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Global DEM Errors Underpredict
Coastal Vulnerability to Sea Level
Rise and Flooding
Scott Kulp* and Benjamin H. Strauss
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Elevation data based on NASA’s Shuttle Radar Topography Mission (SRTM) have been

widely used to evaluate threats from global sea level rise, storm surge, and coastal

floods. However, SRTM data are known to include large vertical errors in densely

urban or densely vegetated areas. The errors may propagate to derived land and

population exposure assessments. We compare assessments based on SRTM data

against references employing high-accuracy bare-earth elevation data generated from

lidar data available for coastal areas of the United States. We find that both 1-arcsecond

and 3-arcsecond horizontal resolution SRTM data systemically underestimate exposure

across all assessed spatial scales and up to at least 10m above the high tide line. At

3 m, 1-arcsecond SRTM underestimates U.S. population exposure by more than 60%,

and under-predicts population exposure in 90% of coastal states, 87% of counties, and

83% of municipalities. These fractions increase with elevation, but error medians and

variability fall to lower levels, with national exposure underestimated by just 24% at 10 m.

Results using 3-arcsecond SRTM are extremely similar. Coastal analyses based on SRTM

data thus appear to greatly underestimate sea level and flood threats, especially at lower

elevations. However, SRTM-based estimates may usefully be regarded as providing

lower bounds to actual threats. We additionally assess the performance of NOAA’s Global

Land 1-km Base Elevation Project (GLOBE), another publicly-available global DEM, but

do not reach any definitive conclusion because of the spatial heterogeneity in its quality.

Keywords: sea level rise, climate impacts, srtm, globe, error analysis

INTRODUCTION

Understanding the exposure of coastal nations and communities to sea level rise and coastal
flooding is critical in informing policymakers about the potential benefits of protective strategies,
as well as in building awareness of the tangible effects of climate change. In recent years, a number
of studies have used high resolution, high vertical accuracy, bare earth digital elevation models
(DEMs) derived from lidar to produce coastal exposure estimates in individual countries, such as
the United States (Knowles, 2010; Strauss et al., 2012, 2015). However, since availability of lidar
is limited outside of the US, many non-US and global analyses have relied on DEMs of poorer
accuracy and resolution, notably ones based on NASA’s Shuttle Radar TopographyMission (SRTM;
McGranahan et al., 2007; Hallegatte et al., 2013; Hinkel et al., 2014; Neumann et al., 2015).

Recent studies have investigated the absolute elevation error in SRTM (Shortridge, 2006; Tighe
and Chamberlain, 2009; Becek, 2014), including the impacts of vegetation (LaLonde et al., 2010;
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Shortridge and Messina, 2011) and urban development (Gamba
et al., 2002) on error. As most coastal exposure analysis is
performed within the first few vertical meters above high tide
lines, estimates are highly sensitive to small errors and differences
in land elevation. For example, (Hinkel et al., 2014) recently
found that using SRTM to compute exposed population below
the 100-year flood event produces global estimates less than half
those predicted by NOAA’s Global Land 1-km Base Elevation
Project (GLOBE). Additionally, recent studies, such as (Kuleli,
2010; Hallegatte et al., 2013; Strauss et al., 2015), have begun
to investigate global sea level rise exposure at the municipality
scale, which may be more sensitive to local noise in the DEM.
While the elevation error in global DEMs has been studied, the
impact of these elevation errors on computed coastal exposure
is not well understood, making interpretation of such exposure
analysis challenging. Here, we characterize bias and variability
in exposure error based on global DEMs, including any behavior
with respect to flood level and spatial scale.

This paper seeks to fill this need by building an error
model from computed land and population exposure within
the contiguous United States. Over most coastal areas, high-
quality elevation models based on lidar are available from NOAA
(NOAA, 2015). Previous studies have used lidar-based DEMs as
a reference to assess the accuracy of SRTM elevation (Hofton
et al., 2006). In this work, we similarly use NOAA’s lidar-based
coastal DEMs as a baseline against which we can assess flood
exposure error under SRTM and GLOBE. After converting each
DEM to the same tidal datum, we use US Census block data to
compute population and land exposure at water levels between
1 and 10m above local high tide lines, and sum this exposure
up to municipality, county, state, and national scales. By treating
exposure under lidar as ground truth, we can compute relative
error at every location, allowing us to characterize error at all
water surface levels and spatial scales, and assess not only bias and
variability, but how often each elevation source underestimates
(or overestimates) exposure under different conditions.

DATA SET CHARACTERISTICS AND
ANALYSIS METHODS

NOAA maintains and makes publically available a collection
of lidar-derived DEMs generated by a range of governmental
sources across the US coast, collected between 1996 and 2015.We
use these lidar data as our baseline topography, which is classified
to measure bare earth elevation, has a roughly 5m horizontal
resolution, and most data have published vertical errors <20
cm RMSE (NOAA, 2012). SRTM, based on a NASA mission
in 2000, is available globally at both 3 arcsecond (“SRTM-3”)
and 1 arcsecond (“SRTM-1”) horizontal resolutions (roughly
90 and 30 m, respectively), each with a vertical RMSE <10m
(Rodriguez et al., 2006; LaLonde et al., 2010). However, SRTM
is an unclassified (“surface”) elevation model, and thus tall
buildings and vegetation are expected to introduce significant
positive bias (LaLonde et al., 2010; Shortridge and Messina,
2011). Additionally, we note that coastal processes between
SRTM collection and the generally more recent lidar datasets

may produce additional error in somemarginal coastal strips.We
expect this source of error to be minimal due to the small amount
of elapsed time, and the large ratios of land area to coastline
length for our municipal, county, and state units of analysis.

GLOBE has a much coarser horizontal resolution of 1 km
(roughly 30 arcseconds), and is classified to measure bare earth
elevation. However, GLOBE was developed using a patchwork
of several different data sources, collected between the 1950’s
and 1998, and so its accuracy is inconsistent across the world’s
surface. Roughly 1/3 of the global land surface(including the
United States), has absolute vertical RMSE≤ 18 m, while another
1/3 of Earth’s land surface has over 97m vertical RMSE (Hastings
et al., 1999).

As distributed by NOAA, the Coastal Lidar dataset is
referenced to the NAVD88 geoid. Both SRTM and GLOBE are
referenced to the EGM96 geoid. We convert these datasets to
NAVD88 with a correction grid generated from geoid height
calculators developed by NOAA (2011) and NGA (2013). Since
we are interested in flood exposure due to SLR and coastal storms,
we then convert all elevations to reference the local mean higher
high water (MHHW) tidal datum using NOAA’s VDatum grid
(Parker et al., 2003) and nearest neighbor interpolation.

The US Census provides block boundaries and block
populations (www.census.gov/geo/maps-data/data/tiger-line.
html), which we use to compute population and land exposed
below 1–10m MHHW in increments of 1m for each DEM. The
exposure values computed within each block are then summed
across their corresponding census places (municipalities),
counties, and states. For all DEM’s, this analysis assumes uniform
population density within Census blocks, except for zero density
over wetland areas, following the methodology described in
Strauss et al. (2012). We define a sample’s “true” exposure value
(land or population), etrue, to be its computed exposure using
lidar, and its “test” values, etest , as its computed exposure under
SRTM-1 or GLOBE. In addition to using relative error, we also
define the log10-multiplier (LM10) as follows:

LM10(etrue, etest) = log10

(

etrue

etest

)

This metric has advantages in error visualization, as it is
centered about zero (no error), and gives equal weight,
though opposite sign, to underestimation or overestimation of
exposure.

This analysis is performed within every coastal state within
the contiguous United States (CONUS), except for Virginia and
Rhode Island, as there exist large regions of coastline within
both of these states in which SRTM elevation is unavailable.
Accordingly, we also do not consider VA or RI in any of the
lidar nor GLOBE exposure analysis discussed below. At the
municipality and county levels, to prevent very large relative
error values occurring due to exceptionally small levels of
exposure in certain locations, we only consider those places in
which estimated exposure under both lidar and SRTM/GLOBE
exceeds 1% of the total population/land area of that
place.
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RESULTS AND DISCUSSION

Our results present three major findings, which are discussed

in detail below. First, SRTM is very likely to underestimate

exposure at all subnational locations and scales, while GLOBE

exhibits more positive bias. Secondly, we see that error variability
at subnational spatial scales is high under both DEM’s, but

drops considerably at higher water heights, especially under
SRTM. Finally, across CONUS as a whole, SRTM-1 underpredicts
exposure by a factor as high as 2.5, while GLOBE performs with

higher accuracy, with nearly zero relative error at larger water
heights.

In our analysis, we have empirically found that SRTM-1
and SRTM-3 produce nearly identical patterns in exposure
error. For the purposes of clarity and brevity, we focus
the rest of our discussion on SRTM-1, as this is the most
recent and highest resolution version of SRTM currently
available. The complete set of tables and figures for
our SRTM-3 analysis is available in the Supplementary
Materials.

FIGURE 1 | Bar graph of percent of places underestimating population (A) and land (B) exposure under SRTM-1 and GLOBE, across Municipalities (M,

orange), Counties (C, blue), and States (S, green).
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FIGURE 2 | Scatter plot of LM10 vs. estimated population (rows 1 and 2) and land (rows 3 and 4) exposure at individual places. LM10 is defined as

log10([SRTM1 or GLOBE exposure]/[lidar exposure]). Error bars for municipalities represent the 5/50/95th percentiles of LM10 values of neighboring points. County

medians are also included, but error bars are removed to reduce clutter. Counties and municipalities with less than 1% exposure are not included.

Frontiers in Earth Science | www.frontiersin.org 4 April 2016 | Volume 4 | Article 36

http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive


Kulp and Strauss SRTM Underestimates Coastal Flooding Exposure

UNDER/OVERPREDICTION RATES

SRTM-1 consistently underpredicts exposure at all spatial scales

(Figure 1). At 1 m, no clear patterns of bias in population

exposure error are apparent, but at 3 m, SRTM-1 underestimates

population exposure in 83% of municipalities, 87% of counties,
and 90% of states. By 10 m, SRTM-1 underestimation
becomes nearly universal, with 86% of municipalities, 92%
of counties, and 95% of states underpredicting population
exposure. Land exposure under SRTM-1 follows similar
patterns of error, though is more likely to underestimate

at 1m.

Conversely, GLOBE is more likely to overpredict exposure
than SRTM-1, especially at smaller spatial scales. At 1 m, GLOBE

overestimates population exposure in 85% of municipalities, 83%
of counties, and 81% of states (values complementary to the
underestimation rates listed in Figure 1 and Table 2). These high
overestimation rates may be caused by GLOBE’s low resolution
and high vertical error in the DEM, causing inaccurately flooded
pixels to cover large (1 km2) regions of populated land, while
total exposure under lidar at 1m is much smaller. However,
these error rates drop rapidly as water elevation rises, such
that at 3 m, GLOBE overpredicts in just 61% of municipalities,
67% of counties, and 67% of states. By the 10m flood level,
28% of municipalities reach 100% population exposure under
both lidar and GLOBE, implying zero error in exposure
assessment for such locations. This causes overestimation rate in
municipalities to fall to 40% under GLOBE, while county and

TABLE 1 | Relative error values at the 5/50/95th percentiles across exposed states, counties, and towns under SRTM-1.

1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m 10 m

State Population RE 5% −0.8 −0.88 −0.87 −0.83 −0.79 −0.74 −0.68 −0.62 −0.57 −0.54

50% −0.21 −0.33 −0.40 −0.42 −0.41 −0.39 −0.33 −0.32 −0.28 −0.27

95% 1.02 0.41 0.05 −0.04 −0.03 −0.02 −0.04 −0.05 −0.05 −0.04

Pct under (%) 57 86 90 95 95 95 95 95 95 95

Land RE 5% −0.85 −0.83 −0.81 −0.79 −0.77 −0.72 −0.66 −0.62 −0.59 −0.55

50% −0.47 −0.49 −0.44 −0.40 −0.37 −0.34 −0.32 −0.30 −0.27 −0.25

95% 0.24 −0.04 −0.14 −0.14 −0.14 −0.13 −0.13 −0.13 −0.12 −0.11

Pct under (%) 86 100 100 100 100 100 100 100 100 100

Number of exposed states 21 21 21 21 21 21 21 21 21 21

County Population RE 5% −0.75 −0.86 −0.85 −0.86 −0.84 −0.79 −0.73 −0.7 −0.69 −0.7

50% −0.17 −0.41 −0.43 −0.43 −0.41 −0.37 −0.33 −0.30 −0.27 −0.23

95% 2.88 0.95 0.64 0.36 0.11 0.19 0.15 0.11 0.12 0.11

Pct under (%) 58 77 87 90 91 91 91 92 93 92

Land RE 5% −0.81 −0.83 −0.82 −0.79 −0.79 −0.8 −0.77 −0.78 −0.74 −0.72

50% −0.37 −0.45 −0.41 −0.42 −0.39 −0.37 −0.35 −0.33 −0.30 −0.27

95% 1.45 0.45 0.19 0.20 0.21 0.18 0.11 0.12 0.09 0.08

Pct under (%) 70 82 89 91 91 92 93 92 93 93

Number of exposed counties 151 180 204 218 231 240 255 265 271 277

Municipality Population RE 5% −0.88 −0.93 −0.93 −0.93 −0.91 −0.87 −0.83 −0.78 −0.77 −0.74

50% −0.19 −0.46 −0.48 −0.44 −0.41 −0.35 −0.3 −0.24 −0.19 −0.14

95% 4.73 1.73 0.89 0.60 0.49 0.27 0.17 0.12 0.10 0.07

Pct Under (%) 58 77 83 86 88 88 88 88 88 86

Pct Over (%) 41 22 16 13 11 11 9 9 8 8

Land RE 5% −0.89 −0.91 −0.92 −0.9 −0.89 −0.85 −0.81 −0.77 −0.75 −0.73

50% −0.33 −0.48 −0.47 −0.44 −0.4 −0.35 −0.3 −0.25 −0.21 −0.17

95% 2.84 0.94 0.46 0.37 0.25 0.21 0.14 0.11 0.07 0.05

Pct Under (%) 66 80 86 88 89 89 90 89 89 89

Pct Over (%) 33 19 13 11 10 10 8 8 7 7

Number of exposed municipalities 1459 686 1037 1306 1521 1729 1887 2018 2137 2251

This table also lists the percentage of places in which SRTM-1 is underestimating exposure, as well as the total number of exposed places. Some municipalities see 100% exposure

under both lidar and SRTM-1 (neither under- nor over-estimating), so the actual percentage of municipalities overestimating exposure is also included. Municipalities and counties in

which <1% of the total are exposed in either SRTM or lidar are not considered.
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TABLE 2 | Relative error values at the 5/50/95th percentiles across exposed states, counties, and towns under GLOBE.

1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m 10 m

State Population RE 5% −0.35 −0.63 −0.65 −0.64 −0.61 −0.55 −0.54 −0.48 −0.44 −0.44

50% 1.54 0.28 0.21 0.19 0.16 0.09 0.08 0.06 0.03 0.02

95% 5.19 2.80 1.21 1.09 0.79 0.55 0.35 0.28 0.22 0.33

Pct Under (%) 19 33 33 38 33 33 38 43 43 43

Land RE 5% −0.73 −0.66 −0.62 −0.60 −0.60 −0.58 −0.53 −0.48 −0.45 −0.40

50% −0.16 −0.40 −0.19 −0.12 −0.10 −0.08 −0.07 −0.06 −0.06 −0.06

95% 0.83 0.44 0.37 0.41 0.28 0.21 0.18 0.2 0.21 0.21

Pct under (%) 57 62 67 57 57 67 62 62 62 62

Number of exposed states 21 21 21 21 21 21 21 21 21 21

County Population RE 5% −0.62 −0.80 −0.78 −0.74 −0.74 −0.73 −0.70 −0.72 −0.69 −0.63

50% 1.52 0.50 0.21 0.26 0.18 0.11 0.07 0.04 0.03 0.02

95% 12.03 5.39 4.21 3.91 2.87 2.37 2.04 1.75 1.74 1.83

Pct under (%) 17 29 33 34 31 31 31 34 33 33

Land RE 5% −0.81 −0.82 −0.82 −0.76 −0.74 −0.72 −0.69 −0.67 −0.62 −0.56

50% 0.07 0.02 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00

95% 5.20 2.08 1.27 0.89 0.76 0.6 0.63 0.53 0.57 0.51

Pct under (%) 46 48 49 47 44 47 48 45 46 45

Number of exposed counties 216 237 256 265 271 278 282 289 298 303

Municipality Population RE 5% −0.61 −0.8 −0.78 −0.76 −0.76 −0.77 −0.72 −0.72 −0.73 −0.68

50% 2.20 0.51 0.12 0.04 0.01 0.00 0.00 0.00 0.00 0.00

95% 27.2 11.2 9.90 8.39 5.57 5.49 4.64 4.20 3.67 3.31

Pct under (%) 14 23 27 27 26 27 27 27 27 27

Pct over (%) 85 75 68 63 60 53 50 46 43 40

Land RE 5% −0.75 −0.82 −0.81 −0.8 −0.79 −0.77 −0.75 −0.75 −0.75 −0.69

50% 0.92 0.23 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00

95% 13.97 7.25 5.87 4.43 3.29 2.80 2.58 2.18 1.96 1.72

Pct under (%) 23 30 35 35 33 33 33 32 33 32

Pct over (%) 76 68 61 58 56 52 49 47 43 40

Number of exposed municipalities 1302 1617 1869 2069 2216 2365 2468 2556 2635 2710

This table also lists the percentage of places in which GLOBE is underestimating/overestimating exposure, as well as the total number of exposed places. Some municipalities see

100% exposure under both lidar and GLOBE (neither under- nor over-estimating), so the actual percentage of municipalities overestimating exposure is also included. Municipalities and

counties in which <1% of the total are exposed in either GLOBE or lidar are not considered.

state overpredict population exposure in 65 and 57% of cases,
respectively.

ERROR VARIABILITY

In Figure 2, we also see that both global elevation datasets
produce exposure estimates of highly variable error. In
Table 1(SRTM-1) and Table 2 (GLOBE), we aggregate these
exposure error results across each subnational spatial scale. As
municipalities and states clearly represent the high and low
ends of error variability in both DEM’s, we focus on these
two spatial scales in this discussion, and we note that error
variability at the county level tends to fall between these two
extremes.

We see that at 1m, even across states, 90% of population
exposure errors fall between –80 and 102% under SRTM-1, and

between −35 and 519% under GLOBE. Across municipalities,
this variability is worse, with between−88 and 473% error under
SRTM-1, and between –61 and 2720% error under GLOBE.

This variability shrinks at higher water elevations, particularly
under SRTM-1, which at 3m produces errors across states
between −87 and 5%. However, variability across municipalities
under SRTM-1 remains relatively high, between −92 and 89%,
while error under GLOBE falls between −65 and 121% across
states, and between−78 and 990% across municipalities.

At 10 m, under SRTM-1, error variability drops even further
across states (−54 to −4%) and municipalities (−74 to 7%).
However, while GLOBE experiences smaller bias in exposure
at 10 m, the error spread in both states (−44 to 33%), and
municipalities (−68% to 331%) is much higher than SRTM-1,
making GLOBE a less reliable option, especially at smaller spatial
scales.
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TABLE 3 | Population and Land exposure relative error for the contiguous USA (omitting VA and RI) under SRTM-1 and GLOBE.

1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m 10 m

SRTM-1 population RE −0.31 −0.60 −0.61 −0.57 −0.51 −0.45 −0.38 −0.32 −0.28 −0.24

SRTM-1 land RE −0.51 −0.50 −0.50 −0.46 −0.43 −0.39 −0.36 −0.34 −0.31 −0.28

GLOBE population RE 1.34 0.35 0.20 0.11 0.06 0.04 0.03 0.01 0.00 0.00

GLOBE land RE 0.19 0.17 0.10 0.07 0.04 0.01 0.01 0.00 −0.01 0.00

NATIONAL ERROR ASSESSMENT

Table 3 presents a detailed summary of national-scale error
analysis of population and land for both SRTM-1 and GLOBE.
We see that at every flood level and for both variables, SRTM-1
underestimates exposure. At 1 m, SRTM-1 estimates 31% fewer
people exposed than lidar, while at 2 and 3 m, this difference rises
to over 61%. Rising water heights see shrinking error values, and
by 10 m, SRTM underestimates exposure by just 24%. Analysis
of land produces similar results, with SRTM estimating 50% less
exposure than lidar between 1 and 3 m, and 28% lower by 10 m.

However, we again find GLOBE overestimates national
population exposure at the lower water levels, with values over
130% higher than lidar at 1 m. Between 2 and 4 m, GLOBE error
drops rapidly to 11%, and produces estimates nearly identical
to lidar above 8 m. GLOBE performs noticeably better in land
exposure analysis, overestimating by only 20% at 1 m, and nearly
zero error above 5 m.

GLOBE’s excellent performance across the US as a whole
at flood heights >5m could be attributed to the wide spatial
scale, its high quality data source in the US (Digital Terrain
Elevation Data), as well the bare-earth classification properties
of this DEM, resulting in minimal elevation (and thus exposure)
bias. However, we note that GLOBE’s relative success in the
US would not likely translate to most of the rest of the world,
due to variable data sources and larger known errors. As such,
SLR exposure analysis using GLOBE is probably only useful in
those countries with elevation sources of known high quality,
and is inappropriate for exposure analysis comparing multiple
countries. Additionally, as we have seen, smaller-scale locations,
including states, generally perform worse under GLOBE than
SRTM-1.

CONCLUSIONS

At any scale, using SRTM in sea level rise exposure analysis
is highly likely to underestimate true vulnerability—especially
at water surface levels of 2–3 m. For example, at 2m flood

height, SRTM-1 underpredicts population exposure by a factor
of over 2.5, as compared to estimates produced by using NOAA’s
more accurate Coastal Lidar. This error is most likely explained
the presence of vegetation and urban development causing
bias in SRTM’s surface measurements. That said, increasing
the flood height shrinks this error and its variability across
smaller spatial scales to more reasonable levels, and may
provide lower bounds of exposure in individual nations and
municipalities globally. However, this also implies that global

coastal threats may be even more damaging than what the
recent literature suggests, especially at low elevations. While
GLOBE may produce acceptable results at the wide spatial
scales and high water elevations, it can only be expected to
perform this well across 1/3 of the earth’s land surface, where
the highest quality data sources are used. In any other wider
global-scale or narrower municipality-scale sea level rise and
coastal flooding analysis, despite its nature of underestimating
exposure, SRTM is the most reliable DEM publically
available.
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