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To understand the behavior of torrential processes in the alpine environment, the

conditions mainly responsible for the occurrence of these phenomena have to be

identified and distinguished as predisposing and triggering factors. In this regard, this

study is aimed to understanding which factors lead to the occurrence of a given torrential

processes in alpine catchments in the Western Alps, where information on past events

are exhaustive and characterized by a long historical series. More than 769 documented

torrential events occurred from 1728 to 2015 within 78 catchments. Datasets concerning

climate, geology and morphology, land use and the presence of historical landslide

activity have been elaborated as input for multivariate statistical analysis to characterize

the behavior of the catchments. The results pinpoint the factors that mainly drive the type

of torrential dominant process occurring in a given catchment, its occurrence probability,

and its frequency. This study has demonstrated that catchments characterized by a

significant percentage of outcropping rocks show a greater occurrence of torrential

processes, especially hyperconcentrated flows and debris flows; on the contrary highly

vegetated catchments are typically subject to water flows. This result can be a useful tool

for the evaluation of hazards related to this specific phenomenon, making it possible to

predict the most likely torrential processes that can be generated in a specific catchment,

given the characteristics of outcropping rock and vegetation cover.

Keywords: debris flow, hyperconcentrated flow, alpine catchment, torrential process, hazard assessment

INTRODUCTION

Torrential processes affecting alpine catchments are one of the most common phenomena causing
economic losses and casualties in the alpine region (Govi and Sorzana, 1980; Tropeano and
Turconi, 1999; Tropeano et al., 1999, 2006; Arattano et al., 2010; Tiranti and Rabuffetti, 2010).

Intense rainfall is the most common triggering factor of torrential processes in the alpine
environment, especially below 2000m asl because, at higher altitudes, the occurrence of torrential
processes is driven by factors linked to the periglacial environment (i.e., snowmelt, glacial outburst
flood and permafrost degradation; Govi et al., 1985; Cojean, 1994; Fuchu et al., 1999; Palacios
et al., 1999; Wieczorek and Glade, 2005; Chiarle et al., 2007; Cannon et al., 2008; Tiranti et al.,
2008, 2014; Stoffel et al., 2011, 2014; Brunetti et al., 2015; Marra et al., in press). Previous
studies conducted in the Alps have shown that the occurrence of torrential processes with mass
transport is closely related to some predisposing factors, such as the lithological setting of the
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catchments and the fracturation degree of the outcropping rocks
(Lin et al., 2000; Moscariello et al., 2002; Tiranti et al., 2008, 2014;
Tiranti and Deangeli, 2015), the morphology of the catchments
(Lin et al., 2002; Ohlmacher and Davis, 2003; Ranjan et al., 2004;
Wilford et al., 2004; Chang and Chao, 2006; Chang, 2007; Chang
and Chien, 2007; Lu et al., 2007; Tunusluoglu et al., 2008) and
the land cover (Lin et al., 2002; Wilford et al., 2004; Catani et al.,
2005; Lee and Pradhan, 2007; Lu et al., 2007) and the presence
of landslides activity within the catchments (Campbell, 1974;
Johnson and Rodine, 1984; Sassa, 1985; Ellen and Flaming, 1987;
Iverson et al., 1997; Blair, 1999; Gregoretti, 2000; Lin et al., 2002;
Reid et al., 2003; Maleta et al., 2005).

While the morphometric and lithological influence on the
occurrence of torrential processes are widely investigated in
literature, the role of the vegetation cover has beenmainly treated
in connection with the triggering of landslides (Campbell, 1974;
Styczen andMorgan, 1995; Schmidt et al., 2001; van Beek and van
Asch, 2004; Sekhar et al., 2006; Santi et al., 2008). The role that it
plays in preventing torrential phenomena is not present in such
detail in literature; in fact, the majority of articles deals with the
effects of wood in the runout of torrential processes (Tinker and
Knight, 2000; Lancaster et al., 2003; Zelt and Wohl, 2004) and
hydrological response (Doerra et al., 2006; Shakesby and Doerr,
2006; Kean et al., 2013).

This study intends to correlate in a statistical way all the
mentioned factors, including land use, to understand how they
interact with each other and which of these most influences
the triggering of torrential phenomena characterized by mass
transport.

The study was conducted in Susa Valley, a particular valley
of the Western Italian Alps where, in a relatively small area, a
high variability of geological, geomorphological, and vegetation
distribution is present, as is very abundant data on historical
torrential process events. It is very important to understand
the torrential process behavior (Tropeano and Turconi, 2004;
Turconi et al., 2014) as these conditions can provide statistical
relevance to the analysis and representativeness of the whole
Alpine environment.

THE STUDY AREA

The Susa Valley extends about 1337 km2 in the Italian Western
Alps from the Po valley to the borderline with France (Figure 1).
The Dora Riparia river is the main steam of the drainage valley
system. According to Polino et al. (2002) and Cadoppi et al.
(2002), from a geological point of view, the valley lies in the
paleogeographic domains of Brianzonese and Piemontese, within
the Pennidic domain, respectively representing the following
paleoenvironment:

(1) Continental Margin domain, which includes continental
crust units and Mesozoic carbonate or incertae sedis covers.
This domain includes the Ambin and the Dora-Maira, which
feature inner massive crystalline metamorphic complexes.
The deeper tectonostratigraphic unit is the Ambin Complex,
an outcropping on the left side of the Susa Valley that
consists of Pre-Triassic crystalline basement and Mesozoic

FIGURE 1 | The Susa Valley in red, the Piemonte region in light blue.

metasediments. The massif is formed by two different
complexes, the Clarea Group (at the bottom) and the
Ambin Group (Borghi and Gattiglio, 1997). The Dora-Maira
Massif consists of a Paleozoic basement and carbonate
Mesozoic metasediment. The other tectonostratigraphic
units belonging to this domain are the Vallonetto
Unit, the Gad Unit, the Unit of Valfredda Chaberton-
Grand Hoche-Grand Argentier and the Unit of Tre
Re Magi.

(2) Oceanic and Fossa domains consist of ophiolites and
Ligurian-type sedimentary sequences. In the lower Susa
Valley the main ophiolitic unit is the Cerogne-Ciantiplagna,
while the Fossa units are represented by the Calc-schists with
Green Stones, Calc-schists of Puys-Venaus, the Chiomonte-
Venaus and Rocciamelone complexes.

During the Quaternary the Susa valley was subject to the action
of the glaciers, which resulted in its typical “U”-shaped cross
section, in the formation of moraines and glacial deposits on both
valley slopes. During the post-glacial period, numerous deep-
seated landslides formed as a result of the stress released by the
glaciers melting. Deep-seated gravitational slope deformations
(DSGSD) are quite relevant for their contribution to the
morphogenesis of the Susa Valley, due to a slow and progressive
deformation of rock masses.

The Susa Valley is characterized by xeric climate with a low
rainfall regime: the average annual rainfall is about 600–900mm.
Due to the rise of moist air from the plains, the annual rainfall is
relatively higher in the lower part of the valley, while the number
of rainy days decreases proceeding to the valley head (Biancotti
et al., 1998; Fratianni and Motta, 2002).

Due to its peculiar position, the Susa valley is the crossroads
of different vegetation species characteristic of the surrounding
Maritime, Cottian and Central Alps. A considerable wealth of
flora (about 3000 species) and diversity of plant formations are
present in the area. The treeline can be identified at 2400m
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asl, but in certain cases it reaches 2600m asl. While on the
northern faces there are abundant forests, on the opposite faces
there is a greater variety of flora due to climate variability
(Perosino and Zazzara, 2006). On the southern side, beyond
deciduous forest residues, including species such as oak (Quercus
pubescens) and Holm oak (Quercus ilex), meadows, pastures and
crops are present up to 1000m altitude (Montacchini et al.,
1982).

Lithologic Characterization
In order to characterize the catchments and the torrential
phenomena that affect them, the alpine basins are classified by
the Clay Weathering Index (CWI) according to Tiranti et al.
(2014). This index identifies the predisposition of rock masses to
produce clay or clay-like minerals in loose material, as a result of
alteration/disintegration processes. This classification considers
the influence of the fine-grained sediments on the torrential
processes. In fact, the clay amount drives the depositional style
and pattern of debris flows, their frequency and seasonality, the
flow rheology and the architecture of the alluvial fans (Tiranti and
Deangeli, 2015).

The CWI identifies three catchment types:

- Excellent Clay Maker (ECM): catchments mainly formed by
sedimentary rocks rich in clay or fine-grained and foliated
metamorphic rocks, or volcanic rocks that produce significant
quantities of clay (Figure 2A). In case of mass transport, the
flow rheology is viscoplastic; the main occurrence happens
during summer with triggering rainfall of intensities greater
than 20mm/h, i.e., characterized by a return-period of five
years in the Susa Valley;

FIGURE 2 | (A) Example of very muddy hyperconcentrated flow deposit with

rare boulders from Rio Fenils ECM catchment, Cesana municipality, Susa

Valley; (B) Example of debris flow deposit with abundant boulders in a clayey

silt matrix from Comba Crosa GCM catchment, Cesana municipality, Susa

Valley. (C) Example of partially open-work hyperconcentrated flow deposit with

very abundant boulders. (D) Detail of matrix formed by sand, gravel and silt.

From Rio Secco BCM catchment, Salbertrand municipality, Susa Valley.

- Good Clay Maker (GCM): catchments mainly formed by
massive carbonate rocks that produce moderate quantities of
clay or clayey silt (Figure 2B). In case of mass transport, the
flow rheology is viscoplastic; the main occurrence happens
during late spring with triggering rainfall intensity greater
than 30mm/h, i.e., characterized by a return-period of 20
years in the Susa Valley;

- Bad ClayMaker (BCM): catchments mainly formed by coarse-
grained and massive metamorphic or magmatic rocks that
produce negligible quantities of clay (Figures 2C,D). In case
ofmass transport the flow rheology is frictional-collisional, the
main occurrence happens during fall with triggering rainfall
intensity greater than 50mm/h, i.e., characterized by a return-
period of 100 years in the Susa Valley.

To determinate the rock mass quality, the Geological Strength
Index (Hoek and Brown, 1997; Hoek and Marinos, 2001; Hoek
et al., 2002; Marinos et al., 2004a,b, 2005; Tiranti et al., 2008)
is applied as a rule-of-thumb to each lithology forming the
tectonostratigraphic units.

Due to complex lithology of the Susa Valley catchments, the
lithotypes were grouped in three major lithogroups: massive
limestones and dolostones (including marbles), massive coarse-
grained crystalline rocks (metabasites, ophiolites, gneisses, mica
schists, and quartzites) and foliated fine-grained metamorphic

FIGURE 3 | Lithology map of catchments having torrential events data.

FIGURE 4 | Catchments CWI classification based on dominant

lithology.
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TABLE 1 | Correspondence between CWI classes and the average GSI

(adapted from Tiranti et al., 2008).

CWI class Average GSI

ECM 45

GCM 60

BCM 75

FIGURE 5 | More likely torrential process that reaches the alluvial fan.

FIGURE 6 | DSGSD distribution along the Susa Valley.

rocks (calc-schists, shales, carbonate schists, and phyllades:
Figure 3).

Figure 4 shows that the most abundant lithogroup is
represented by the foliate grain-fined metamorphic rocks
covering about 52.44% of the total lithotypes in the areas
considered; the massive coarse-grained crystalline rocks are
present for 38.57%, while themassive carbonates account for only
8.99%. The surface deposits represent about 31% of the total area.

Based on the dominant lithology, about 48 catchments are
classified as ECM, 26 as BCM and only 4 were classified as GCM
(Figure 6).

The GSI is applied for the characterization of rock masses,
because the structural characteristics of the entire Susa Valley are
evenly distributed within the same lithology, and therefore the
structural variety is limited. For each CWI main group, the GSI
mean values are calculated. Table 1 shows the correspondence
between CWI classes and the average GSI.

TABLE 2 | Landslide types and abundance (A.A.V.V., 2015)1.

Landslide type Covered Relative

area (km2) abundance (%)

Rockfalls and topples 59.94 41.33

Shallow landslides 6.20 4.28

Slow earth flows 10.03 6.91

Earth flows 0.53 0.37

Complex landslides 55.03 37.95

Rotational and translational slides 13.30 9.19

FIGURE 7 | Landslides distribution along the Susa Valley.

FIGURE 8 | Map of the macro-categories derived from land use

classes of the Susa Valley.

Morphometric Characterization
The morphometric characterization of the catchments is based
on Wilford et al. (2004), which determines the most likely
torrential process reaching the alluvial fan area considering a
complete set of morphometric parameters. This characterization
is derived from LiDAR based 5-m resolution digital terrain
model (DTM) covering the Susa Valley. The torrential processes
taken into consideration are water flows (WF) with a low
sediment concentration (0–20%), transported by bedloading
in flow mixture characterized by a Newtonian behavior; also

1A.A.V.V. (2015) SIFraP - Landslides Information System of Piemonte, Arpa

Piemonte. Available online at: http://webgis.arpa.piemonte.it/geoportalserver_

arpa/catalog/search/resource/details.page?uuid=ARLPA_TO%3A07.04.02-D_

2011-03-24-11%3A43.
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called debris floods, hyperconcentrated flows (HF) are torrential
mass movements with moderate sediment concentration
(20–50%) in flow mixture characterized by a Newtonian or non-
Newtonian behavior depending on the sediments concentration;
debris flows (DF) are torrential mass movement with high
sediment concentration (50–85%) in flow mixture characterized

TABLE 3 | Land use macro-categories of the Susa Valley.

Land use group Area (km2) Distribution (%)

Grassland 238.12 31.91

Forest 358.96 48.09

Agricultural area 3.63 0.49

Urban Area 5.51 0.74

Bedrock 140.03 18.77

FIGURE 9 | Catchments having torrential events historical information.

by non-Newtonian viscoplastic or collisional-frictional behavior
depending on the fine sediment amount (Pierson and Costa,
1987; Costa, 1988; Lavigne and Suwa, 2004).

To establish the propensity of a catchment to generate
a specific torrential phenomenon, the morphometric
characterization is mainly based on the Melton ratio (Melton,
1957) and the length of watershed. Basically, a catchment
characterized by a Melton ratio <0.3 and a watershed length >8
km is more subject to water flows, while the debris flows are
characteristic of catchments with a Melton ratio >0.6 and
watershed length <3 km. Hyperconcentrated flows affect
catchments with a Melton ratio >0.3 and watershed length
values between 3 and 8 km.

Applying Wilford et al. (2004), most of the Susa Valley
catchments are characterized by hyperconcentrated flows asmain
processes (average Melton ratio of 0.74 and watershed length
<8 km). Only 27 catchments out of 78 are more likely to
trigger debris flows (average Melton ratio of 3.50 and watershed

TABLE 4 | Torrential events occurrence per catchment class in the Susa

Valley.

Number Number Number Number of total

of DF of HF of WF torrential events

ECM 84 222 97 415

ROI 0.37 0.97 0.43 1.82

BCM 3 75 227 305

ROI 0.01 0.33 1.00 1.34

GCM 43 6 0 49

ROI 9.39 1.31 0.00 10.70

FIGURE 10 | Historical torrential processes happened in Susa Valley.
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FIGURE 11 | The torrential events distinguished by processes type occurred in the three CWI catchment classes: (A) ECM catchments; (B) GCM

catchments; (C) BCM catchments.
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FIGURE 12 | (A) Correlation of torrential events and outcropping bedrock percentage; (B) landslides and DSGSD distribution (%) in ECM catchments.

length <3 km; Figure 5). None of the selected catchments fall in
the “water flow” class.

Landslides Distribution
According to some authors (Campbell, 1974; Johnson and
Rodine, 1984; Sassa, 1985; Ellen and Flaming, 1987; Iverson et al.,
1997; Blair, 1999; Gregoretti, 2000; Lin et al., 2002; Reid et al.,
2003;Maleta et al., 2005), landslide occurrence within catchments
seems to contribute to the triggering of torrential processes in two
ways:

- landslides can directly trigger a mass transport along the main
channel;

- their deposits constitute an important source of sediment for
channel-bed failure initiation.

Finally, the distribution of deep-seated gravitational slope
deformations (DSGSD) is analyzed to investigate their possible
influence on the occurrence of torrential processes. The
DSGSD cover about 181.78 km2, corresponding to the 21.68%
of the Susa Valley. The other types of landslides cover
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FIGURE 13 | (A) Correlation of torrential events and outcropping bedrock percentage; (B) landslides and DSGSD distribution (%) in GCM catchments.

145.03 km2, corresponding to the 17.30% of the total area
(Figure 6).

The landslide types that have occurred in the Susa Valley and
their relative amount are shown in Table 2.

Table 2 reports the landslide type fraction in the catchments.
Figure 7 shows the spatial distribution of landslides in the Susa
valley, except DSGSD.

Land Cover Characterization
Regarding the land use of the Susa Valley, the 35 different land
use types shown in the land use map at 1:10,000 scale (A.A.
V.V., 2009)2 are remapped in four macro-categories (Figure 8)
based on similar characteristics: all trees classes and bushes are
classified as “Forest”; grassland and pastoral areas are classified
as “Grassland”; crops, orchards and vineyards are classified as
“Agricultural area”; outcropping bedrock including sub-outcrop,
float materials and talus are classified as “Bedrock” (Table 3).

Nearly 600 km2, corresponding to 80% of the Susa Valley,
are covered by vegetation. Agricultural and urban areas together

2A.A.V.V. (2009) Piani Forestali Territoriali (PFT), IPLA and Ragione

Piemonte. Available online at: http://www.regione.piemonte.it/foreste/it/gestione/

pianificazione/pft.html.

occupy slightly more than 1% of the total area and they are
concentrated in the lower part of the valley, out of selected
catchments. Outcropping rocks cover about 19%.

ANALYSIS OF HISTORICAL TORRENTIAL
PROCESSES

Torrential processes that have occurred in the Susa Valley
have been scrupulously documented: sources of information
comes from municipalities and church archives, scientific
publication or technical reports and collected in public
databases (Geological Database of the Regional Agency
for Environmental Protection of Piemonte—http://webgis.
arpa.piemonte.it/bdge/index.php—integrated by data
from CNR-IRPI—http://polaris.irpi.cnr.it/). Information
includes date, sometimes daytime, location, flow type
(water flow, hyperconcentrated flow and debris flow) and
damages.

The analysis of historical documentation indicates that only 78
of 208 catchments of the Susa Valley reported events from 1728
to 2015 as result of databases interrogation (Figure 9).
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For the period between 1943 to 1945, during the 2nd War
World, there is a lack of information. The number of reports
shows a maximum during the twentieth century, while only six
reports are considered valid before 1800. Information dating
prior to 1940 is less reliable: in these cases the process type was
derived by interpreting the available information and adapting
them to the modern scientific nomenclature to classify torrential
phenomena (Jakob and Hungr, 2005).

Seven hundred and sixty-eight torrential processes that
occurred in 78 catchments were collected and characterized.

The overall results of this historical research are summarized in
Figure 10.

The analysis reported 415 documented events in ECM
catchments, 305 in BCM, and only 49 in the GCM. The number
of events per CWI class must be normalized by the area of
catchments within each class. The ECM catchments represent the
class with the greatest abundance (48) of catchments, covering
a total area of 227.91 Km2, followed by the BCM class (29
catchments covering 226.92 Km2), while the class GCM is
represented by only 49 catchments, occupying an area of 4.58

FIGURE 14 | (A) Correlation of torrential events and outcropping bedrock percentage; (B) landslides and DSGSD distribution (%) in BCM catchments.
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FIGURE 15 | Outcropping bedrock thresholds for torrential processes type.

Km2. The normalization of event occurrence per catchment class
is expressed by the Relative Occurrence Index (ROI) given by the
number of events divided by the total area covered by catchments
referred to each CWI class (Table 4).

The ECM catchments are indeed characterized by 1.82 ROI,
while the BCM is characterized by 1.34. Although the total
number of events for GCM is considerably less than the other
two classes, the ROI value is 10.70, indicating a high occurrence
of torrential processes.

Table 4 shows also the ROI calculated by distinguishing
the type of process that occurred: water flow (WF),
hyperconcentrated flow (HF), and debris flow (DF). Analysing
the ROI values in Table 4, it is clear that the ECM catchments
generate a higher number of mass transports than the BCM
catchments, which are most affected by water flows (Figure 11).

Although some ECM and BCM catchments are capable of
generating mass transport, according to Wilford et al. (2004),
only water flows are reported in them. To interpret this
unexpected result and to understand the reasons for different
behaviors, land use, landslide and DSGSD distribution must
be taken into account. The following Figures correlate these
parameters with the catchment activity (Figures 12A,B, 13A,B,
14A,B).

Multivariate statistical analysis (Johnson and Wichern, 1982)
applied to Susa catchments shows that debris flows and
hyperconcentrated flows are respectively strongly / moderately
correlated with outcropping bedrock (Pearson correlation
coefficient ρ = 0.533 with p < 10 − 5, ρ = 0.233 with p =

0.03). Water flows are negatively correlated with bedrock (ρ =

−0.364 and p = 0.002). The analysis shows also that landslides
and DSGSD are statistically correlated respectively positively and
negatively with outcropping bedrocks. As shown in Figure 15,
when the outcropping bedrock is greater than 10% water flow
processes could happen, HF becoming more likely for values

greater than 20%. This value increases to 59% for debris flows
where both processes become highly probable.

The distribution of flow processes in the studied catchments
varies according to the classification. Water flows are more likely
to occur in BCM than in ECM while the opposite happens for
debris flow. Hyperconcentrated flows are equally distributed in
both types of basins. The GCM basins are not considered due to
the limited dimension of the sample.

CONCLUSIONS

The occurrence of torrential processes depends on many
factors, classifiable as triggering, predisposing and mitigating. As
previously underlined, the main triggering factor of the torrential
processes is the heavy rainfall preceding the initiation.

Starting with the analysis of historical information on past
torrential events, this paper has investigated the factors that drive
torrential phenomena types and occurrence in the Western Alps.
The conditions mainly responsible for these phenomena have
been identified and distinguished in predisposing and triggering
factors. More than 769 documented torrential processes, which
occurred from 1728 to 2015 within 78 catchments of the Susa
Valley, were collected and analyzed. The datasets related to
climate, geology and morphology, land use and the presence
of historical landslides activity were elaborated as input
of multivariate statistical analysis to characterize catchment
behavior. The catchments studied were classified by the Clay
Weathering Index, the Geological Strength index and theWilford
et al. (2004) method to establish the role of lithology and
morphometric setting as predisposing factors for triggering the
torrential processes. In some catchments potentially subject
to mass transport, according to Wilford et al. (2004), only
water flow processes were recorded. To understand the reason
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for this unexpected behavior, land use, landslides and DSGSD
distributions were taken into account.

Among the predisposing factors, the catchment lithology
characteristics (CWI) and morphometric settings (Wilford et al.,
2004) play a key role. However, regardless of CWI class taken
into consideration, it is clear that the main predisposing factor
of the torrential process is the bedrock outcropping percentage
(Figures 12, 13, 14). A higher percentage of outcropping bedrock
enhances the debris production, which is the main source
of mobilizable material. Although landslides can still be an
important source of sediment in case of activation, they do not
influence the torrential process characteristics (Figures 12B, 13B,
14B). Even DSGSD (Figures 12B, 13B, 14B) do not affect the
behavior of torrential processes. This result can be explained
considering that the DSGSD mainly affects slopes formed by
schists (classified as ECM), which are already characterized by
very poor geomechanical properties (see corresponding GSI
class in Table 1), producing large amount of debris even in
the absence of DSGSD. Therefore, the catchment sediment
budget mainly depends on a high percentage of outcropping
bedrock.

Consequently, vegetation appears to be the main mitigating
factor of torrential mass movements. Vegetation controls the
infiltration, increases the water suction surface, and reduces the
runoff by the root system. The role of vegetation is particularly
evident in highly vegetated catchments that are rarely subject
to torrential processes and, in particular, to channelized mass
movements (HF and DF).

The plant populations most effective in torrential process
mitigation are forests, because forest-land litter improves water
infiltration and the underlying moist horizon stores water,
thereby slowing the subsurface runoff (Figure 8). The aerial parts
of plants intercept and partially hold the rainfall, reducing the
drop impact energy and water sheet flow velocity up to four times
compared to bare soil, resulting in a reduction of 16 times the
erosion rate (Campbell, 1974, 1975; Cannon et al., 2001, 2008;
Lancaster et al., 2003; Shakesby and Doerr, 2006).

The results show that the bedrock outcropping percentage
is the dominant predisposing factor determining the torrential
process type and frequencies. An outcropping bedrock
area >20% promotes the occurrence of hyperconcentrated
flows and debris flows instead of water flows. Landslides and
DSGSD distribution do not influence torrential process behavior.

This evidence makes it possible to distinguish the type
of torrential processes occurring in alpine catchments with
less uncertainty. Then, dedicated preventive actions can be
implemented to mitigate the hazards related to torrential
processes.
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