrous oxide emissions should increase under N deposition,
particularly during the wet season (Erickson et al., 2002; Wang
et al., 2014), and especially from N-saturated or P-limited forests
(Hall and Matson, 1999).

Conclusions and Directions for Future
Research

Taken together, the evidence on tropical dry forest responses
to nutrient availability suggests several robust generalizations
(Table 1). First, tree species respond individually to amendments
with different nutrients, which likely reflects differences in life
history strategies and functional traits. Second, TDF ecosystem
responses to increased N or P are context-dependent and are
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mediated by ecosystem state factors such as soil parent material,
prior land-use history, species composition, and both intra- and
interannual variation in water availability.

Our analysis also revealed large knowledge gaps that represent
critical directions for future research (Table 1). A major
uncertainty in TDF ecology is understanding the extent to which
N, P, or other elements most limit productivity, the consequences
of nutrient limitation under altered nutrient deposition regimes,
and how belowground communities and processes respond
(Table 1). Although many methods have been proposed to
accomplish this (Sullivan et al., 2014b), the “gold standard” of
ecosystem ecology remains large-scale fertilization experiments.
Such experiments provide the opportunity to resolve nutrient
addition effects andmechanisms across a hierarchy of scales from
microbial to trees. Ideally, such experiments could be established
along gradients of ecosystem state factors such as annual rainfall
(Bejarano et al., 2014a) or forest age (Campo and Vázquez-Yanes,

2004), and in a greater diversity of dry forests including those in
India and Africa, which are poorly represented in the literature.
Most of the handful of field-scale fertilization experiments in
TDF occurred in Mexico. Although these studies have provided
valuable insights, establishing similar studies in a range of dry
forests is critical if we are to advance our knowledge of TDF
responses to global change (Fahey et al., 2015). Moreover, we
need to look beyond N and P to the other elements that affect
forest processes (Kaspari et al., 2009; Powers and Salute, 2011).
Such knowledge is necessary for both accurately representing
TDF dynamics in ecosystem simulation models and managing
TDF under anthropogenic nutrient deposition.
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