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The transition from viscous to brittle behavior in magmas plays a decisive role in
determining the style of volcanic eruptions. While this transition has been determined for
one- or two-phase systems, it remains poorly constrained for natural magmas containing
silicic melt, crystals, and gas bubbles. Here, we present new experimental results
on shear-induced fracturing of three-phase magmas obtained at high-temperature
(673-1023 K) and high-pressure (200 MPa) conditions over a wide range of strain-rates
(5-1076 s71-4.10=3 s~ ). During the experiments bubbles are deformed (i.e., capillary
number is in excess of 1) enough to coalesce and generate a porous network that
potentially leads to outgassing. A physical relationship is proposed that quantifies the
critical stress required for magmas to fail as a function of both crystal (0.24-0.65)
and bubble volume fractions (0.09-0.12). The presented results demonstrate efficient
outgassing for low crystal fraction (<0.44), whereas high crystal fractions (>0.44)
promote gas bubble entrapment and inhibit outgassing. The failure of bubble-free,
crystal-bearing systems is enhanced by the presence of bubbles that lower the critical
failure stress in a regime of efficient outgassing, while the failure stress is increased
if bubbles remain trapped within the crystal framework. These contrasting behaviors
have direct impact on the style of volcanic eruptions. During magma ascent, efficient
outgassing reduces the potential for an explosive eruption and favors brittle behavior,
contributing to maintain low overpressures in an active volcanic system resulting in
effusion or rheological flow blockage of magma at depth. Conversely, magmas with high
crystallinity experience limited loss of exsolved gas, permitting the achievement of larger
overpressures prior to a potential sudden transition to brittle behavior, which could result
in an explosive volcanic eruption.

Keywords: magma, bubbles, crystals, viscous flow, brittle fracture, outgassing, shear banding, volcanic eruption
style

INTRODUCTION

Volcanic eruptive styles are strongly dependent on the dynamics of magma flow and the modalities
of degassing (e.g., Papale, 1999). The most critical parameter defining the physical properties of
magmas is viscosity. The measured flow resistance of the macroscopic magmatic suspension is the
bulk or apparent viscosity (74pp), defined as the ratio of the bulk stresses and strain-rates. The
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apparent viscosity is a measure of magma’s capacity to dissipate
the applied stress during flow. However, when stress accumulates
more rapidly than can be viscously dissipated by the system,
magmas experience a rheological transition into brittle behavior
where viscous flow is not permitted and, thus, viscosity becomes
unimportant. Linear viscoelastic theory provides mechanical
models for the prediction of the isothermal transition from
liquid (viscous) to glassy (Hookean) behavior (Dingwell and
Webb, 1990). This implies that melts are viscoelastic media and,
thus, their response to an external disturbance (i.e., stress) can
be elastic or viscous, depending on the timescale or frequency
competition between relaxation and external applied disturbance
(Maxwell, 1867). This infers that a melt can experience: (i)
a “brittle failure” in the Hookean regime, or (ii) a “ductile
failure” in the viscous regime. Applying stress-strain curves,
Ranalli (1995) pointed out the difference between brittle failure,
characterized by sudden vertical drop of stress (theoretically to
zero), and ductile failure, evidenced by a progressive evolution
of stress (from its ideal constant value with increasing strain) by
either increasing (strain hardening) or decreasing stress (strain
softening) with increasing strain. The viscous to brittle transition
(VBT) in magmas is determined by the stress accumulated
in the magma relative to a critical threshold characteristic for
brittle behavior (Dingwell and Webb, 1990). Such a threshold is
function of the magmatic properties and textures (Cordonnier
et al., 2012a). In order to define the viscous and brittle regimes
in chemical and physical space and to determine if the conditions
for failure are encountered during magma ascent, a quantitative
understanding of the failure of multiphase magmas, containing
both crystals and gas bubbles, is required. Experimental (e.g.,
Smith et al.,, 2009) and theoretical approaches (e.g., Dingwell,
1996; Gonnermann and Manga, 2003) provided preliminary
insights into the dynamics of the VBT in magmas. Cordonnier
et al. (2012b) constrained the VBT of bubble-free and crystal-
bearing systems, suggesting that stress localization in the silicic
melt phase lowers the bulk stress required to rupture magmas.
Under this assumption, the melt always breaks at the same value
of critical stress, and the local stress required to rupture the
melt remains the same as the bulk stress required to rupture
crystal-free melts. Additionally, the experiments of Cordonnier
et al. (2012b) exhibited shear-induced fractures that healed over
relatively short timescales, confirming the possibility for cyclic
fracture-healing processes, representing a potential source of
volcanic tremors (Tuffen et al., 2003).

To date, only a few studies on magma rheology have
accounted for the simultaneous presence of crystals and bubbles.
Bagdassarov et al. (1994) determined the rheology of three-phase
mixtures over a restricted range of temperatures, crystal and
bubble contents, limiting the possibility of using their results
to calibrate rheological models for three-phase magmas. Avard
and Whittington (2011) and Vona et al. (2013) conducted high-
temperature compression tests on rock samples with variable
crystal contents (28-59 vol.%) and connected pressurized gas-
free porosity (5-40 vol.%). The rheological results from these
two studies reveal that the presence of vesicles allows the
application of large deformation and, for similar strain-rates,
strongly reduces the bulk stress. Achieving the brittle stress

threshold consequently requires rather high values of strain-
rate (>107* s7!) at 800°C (i.e, Nperr > 10'° Pa-s). Recently,
Pistone et al. (2012) conducted deformation experiments over
a wide range of crystallinity (24-65 vol.%) and a limited range
of bubble content (9-12 vol.%), and demonstrated that the effect
of pores/vesicles (i.e., not pressurized “fossil” bubbles) in natural
volcanic rock samples cannot directly be compared with the
behavior of bubbles (i.e., gas-pressurized pockets in the melt
phase) in natural magmas. The addition of relatively small bubble
volume fractions to crystal-bearing suspensions “lubricate” the
entire system during deformation and significantly decrease
magma viscosity (Pistone et al., 2012, 2013).

The original work of Pistone et al. (2012) provided a detailed
rheological and microstructural analysis of multiphase magmas
in the viscous regime prior to the brittle failure. In this
contribution we explore the brittle failure of the same magmatic
systems and constrain the effect of crystals and gas bubbles on the
VBT in multiphase high-viscosity haplogranitic magmas.

EXPERIMENTAL AND ANALYTICAL
METHODS

Experimental Strategy

Seventeen torsion experiments on synthetic hydrous (H,O =
2.26 £ 0.04 wt.%) haplogranitic glasses (HGGB3; Pistone et al.,
2012) containing quartz crystals (crystal fraction, ¢ = 0.24-0.65)
and CO,-rich gas bubbles (bubble fraction, 8 = 0.09-0.12) were
performed using a HT-HP Paterson-type apparatus (Paterson
and Olgaard, 2000). Experiments were conducted under
isothermal (673-1023 K) and isobaric (200 MPa) conditions, and
run at constant shear strain-rate (y), over a range relevant for
volcanic processes (y = 5-107% s71—4.1073 s~!). Experiments
were performed under a y stepping method, where the y is
increased to a higher value once a constant value of stress ()
is achieved after a reasonable amount of accumulated strain (y).
Rheological curves of the experiments performed in this study
are reported in Pistone et al. (2012).

In the range of temperature and pressure conditions used
for the experiments, the expected CO,-rich bubble/silicate melt
viscosity ratio is between 1.02:1071¢ at 673 K and 8.48-1071 at
1023 K (Table 1) for the experiments here conducted at 200 MPa
(Table 2). The viscosity of haplogranitic melt was determined
between 673 and 773 K, and extrapolated to higher temperatures
(823-1023K) using a Vogel-Fulcher-Tamman type equation
(A = —655 B = 111852 J; C = 67.3K). The discrepancy
between our fit results and the predictions by the model of
Giordano et al. (2008), may find its explanation by correcting
the parameter A (which is temperature- and composition-
independent; Giordano et al., 2008) for the H,O content and
pressure effects highlighted by the studies of Ardia et al. (2008,
2014) and Pistone et al. (2012). Although the study of Russell
et al. (2003) evidences that the constant A should be restricted to
=+1 log units and establishes the high-temperature viscosity limits
for melts at 1073°-107> Pa-s, there is no pressure effect on melt
viscosity (e.g., Scarfe et al., 1987) included in their model. The
values of CO,-rich bubble viscosity at experimental temperature
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TABLE 1 | Viscosities of CO, gas-rich bubbles and haplogranitic melt and
their viscosity contrast at different temperatures at 200 MPa.

T (K) nCO4 (Pa-s) Nmelt (Pa-s) I (N/m) n ratio

673 8.70E-05 8.54E+11 0.22 1.02E-16
698 8.47E-05 1.76E+11 0.22 4.82E-16
723 8.26E-05 4.96E+10 0.22 1.66E-15
773 7.96E-05 1.78E4+09 0.22 4.47E-14
823 7.72E-05 1.69E+08 0.23 4.56E-13
873 7.53E-05 1.83E+07 0.23 4.12E-12
883 7.50E-05 1.21E+07 0.23 6.21E-12
923 7.39E-05 2.51E4+06 0.23 2.94E-11
973 7.29E-05 4.24E4+05 0.24 1.72E-10
1023 7.20E-05 8.50E+04 0.24 8.48E-10

T, experimental temperature; nCO2, CO» gas-rich bubble viscosity; nmet, haplogranite
melt viscosity; I', bubble-melt interfacial tension (Bagdassarov et al., 2000); n ratio,
viscosity ratio between CO» gas-rich bubble viscosity and haplogranitic melt viscosity.
Italics, melt viscosities measured with the HT-HP Paterson-type apparatus at 200 MPa.

and pressure conditions are estimated from the NIST (National
Institute of Standards and Technology) database. Table 1 lists the
values of melt and CO,-gas bubble viscosities (7, and nco,),
bubble-melt interfacial tension (I”; Bagdassarov et al., 2000) and
the viscosity gas/melt ratio at the experimental conditions of this
study.

We investigated four different crystal volume fractions (0.24,
0.44, 0.55, and 0.65 & 0.02) with similar bubble volume fraction
(0.09-0.12 £ 0.02). Experimental conditions are reported in
Table 2. Experiments were additionally performed on bubble-
and crystal-free silicate melts (Table 2) to establish the reference
conditions for brittle onset and determine the effect of different
volumetric proportions of crystals on the VBT at similar contents
of gas bubbles. Capillary numbers were calculated from the
measured minimum and maximum gas bubble equivalent radii in
the post-mortem microstructures. Details of the preparation and
synthesis of the starting materials are reported in Pistone et al.
(2012) and Pistone (2012).

X-ray Tomography and Analysis

Run products were imaged by Synchrotron-based X-ray
Tomographic Microscopy (SRXTM). Cylindrical cores of 2 mm
outer diameter and 2-4mm length were drilled from the
outer portions of deformed and cracked samples, where the
torsional deformation is highest. Cylinders are isotropic in the
scan plane and, thus, represent the best geometry to capture
maximum volume (Ketcham and Carlson, 2001). SRXTM
provided high-resolution volumetric (3D) information in a non-
destructive manner. Tomographic data were acquired at the
TOMCAT (TOmographic Microscopy and Coherent rAdiology
experimenTs; Stampanoni et al., 2006) beamline at the Swiss
Light Source (Paul Scherrer Institute, Villigen, Switzerland).
Specimens were mounted on a carbon fiber rod and rotated 180°
during acquisition. Between 2000 and 3000 raw projections were
acquired for each scan. The energy was set to 20keV and the
exposure time to 100 ms. The acquired images consist of 2048 x
2048 pixels with a 10x magnification, resulting in an isotropic

voxel size of 0.74um. Tomographic reconstructions were
performed using a highly optimized algorithm based on Fourier
methods (Marone and Stampanoni, 2012). Image]J 1.43s software
was used to process the raw tomographic slices (i.e., removal of
background noise, and adjustment of brightness/contrast) and
to generate image stacks. The 3D visualization and analysis of
gas bubbles were performed using Avizo® Fire (Visualization
Sciences Group) software. Quartz crystals were not selected
for the 3D rendering visualization because of their low-density
contrast (i.e., low-grayscale contrast) with respect to the silicate
glass matrix. Given the poor contrast between quartz and glass
in the experimental charges analyzed by SRXTM, we refer to the
studies of Pistone et al. (2012, 2013) where SEM-BSE images are
presented, revealing the relationships between all phases (glass,
crystals, and bubbles) in three-phase samples affected by brittle
failure.

RESULTS
Rheology

Figure 1 displays stress (7) vs. strain (y) diagrams of typical
experiments for low and high crystallinity as well as the relative
viscosity (1) vs. strain rate () diagram for typical experiments.
Nrel is the ratio between 74, and 7, under identical melt
composition, H;O content in the melt, pressure, temperature,
applied 7, and y. All runs reveal a first elastic phase of near
linear 7 increase with y, followed by a yielding stage and viscous
flow at constant t (Figures 1A,B). Experiments were stopped
once a significant drop of 7 was measured. Post-experiment
visual analysis confirmed that this drop is clearly associated to
macroscopic sample brittle failure (as defined above; Ranalli,
1995) during shear deformation.

In crystal-poor (¢ < 0.44 and B = 0.12) systems, the
maximum value of 7 reached prior to fracture is 47 MPa
(Figure 1A). Fracturing starts at y = 4.67-107* s~ and is
evidenced by shear stress oscillations of about 8 MPa for a total
y of 0.4. We interpret these data as continuous partial fracturing
and healing of the samples, prior to the complete failure of the
sample, resulting in the catastrophic drop of the 7 applied to the
sample during deformation (Figure 1A).

In crystal-rich (¢ > 044 and B = 0.09-0.1) systems,
the maximum t prior to sample fracturing is about 60 MPa
at ¥ = 2.10-1073 s~! (Figure 1B). In the final phases of
the experiments, a t drop of about 10MPa occurs, with
limited hardening just prior to complete failure of the sample
(Figure 1B).

Two y-dependent non-Newtonian behaviors were observed
in the experiments (Figure 1C): (i) shear-thickening (increase
of 1, with increasing y) at low crystallinity (¢ < 0.44), and
(ii) shear-thinning (decrease of 7, with increasing y) at high
crystallinity (¢ > 0.44). At intermediate crystallinity (¢ = 0.44)
a transient behavior from shear-thickening to shear-thinning is
observed. Previous experiments revealed that the impact of y on
magma rheology tends to be more important than the effect of
y when deformation rate is rapidly changed during experiments
(Okumura et al., 2006, 2008, 2010; inset in Figure 1A). Indeed,
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deformation experiments (Shields et al., 2014). However, Shields
et al. (2014), using the same material as in this study (b12x24€25
and b12x24€210 in (Shields et al., 2014) = HGGB3-30 in Table 2),
found that the effect of y on the evolution of 7 and 754 is
rheologically not as impacting as the effect of y, which induces
changes in 74y, of several orders of magnitude (Figure 1C;
Table 2).

Three-dimensional Microstructures

3D textural analyses reveal that shear fractures are arranged at
different angles relative to the shear plane, depending on the
degree of crystallinity of the sample and the amount of strain
localization during deformation. To establish the mechanisms
leading to the formation of fractures in our experiments, it is
important to consider that, in the simple shear configuration here
applied, the maximum compressive stress is at 45° from the shear
plane (see principal stress configuration in Figure 2C).

At low crystallinity (Figures 2A,B), fractures at high angle
(80°) from the shear plane (35° from the maximum compressive
stress) propagate through both, the melt phase and the gas
bubbles. The propagation of fractures through gas bubbles is
highlighted by the occurrence of angular features at the rim of
the bubbles (inset Figure 2A). We interpret these uncommon
bubble shapes as the result of possible migration of gas through
the open crack once a fracture crosses the bubbles, without gas
bubble healing (i.e., pore compaction after gas migrates into the
fracture).

At intermediate crystallinity (Figures 2C,D), fractures at 45°
from the shear plane (90° from the maximum compressive
stress) pass through the melt phase and continue within the
crystals (insets 1-2 in Figure 2C). Crystals show size reduction
due to intense mutual interaction and stress concentration
ultimately leading to their fracture (Forien et al, 2011),
even before macroscopic sample failure occurs (Figure 2E).
Microfractures are present between crystal fragments (inset 2
in Figure 2C). Gas bubbles are strongly deformed in melt-
enriched shear bands where deformation is localized (inset 3 in
Figures 2C,E).

DISCUSSION

Empirical Quantification of the Viscous to
Brittle Transition (VBT) in Three-phase

Magmas

The VBT in multiphase magmas is evaluated here applying
the failure criterion proposed by Cordonnier et al. (2012b).
This criterion is based on the Deborah number (De), the
dimensionless ratio between the Maxwell relaxation time of
magmas and the deformation timescale (i.e., characteristic time
of flow =y ~1):

_ Map¥ T
Goo Goo

De (1)

where, 14y is the apparent viscosity of a system composed of
crystals, bubbles, and melt, and G is the elastic shear modulus

at infinite frequency of the melt phase (10'%%> Pa; Dingwell and
Webb, 1989). The presence of crystals amplifies the t applied to
the melt phase (Cordonnier et al., 2012b). Thus, the critical stress
required for failure (z.) is lower than the t required to fracture
the melt alone (7, ) (Cordonnier et al., 2012b). The relationship
between 7. and 7., , can be written as Cordonnier et al. (2012b):

Te = Tepper (1 - ¢*) (2)

where, ¢* = %

with ¢, corresponding to the maximum
packing fraction (0.6-0.93, depending on the degree of particle
polydispersity of the system; Costa, 2005, and references therein).
The crystal shape adopted in this study (average aspect ratio of
2 4 0.2) is close enough to a spherical shape and, for congruence
with the model of Cordonnier et al. (2012b), we thus use ¢, =
0.74. Combining Equations (1) and (2), the critical Deborah
number (De.) required for magma to cross the VBT can be
written as:

De, = Decmeh(l_¢*) (3)

where, De,, , is the De, for the pure silicate melts (De,, , = 1072
Cordonnier et al., 2012a). In a three-phase system, De, should
additionally vary as function of the bubble content. Bubbles can
either behave as “rigid” (capillary number, Ca = 1) or deformable
objects (Ca > 1; Manga et al., 1998). The capillary number, Ca,
is the product of the bubble relaxation time (1) and the local
strain-rate applied to a single bubble (yjycq1):

. T / T
Ca = )M)/local _ hnmeiitylacal _ llzcal (4)

where, 7. is the melt viscosity, Tj,, is the local stress
applied on the single bubble, r;, is the bubble radius (for
spherical bubbles) and equivalent bubble radius (for sheared
bubbles), I" is the bubble-melt interfacial tension. Considering
the bulk y (lower than the maximum reached in shear bands
at high crystallinity or gas-rich regions at low crystal content,
where deformation localizes) and typical values of bubble radii
from the starting materials (2.5-50 & 0.3 pm), all experiments
were performed at Ca > 1 (Table 1), thus, bubbles behave as
deformable objects. Consequently, the presence of bubbles tends
to decrease magma 74y and results in an amplification of Yy, or
Tjocal Tequired for failure (Equation 1). This finally implies that, at
identical ¢, the 7. required for failure should be lower than that
for bubble-free systems.

For Ca > 1, the recorded total y is expected to mostly localize
in the deformable bubbles. For r;, < r. (crystal size/radius), ¢ and
the associated stress localization between crystals would increase
Tiocq and consequently Ca. The resulting effect would be an
increased stress localization into the gas phase. However, when
the crystal network becomes competent between ¢, (minimum
crystal fraction at which crystal-crystal interaction starts to be
dominant, which corresponds to 0.44 in our experiments) and
¢m, gas bubbles will switch from freely deforming objects that
undergo large deformation (i.e., within shear bands) to locked
spheres within the crystal network where shear deformation has
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HGGB.-30 HGGB3-50 Intermediate ¢
Crystallinity
um
Deformed Bubbles

Low
Crystallinity XY

Fracture
Fragmented Crystal

HGGB-50 Intermediate p
Crystallinity

Shear Plane

)800

XY

High
Crystallinity

Fractured Crystal

FIGURE 2 | Synchrotron-based X-ray tomographic microscopy virtual slices (whose positions in the 3D space are highlighted by the green planes
reported in the reference frame) and corresponding 3D microstructural renderings of three representative samples. (A,B) P1271 with an inset from
sample P1269 (HGGB3-30; low crystallinity); (C,D) P1268 (HGGB3-50; intermediate crystallinity). In (A) and (C) black objects are bubbles and fractures, the dark gray
area is silicic glass and light gray objects are quartz crystals. In (B) the principal stress configuration imposed during torsion experiments of multiphase samples is
indicated. In (B) and (D), bubbles and fractures are highlighted by yellow color. White arrows indicate macroscopic fractures in the samples; in (D) the macroscopic
fracture plane is marked with brown color. (E) Non-fractured sample portion at high crystallinity (HGGB3-60, run OR119) exhibiting highly deformed bubbles within the
shear band and the presence of fractured crystals (indicated by yellow arrows and shown in the inset image from the same sample provided as

Movie 1/Presentation 1 ZIP) due to intensive particle collisions during deformation.

not been concentrated yet. During deformation bubbles first act ~ further localize strain into the bubble phase (e.g., generation of
as a weak phase reducing the magmatic strength. However, the  high-strain shear bands), and globally increases the impact of
increase of the ¢ (i.e., ¢, < ¢ < [¢; + (¢m—¢)/2]) will increase  gas bubbles on the overall rheology. The VBT is delayed and
the bubble/melt fraction ratio (B/u; i.e., relative increase of ),  higher 7 are required to rupture the sample. When the crystal
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network becomes strongly competent and connected, bubbles
can no longer be significantly strained (i.e., [¢; + (pm—¢)]/2 <
¢ < ¢m), and the bubble effect results much less impacting
on the overall magma rheology. Considering the competition
between stress localization in gas bubbles and crystal interlocking
effects, we found that the critical Deborah number can be
expressed as:

% _502¢ —¢c—¢m)
De. = De.,, (1—¢* — B) +¢p~ @c—om +f (5

where, the second term on the right side of Equation (5),

526 — gc — dm)>
2(pc — dm)

ocp , becomes negligible when bubbles are removed
from the sheared system via coalescence and subsequent
outgassing, 8 is defined as:

B Bubble Volume
" Total Volume (Melt + Crystals + Bubbles)

B (6)

and f is an empirical fitting parameter representing the “internal
friction” of the crystal network (i.e., particle-particle interaction),
and ranges from 0 at ¢ < 0.44 to 0.62 at ¢ = 0.65 for magmas
containing quartz or corundum crystals as experimentally
explored in this study and that of Cordonnier et al. (2012b). Based
on this empirical approach, Equation (5) can be applied to a large
range of ¢ (0 to ¢,,) and a range of B up to 0.20 for multiphase
magmatic systems.

The VBT in Shear-thickening and

Shear-thinning Magmas

Figure 3 synthesizes our observations and the impact of gas
bubbles on the VBT of multiphase systems. In our experiments
we distinguish two rheological fields. The first one (¢ < 0.4;
green field in Figure 3A) shows that bubbles may connect upon
deformation and outgas, generating an increase in magma 14
(i.e., shear-thickening regime). The second one (¢ > 0.5; purple
field in in Figure 3A) reveals that bubble connectivity is hindered
by the crystal network resulting in suppression of lowering of the
bulk viscosity of the magma. In between these two contrasting
regimes a transition zone exists where the 8/u produces a strong
contribution of the bubble phase even at # = 0.1 and where the
VBT is strongly delayed.

For ¢ < 0.4 the 7 required for fracturing bubble- and crystal-
bearing magmas decreases with increasing ¢, similarly to bubble-
free systems (Figure 3A). However, differently from crystals that
concentrate the 7 in the melt phase, gas bubbles are the loci of
high shear deformation and, thus, the VBT should be shifted
to higher values of De. However, our experiments also infer a
significant outgassing (i.e., decrease of 8). The increase of y leads
to an increase of the bubble eccentricity (Rust and Manga, 2002),
favors connectivity and ultimately outgassing (Okumura et al.,
2006, 2008, 2010) that, in turn, lowers the VBT. As B is reduced
in the system and the effect of bubbles becomes less pronounced,
the entire rheology and the “swinging” VBT follow a trend close
to that typical for bubble-free systems (Figure 3A).

Conversely, for 0.4 > ¢ > 0.5 a transition occurs and bubbles
are not easily outgassed from the system. The t required for

fracturing bubble-bearing and crystal-rich magmas increases
with increasing ¢ of the magma (Figure 3A). Moreover, the
expected VBT is higher than the VBT for bubble-free systems
established by Cordonnier et al. (2012b). This inversion of the
relationship between the 7, and magma crystallinity can be
reconciled with microscopic processes (Figures2C,D). Once
¢ reaches about 0.4-0.5, shear-thinning behavior is observed
because local dilation and compaction are required for magmas
to flow at such high crystallinity (Rutter et al., 2006; Caricchi
etal., 2007; Pistone et al., 2012). When the ¢ increases at constant
B, the B/u increases leading to a relative bubble enrichment
in the melt phase. Melt- and bubble-enriched shear bands are
characterized by a local viscosity significantly lower than that
of the surrounding crystals and, thus, accommodate most of
the applied deformation. Such strain accommodation within the
shear bands results in a decrease of T}y and o of the melt
phase, shifting the VBT to higher bulk t. Therefore, the critical
required to fracture such magmas increases with increasing ¢, as
long as ¢ < ¢, (Figure 3A).

Finally for ¢ > 0.5, the effect of shear-induced outgassing
vanishes and the VBT criterion is a mixture between the stress
localization in the melt and the crystal network strength. In such
a case, the overall rheology is controlled by the crystallinity of
the magmatic system. Gas bubbles as the weakest phases become
the focus of stress localization within melt-enriched shear
bands.

Our VBT model for multiphase magmatic systems has
the potential to correlate magma crystallinity, bubble volume
fraction, and critical stress required for fracturing in a single
relationship, as reported in Equation (5). This model is able to
unify in a single equation the opposite strain-rate dependent
rheologies (shear-thickening and shear-thinning) and, thus,
quantify the VBT over the entire range of crystallinity (¢ <
¢m) and bubble content (8 < 0.2). Figure 3B displays four
different VBTs calculated using Equation (5): (i) VBT for
multiphase shear-thickening systems where the strength of the
unconnected (i.e., not competent) crystal network is negligible
(blue line); (ii) VBT for multiphase shear-thinning systems
that experience outgassing within large shear bands and where
the term describing the bubble effect is negligible (marine
blue line); (iii) VBT for multiphase shear-thinning systems
displaying low crystal interaction and corresponding to the
crystal characteristics reported by Cordonnier et al. (2012b; i.e.,
continuous orange line), and (iv) VBT for multiphase shear-
thinning systems displaying high crystal friction as observed in
this study (i.e., dashed orange line). In case of gas escape (related
to a decrease of 8) during deformation, the VBT shifts to De,
values similar to those typical for bubble-free crystal-bearing
systems (blue line in Figure 3B). The release of gas increases
the relative effect of crystals on sample rheology and consequent
brittle failure. In such a case, sample fracturing requires lower
values of 7 (as well as De,) in presence of crystals that amplify the
Tocal applied to the melt phase (marine blue line in Figure 3B).
Conversely, at constant B in the case of no outgassing, the
VBT occurs at higher De, values than those typical for bubble-
free, crystal-bearing systems (orange line in Figure 3B) since
gas bubbles largely accommodate the applied deformation and
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stress, and lower the 7, of the melt. The related shear-thinning
effect is more pronounced in presence of gas bubbles; thereby,
higher values of 7 (as well as De,) are expected to lead to magma
fracturing.

Insights into Natural Systems

The experimental observations obtained in this study and, more
specifically, the different VBTs between low-crystallinity and
high-crystallinity samples have profound implications for the
dynamics of magma ascent and eruption. Ascending magmas,
affected by significant outgassing during flow in a volcanic
conduit, become more viscous and are fated to break earlier at
depth. Particularly at low crystallinity (¢ < 0.4), magma breakage
is controlled by gas removal through bubble coalescence and
formation of gas planes. The gas permeability increases in gas-
enriched planes, where deformation is accommodated (with 1.5-
100-fold increase in local y; Wright and Weinberg, 2009). Once
the gas escapes, plane healing produces a sudden local increase
of viscosity forcing the system to accommodate deformation
to regions that are still relatively bubble-rich (Okumura et al.,
2010; Caricchi et al,, 2011). Outgassing, which is mostly favored
by increasing y in our experiments (Figure 1A), produces a
decrease of the § in the magma and, thus, a decrease of the
VBT to lower t (Figure 3B). Fracturing enhances further release
of gas (e.g., Castro et al,, 2012) and gas-filled cracks connected
to the periphery of the system favor the arrest of magma at
depth (Tuffen et al., 2003) and its “viscous death” (Pistone et al.,
2013). Further potential explosions of gas-poor stagnant magmas
may be driven by influx of new volatile-rich magma (e.g., Rust
and Cashman, 2007). Outgassing will lead to a more effusive
eruption since a large part of the magmatic overpressure will be
released.

Conversely, when gas is trapped in the crystal framework of
high crystallinity systems (¢ > 0.5), magma can be potentially
more viscous and sustain large amount of stress and deformation
(Pistone et al., 2012, 2013). This could have two major
consequences: (1) for plug flow types (i.e., a volcanic conduit
with a constant velocity profile to depth), the VBT may occur at
shallower depths and, thus, the fragmentation level for crystal-
rich magmas may be shallower than previously estimated; (2) the
differential stress reached prior to rupture by a highly crystallized
bubble-bearing magma may be higher than that achievable
for a bubble-free system displaying an equivalent crystallinity.
These highly crystallized bubble-bearing magmas are typical
of lava domes (Sparks, 1997) and our findings may constrain
why catastrophic explosions often accompany dome extrusions
during periods of lower gas fluxes.

Most volcanoes of intermediate to silicic magma compositions
exhibit repeatedly both effusive and explosive behavior during the
same event. Their evolution can rarely be accurately predicted
but has profound impact for the surrounding populations.
Typical magmas that are characterized by this eruption duality
(effusive vs. explosive style) are generally andesites to dacites
with 40-50 vol.% crystals. Typically, the evolution of a single
eruptive event changes from explosive to effusive with decreasing
eruptive intensity. However, the opposite evolution is also not
uncommon; for example, the Lascar Volcano (Matthews et al.,

1997) is a typical representative of the latter case showing the
switch from effusive to explosive behavior. The volcano started
with a low volume effusion of a lava dome in 1984, accompanied
by vigorous outgassing on and around the dome. Unexpectedly,
the volcano produced a very high-intensity explosive eruption
in April 1993, which might be attributed to the increased
strength of the crystallizing dome requesting a much larger
overpressure to fail. This behavior is supported by our rheological
observations and underlines the urgent requirement to establish
rigorous relationship between physical properties (i.e., rheology)
of magmas and their eruption dynamics. Passive volcanic
degassing in well-monitored active volcanoes may potentially be
used to evaluate the strength of magmas at depth, the potential
build-up of stress, and, finally, the likelihood of the system to
enter into a brittle/explosive state. The link between the VBT in
multiphase magmas and eruptive style of volcanoes is essential to
“predict” the physical behavior of volcanoes, particularly of those
characterized by both effusive and explosive volcanic activity
(e.g., Mt St Helens, US; Montserrat, Lesser Antilles, West Indies;
Santiaguito, Guatemala; Unzen, Japan). The transient switch
from effusive to explosive eruptions highlights the problem
that lava effusion can suddenly change to very hazardous
explosive activity after several years of constant eruption
behavior.

CONCLUSIONS

In this study we have determined the VBT in high-viscosity
(> 10° Pa-s) silica-rich, three-phase magmas, containing both
crystals (24-65 vol.%; average aspect ratio of 2) and gas bubbles
(9-12 vol.%), deformed at high-temperature (673-1023 K) and
high-pressure conditions (200 MPa) under variable range of
strain-rates (5-107% s71—4-1073 s7!). Based on the experimental
results, we propose an empirical equation describing the VBT as
a function of crystallinity and the strain-rate-dependent rheology
(shear-thickening in crystal-poor systems and shear-thinning
in crystal-rich magmas). The transient behavior from shear-
thickening to shear-thinning occurs at crystallinity (¢ = 0.4-0.5)
and bubble volume fractions (8 < 0.2) that are typical for
magmas associated with dome forming volcanic systems and
may account for the frequently observed sudden transition from
effusive to explosive activity during these eruptions. This study
offers an explanation why certain volcanoes displaying initial
lava effusion and high intensity gas emission over prolonged
durations, suddenly change to very hazardous explosive activity.
Defining the VBT in volatile-rich magmas at intermediate
crystallinity and correlating it to the switch of eruption style
from non-explosive to explosive and vice versa is a central topic
in future experimental investigations targeting the behavior of
intermediate composition volcanic systems.
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