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Monitoring temporal changes
of seismic properties
Yosuke Aoki *

Earthquake Research Institute, University of Tokyo, Tokyo, Japan

Temporal changes of seismic properties, such as velocity, attenuation, anisotropy, and

scattering properties, have been inferred by active methods for decades and more

recently by passive methods. In particular, passive methods are capable of monitoring

seismic properties because they do not require earthquakes but rely on continuously

excited signals in the ocean, for example, a collection of continuous monitoring of seismic

velocities has revealed that the susceptibility of velocity changes to stress perturbations

are highly variable. These variations can be translated to variability of third-order elastic

moduli, elastic moduli arising by considering finite deformation. The third-order elastic

moduli are shown by theoretical studies to be a good indicator of granular properties

of rocks and, in general, as to how fluids interact with solid rocks. Advancement of

theoretical and observational studies will gain more insights into the nature of third-order

elastic moduli, which will eventually become yet another parameters to characterize the

properties of rocks.
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The Earth deforms by various processes including earthquakes, volcanic activity, and tidal
attractions. Numerous studies have revealed, through laboratory measurements, that stress changes
change seismic velocities and anisotropy of rocks (e.g., Birch, 1960, 1961; Nur and Simmons, 1969).
Also, Seismic velocities around active faults are significantly lower due to an intensive cracking
(e.g., Li et al., 1990). This indicates that cracks generated by faulting alter the seismic properties.
Monitoring seismic properties can therefore gain insights into the mechanics of the deformation of
the Earth.

Time-lapse seismic monitoring has been widely conducted with temporary deployment of a
number of seismometers and artificial seismic sources (e.g., Greaves and Fulp, 1987; Lumley, 2001;
Nishimura et al., 2005). While this approach is capable of detecting time-lapse changes of fine
structure, it is not always suitable to continuously monitor seismic properties for two reasons.
First, campaigns with artificial seismic sources are usually discrete in time so that high temporal
resolution cannot be gained. Second, artificial sources are not strong enough to image deep and
extensive areas. To circumvent the first pitfall, that is poor temporal resolution, instruments that
continuously emit precisely controlled waves are devised to monitor Earth’s interior (e.g., Ikuta
et al., 2002; Yamaoka et al., 2014). These instruments are, however, usually too expensive to extract
seismic velocity changes in high spatial resolution by deploying a large number of instruments.

Natural earthquakes have more energy than artificial sources so that the former have more
potential to probe the seismic structure at depth. For an ideal distribution of earthquakes, we
would enable us to monitor seismic velocity changes through time-lapse tomography (Patanè
et al., 2006). However, distribution of earthquakes is usually not ideal, making the detection of
subtle velocity changes difficult. Using earthquake doublets sharing more or less the same focal
mechanism and hypocenter can circumvent the problem because the difference of waveforms of
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the two earthquakes comes from the structural changes along
the ray path between the hypocenter and station (e.g., Poupinet
et al., 1984; Sawazaki et al., 2015). Unfortunately, however, this
technique can be applied in limited cases because earthquake
doublets cannot be found everywhere.

With this background, a technique to derive seismic structure
and its temporal changes from random signals such as seismic
codas, or ambient noise, has rapidly been emerging in last decade
or so. Snieder et al. (2002) coined the term seismic interferometry
referring to this method. The idea is that given the incidence of
mutually uncorrelated waves with azimuthally isotropic power,
cross-correlating observed signals at two stations yields wavefield
as if the source is at one station and the receiver is at the
other. Seismic interferometry has an advantage over conventional
methods in that random signals, in particular ocean hums in
frequencies lower than ∼1 Hz and anthropogenic noise in those
frequencies higher than ∼1 Hz (e.g., Bonnefoy-Claudet et al.,
2006), are generated continuously in time, so that it is capable
of monitoring seismic structure in high temporal resolution.

The idea of seismic interferometry itself was coined decades
ago (Aki, 1957; Claerbout, 1968), but it was only around the turn
of the century that the technique started to be widely applied
to real materials. Weaver and Lobkis (2001) and Snieder et al.
(2002) first applied this technique in materials in laboratory scale
using acoustic waves. Campillo and Paul (2003) and Shapiro
and Campillo (2004) first successfully extracted surface wave
propagation between two stations with seismic coda and ambient
noise, respectively. Subsequently, Shapiro et al. (2005) succeeded
in delineating spatial variations of group velocities of surface
waves to demonstrate that ambient seismic noise is capable of
imaging Earth’s interior in high spatial resolution. Imaging Earth’s
interior with ambient seismic signals has been prevailing since
then in local (e.g., Brenguier et al., 2007; Nagaoka et al., 2012),
regional (e.g., Shapiro et al., 2005; Lin et al., 2007; Nishida et al.,
2008), and global (e.g., Nishida et al., 2009; Poli et al., 2012) scales.

As the generation of seismic ambient noise is continuous in
time, temporal changes of seismic velocities of Earth’s interior can
be inferred by examining time-lapse seismic wavefield extracted
from ambient seismic noise. Studies have shown that seismic
interferometry can detect even tiny velocity changes of <0.1 %
due to stress and strain changes by earthquakes (e.g., Brenguier
et al., 2008a; Chen et al., 2010), volcanic activity (e.g., Brenguier
et al., 2008b), or tidal attractions (Takano et al., 2014; Hillers
et al., 2015). There is another advantage of using random signals
to infer temporal changes of seismic velocity. Theoretical and
experimental considerations show that if the noise distribution
does not change too much in time, velocity changes are measured
in a robust way even with a non-isotropic distribution of noise
incidence when the retrieval of Green’s function is difficult
(Hadziioannou et al., 2009; Froment et al., 2010; Weaver et al.,
2011).

There are many studies to detect subtle changes in seismic
velocities, but there are still issues to be solved to enhance
our understanding of seismic velocity changes. These include
(1) locating seismic velocity changes, (2) locating changes of
scattering properties, and (3) understanding the cause of velocity
changes. Recent studies succeeded in delineating horizontal or

depth-averaged distribution of velocity changes by mapping
travel time changes of each station pair onto the horizontal plane.
However, locating velocity changes in three dimensions is not
straightforward. Taking advantages that correlograms at larger
lag time samples wider areas due to scattering (e.g., Pacheco and
Snieder, 2005), Obermann et al. (2013) developed a method to
estimate the depth variations of velocity changes from time-lapse
correlograms. Obermann et al. (2014) applied the method to the
2008 Wenchuan earthquake.

Time-lapse correlograms are not only sensitive to velocity
changes but also sensitive to mechanical changes, such as
crack generation, manifested by scattering properties. When the
scattering properties such as location or intensity of scatterers
change, time-lapse collerograms are represented by docorrelation
with respect to the reference correlogram. Larose et al. (2010)
and Rossetto et al. (2011) developed a method to delineate the
spatial distribution of changes in scattering intensities in two
dimensions. Obermann et al. (2014) applied the method to the
2008 Wenchuan earthquake. A method to locate changes in
scattering properties in three dimensional halfspace has not been
developed yet.

While it is obvious that not only permanent and static stress
changes but also transient and dynamic stress changes play
substantial roles in observed velocity changes. For example,
Rubinstein and Beroza (2004) and Brenguier et al. (2008b)
observed a sudden coseismic velocity drops followed by gradual
recovery associated with the 1989 Loma Prieta and 2004 Parkfield
earthquakes, respectively. The coseismic velocity drops they
observed are due to a combination of permanent deformation
and damage generated by dynamic stress perturbation, while the
slow velocity recovery is due to the healing of cracks generated
by the dynamic perturbation due to the earthquake. However,
the contribution of static and dynamic stress changes to velocity
changes is not straightforward. Brenguier et al. (2014) found
that the seismic velocity changes at a frequency range between 1
and 10 km, most sensitive to the first ∼10 km, associated with
the 2011 Tohoku-oki, Japan, earthquake, do not correlate well
with static nor dynamic stress changes. They also found that
the velocity changes do not correlated well with shallow seismic
velocities, although larger velocity drops tend to be observed in
volcanic areas. This observations demonstrate that the dynamic
stress perturbation contributes to seismic velocity changes in a
complicated manner.

In a general elastic medium, the strain energy E is given by
(e.g., Brugger, 1964; Johnson and Rasolofosaon, 1996)

E =
1

2!
Cijkleijekl +

1

3!
Cijklmneijeklemn + . . . (1)

where eij is the ij component of the strain tensor and Cijkl and
Cijklmn denote the components of the second-order and third-
order elastic tensor, respectively. Note that Einstein’s summation
convention on repeated indices is assumed. The strain energy for
an isotropic medium is simplified as (Murnaghan, 1951)

E =
λ + 2µ

2
I21 − 2µI2 +

l+ 2m

3
I31 − 2mI1I2 + nI3 (2)
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where λ and µ represent the second-order elastic constants or
Lamé’s constants and l, m, and n denote the third-order elastic
constants. I1, I2, and I3 are strain invariants given by

I1 = e11 + e22 + e33 (3)

I2 = e11e22 + e22e33 + e33e11 − (e212 + e223 + e231) (4)

I3 = e11e22e33 + 2e12e23e31 − (e11e
2
23 + e22e

2
31 + e33e

2
12). (5)

The contribution of finite strain is in the last three terms of
Equation (2).

In the absence of damages due to dynamic stress perturbation,
the seismic velocity Vij, where i and j denote the direction of
wave propagation and particle displacements, respectively, of an
initially isotropic body subjected to a triaxial strain ei is given by
Hughes and Kelly (1953); Egle and Bray (1976)

ρ0V
2
11 = λ +2µ + (2l+ λ)(e1 + e2 + e3)

+ (4m+ 4λ + 10µ)e1 (6)

ρ0V
2
12 = µ +(λ +m)(e1 + e2 + e3)

+ 4µe1 + 2µe2 −
1

2
ne3 (7)

ρ0V
2
13 = µ +(λ +m)(e1 + e2 + e3)

+ 4µe1 + 2µe3 −
1

2
ne2 (8)

where ρ0 is the initial density. Note that V11 corresponds to the
P-wave velocity and and V12 and V13 corresponds to S-wave
velocity.

When an isotropic strain, where e1 = e2 = e3 = θ/3 with
volumetric strain given by θ , is considered, Equations (6–8) is
rewritten by

ρ0V
2
P = ρ0V

2
11 = λ + 2µ +

1

3
(7λ + 10µ + 6l+ 4m)θ (9)

ρ0V
2
S = ρ0V

2
12 = ρ0V

2
13 = µ +

(

λ + 2µ +m−
n

6

)

θ (10)

where VP and VS denote P- and S-wave velocities, respectively.
Sensitivity of P- and S-wave velocities to volumetric strain is
given with an approximation of infinitesimal θ by

1

VP

dVP

dθ
=

7λ + 10µ + 6l+ 4n

6(λ + 2µ)
(11)

1

VS

dVS

dθ
= 2+

λ +m− n/6

2µ
. (12)

Laboratory measurements show that the third-order elastic
constants typically range between −10 and −1000 times of
rigidity µ (e.g., Winker and McGowan, 2004; D’Angelo et al.,
2008), so that the susceptibility of P- and S-wave velocities
to volumetric strain changes is comparable with roughly
between −500 and −5/strain. These values are translated to
the susceptibility to volumetric stress changes as between −200
and −2 × 10−10/Pa in a Poisson solid, a solid with λ = µ with a
rigidity of 30 GPa.

Since coseismic velocity changes may involve an effect of
damages to the rock induced by dynamic stress perturbation,

slower deformation such as tidal deformation is better
to delineate the third-order elastic parameters. Velocity
perturbation due to deformation induced by tides has long
been measured by active methods (e.g., DeFazio et al., 1973;
Reasenberg and Aki, 1974; Yamamura et al., 2003) and more
recently by passive methods (Takano et al., 2014; Hillers
et al., 2015). The sensitivity of the velocity changes ranges
between −10−6 and −10−10/Pa, implying that the third-order
elastic moduli are more variable than those inferred from
laboratory experiments.

A few previous studies (e.g., Tsai, 2011; Sawazaki et al., 2015)
tried to constrain the third-order elastic moduli from observed
seismic velocity changes. While the values they obtained are
consistent with those derived from laboratory experiments, to my
knowledge, no studies have ever given a physical interpretation
of the obtained moduli. What is then the physics behind the
stress sensitivity of seismic velocity? Previous studies include
those by Guyer and Johnson (1999) and Norris (2007). Among
them, I here refer Norris (2007) to give a brief overview
of a possible physical background on what is behind the
stress sensitivity of seismic velocity. Inspired by laboratory
measurements that granular materials such as rocks have larger
third-order elastic constants (e.g., Norris, 1998), Norris (2007)
developed a theoretical framework in which each spherical grains
of radius R is in contact with a neighboring grain by a region
of radius a (Figure 1). In this framework, the ratio of third-
order elastic moduli to the second-order elastic moduli, or Lamé’s
constants for isotropic solids, is of the order of (R/a)2, implying
that rocks with low confining pressure, or those with less packing,
exhibit larger velocity susceptibility to stress perturbation. This
conjecture is consistent with observations that the 2011 Tohoku-
oki earthquake induced large seismic velocity drops at the
first few hundred meters from the surface (e.g., Nakata and
Snieder, 2011; Takagi and Okada, 2012; Sawazaki et al., 2015).
Norris (2007) pointed out that a fluid-solid composite system
yields a non-zero velocity sensitivity to stress perturbations
but combining theoretical considerations with observations is
tedious.

In summary, monitoring changes of seismic properties, such
as velocity, attenuation, and scattering properties, either by active
and passive methods is a powerful tool to gain more insights into

R a

FIGURE 1 | A shematic view of two spherical grains of radius R are in

contact by an area of radius a.
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the mechanics of seismic and volcanic phenomena. Furthermore,
third-order elastic moduli inferred through the susceptibility of
seismic velocity changes to stress perturbation has a potential
to yet another parameters to characterize the property of the
Earth in terms of, for example, granularity, grain contacts, and
fluid inclusion in the crust. Further studies both from theoretical
and observational aspects are necessary to understand what the
third-order elastic moduli indicate.
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