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Ice flows when gravity acts on gradients in surface elevation, producing driving stresses.

In the Isunnguata Sermia and Russell Glacier catchments of western Greenland, a

50% decline in driving stress along a flow line is juxtaposed with increasing surface

flow speed. Here, these circumstances are investigated using modern observational

data sources and an analysis of the balance of forces. Stress gradients in the ice

mass and basal drag which resist the local driving stress are computed in order to

investigate the underlying processes influencing the velocity and stress regimes. Our

results show that the largest resistive stress gradients along the flowline result from

increasing surface velocity. However, the longitudinal coupling stresses fail to exceed

15 kPa, or 20% of the local driving stress. Consequently, computed basal drag declines

in proportion to the driving stress. In the absence of significant resistive stress gradients,

other mechanisms are therefore necessary to explain the observed velocity increase

despite declining driving stress. In the study area, the observed velocity—driving stress

feature occurs at the long-term mean position of the equilibrium line of surface mass

balance. We hypothesize that this position approximates the inland limit where seasonal

surface meltwater penetrates the bed, and that the increased surface velocity reflects

enhanced basal motion associated with these meltwater perturbations.

Keywords: ice sheet dynamics, basal processes, driving stress, force balance, Greenland ice sheet

INTRODUCTION

As the Greenland Ice Sheet (GrIS) loses mass at an accelerating rate (Shepherd et al., 2012),
understanding the flow dynamics that control mass flux and geometry of the ice sheet has
increasingly become a research priority. This has motivated the collection of new high resolution
datasets over the last decade of GrIS surface topography (e.g., Helm et al., 2014; Howat et al.,
2014), bed geometry (e.g., Bamber et al., 2013), and surface velocity (e.g., Joughin et al., 2010;
Rignot and Mouginot, 2012). While gravity drives the flow of ice, numerous other factors (e.g.,
basal topography and substrate, ice temperature, and rheology) also influence the basal sliding and
deformational motion of the ice sheet in response to gravitational forcing. These new datasets of
the ice sheet’s physical domain have allowed the driving stress and velocity fields to be quantified
with increasing accuracy, and thus facilitate investigation of additional processes and conditions
which influence ice motion.

Establishing those processes driving ice flow through simple comparison of driving stress with
surface velocity can be complicated by viscous stresses within the ice column. These stresses resist
the transmission of driving stress to the bed by redistributing it to neighboring regions. The
magnitude of these internal stresses has been found to be substantial over length scales reaching
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several ice thicknesses (e.g., Price et al., 2002; van der Veen et al.,
2011). Consequently, the stress regime near the ice sheet base,
where deformation and sliding are concentrated, can deviate
significantly from the driving stress. Where observations are
sufficiently resolved, the magnitude of resistive stress gradients
can be estimated computationally by a force budget. Given
knowledge of ice temperature and geometry, the computed
spatial gradients in surface velocity yield column-averaged
longitudinal and lateral resistive stresses. Gradients in these
stresses determine the fraction of driving stress that is taken up
in the ice column, with the remainder being locally transmitted
to the ice sheet bed.

The southwest region of the GrIS (Figure 1) was previously
identified as having anomalously low driving stress compared to
the bulk of the ice sheet (Bamber and Layberry, 2001; Layberry
and Bamber, 2001) (driving stress calculations are discussed
below). Available data at the time of this identification indicated
increasing bed elevations and reverse bed slopes toward the
ice margin, which were interpreted to be the reason behind
an extensive “ice plain” and lower driving stress in the region
(Layberry and Bamber, 2001). Low driving stress also extends
north to the Isunnguata Sermia and Russell Glacier catchments
(boxed area in Figure 1), but new airborne-based surface and
bed topography indicate that increasing bed elevations there are
absent (Figures 2, 3).

FIGURE 1 | Driving stress calculated over the GrIS. Surface slopes are

calculated over a 4 km length scale as described in the text. Black box

outlines study area displayed in Figure 2.

For the Isunnguata Sermia and Russell Glacier catchments,
high-resolution datasets of ice geometry, surface velocity, and
borehole measurements of in situ ice sheet temperature
(Harrington et al., 2015) are all available. Hence, this
uniquely well-characterized region permits a well-constrained
investigation of the factors behind a low driving stress and
its relation to the observed surface motion. Here, motivated
by incomplete explanation of the driving stress anomaly, we
investigate the surface velocity profile accompanying the driving
stress decline, and evaluate a force balance to assess the role
of resistive stress gradients in modulating the transmission of
low driving stress to the bed. We conclude by discussing the
implications of the observed surface velocity and low driving
stress for the deformational and basal sliding components of
flow in the study area.

STUDY AREA AND DATASETS

The study region in W-SW GrIS includes the Isunnguata
Sermia and Russell Glacier catchments (Figure 2). These land-
terminating outlet glaciers have been a focus of field-based
research investigating subglacial hydrology (e.g., Chandler et al.,
2013; Meierbachtol et al., 2013), lake drainage dynamics (Doyle
et al., 2013; Dow et al., 2015), and meltwater influences on ice
motion (e.g., Palmer et al., 2011; Bartholomew et al., 2012).
The inland extent of the study domain reaches elevations of
∼2300m, and is selected based on the fidelity of InSAR velocity
measurements, which degrade toward the ice sheet interior where
control points are either based on balance velocity or are 100 s
of km away from bedrock reference points (Joughin et al.,
2010).

The relatively high density of observations made from
remote (e.g., airborne-based radar) and in situ (e.g., borehole
measurements) techniques uniquely position the study area for
force balance analysis. InSAR-derived surface velocities from
Joughin et al. (2010) define motion over the study reach during
the winter period between Dec 1, 2008 and Feb 28, 2009, and are
provided at 500m spatial resolution. The digital elevation model
(DEM) of bedrock topography by Bamber et al. (2013) is used.
This DEM is informed by airborne radar flightlines that were
collected at dense spacing (∼500m) through much of our study
area as part of the IceBridge mission (Allen et al., 2010), and is
posted at 1 km resolution.

We use the CryoSat-2 DEM (Helm et al., 2014) to define
the ice sheet surface over the study area. It is posted at
1 km resolution. This surface DEM is advantageous in that it
is computed from data collected using a single methodology
(satellite radar altimetry) over a relatively short time period
(2010–2012). This limits uncertainty arising from stitching
together multiple datasets which were collected using different
methods and over long time periods (e.g., the GIMP dataset).

Full depth ice temperature has been measured in multiple
boreholes drilled in the ablation zone of the study reach
(Harrington et al., 2015). In our force balance calculations we
use a constant temperature of −10.2◦C, which derives from the
vertically averaged temperature measured in the study domains

Frontiers in Earth Science | www.frontiersin.org 2 September 2016 | Volume 4 | Article 87

http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive


Meierbachtol et al. West Greenland Force Balance

FIGURE 2 | Study area. Surface elevation contours come from CryoSat-2 (Helm et al., 2014), and are overlain on a Landsat 8 image from July, 2015. Blue line

locates the flow line used in Figure 8. Black dot locates the borehole yielding temperature data. Black lines identify the IceBridge transects presented in Figure 3.

FIGURE 3 | Surface and bed topography (black), and computed driving

stress (gray) along two IceBridge flightlines (A) and (B) (Allen et al.,

2010) which extend through our study area. Red lines represent smoothed

topographic profiles used to compute driving stresses. Dashed black line

marks the approximate onset of the decline in driving stress referenced

throughout the text. Locations of the flightlines are shown in Figure 2.

inland-most borehole (Figure 4), to determine the rate factor
(Equation 9). This borehole is located 45.5 km from the terminus
of Isunnguata Sermia (see Figure 2), where the ice thickness
exceeds 800m, but is still some 50 km down-flow from the
driving stress anomaly of interest (see Section Results). As a
result, the temperature value in our force balance calculations

FIGURE 4 | Temperature profiles in two boreholes, <20m apart, drilled

to the ice sheet bed (Harrington et al., 2015). Dashed black line represents

the pressure melting temperature, calculated using a Clausius Clapeyron slope

of 8.7× 10−4◦C m−1 for ice. Dashed gray line shows the average

temperature of −10.2◦C, calculated from the two profiles.

may be biased warm over the region of low driving stress
(we discuss the implications of this in the Supplementary
Material).
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FORCE BALANCE

We implement the force balance technique developed by van
der Veen and Whillans (1989a), which recasts the stress balance
through the ice column in terms of its resistive and lithostatic
components. In the direction of flow (x), gravitational driving
stress (τd) is resisted by viscous stress gradients associated with
longitudinal coupling (τl) and lateral shear (τt) to yield the
resulting friction along the bed (τb):

τd = τb + τl + τt· (1)

The driving stress is calculated as:

τd = −ρigH
∂S

∂x
, (2)

where ρi is ice density, g is gravitational acceleration, H is ice
thickness, and S is the surface elevation. Driving stress values are
positive in the downstream direction. Viscous stresses acting in
the same direction are also denoted positive when we assess the
fraction of driving stress taken up by internal ice dynamics.

Calculation of the resistive terms τl and τt requires knowledge
of ice temperature and stresses through the ice column that
are poorly constrained. Where basal sliding constitutes a
substantial fraction of observed surface motion, strain rates
at depth are reasonably reflected by surface values, and the
assumption of depth-invariance may be invoked (Price et al.,
2002; O’Neel et al., 2005; van der Veen et al., 2011). Modeling
and observation suggest that this assumption is satisfied in our
study area, particularly where velocity errors are small (see
Supplementary Material). We therefore adopt the assumption of
depth-invariance in this study. In this isothermal block model,
viscous terms are written as:

τl = −
∂

∂x

(

HRxx

)

(3)

and

τt = −
∂

∂y

(

HRxy

)

(4)

where y is the direction transverse to flow. Variables Rxx and Rxy
represent the vertically averaged horizontal resistive stresses, and
are expressed as:

Rxx = Bε̇
1
n−1
e

(

2ε̇xx + ε̇yy
)

(5)

and:

Rxy = Bε̇
1
n−1
e ε̇xy, (6)

where n is Glen’s exponent (assumed to equal 3) and strain rates
are calculated from surface velocity gradients:

ε̇ij =
1

2

(

∂Ui

∂xj
+

∂Uj

∂xi

)

i, j = x, y. (7)

The effective strain rate in Equations (5) and (6) is given by:

ε̇e =

[(

ε̇2xx + ε̇2yy + ε̇2zz

)

+ 2ε̇2xy

]1/2
, (8)

which computes the vertical strain rate under the continuity
condition ε̇xx + ε̇yy + ε̇zz = 0. Vertical shear is omitted
in Equation (8) following the depth-invariance assumption.
Vertical resistive stresses in Equation (5) are omitted under the
assumption that bridging effects are negligible over the length
scales considered (∼km). Vertical resistive stresses have been
found to alter basal stress to a minor degree (van der Veen and
Whillans, 1989b), particularly over grounded ice (Morlighem
et al., 2010), supporting this omission. Horizontal resistive
stresses in the ice are a function of the rate factor (B), which is
temperature-dependent and follows the Arrhenius relation:

B =

[

A0e
(−Q/RT)

]−1/n
(9)

where A0 is an Arrhenius constant, Q is the activation energy for
creep, R = 8.314 Jmol−1K−1 is the universal gas constant, and T
is the vertically averaged ice temperature.

Computational Methods and Selection of
Smoothing Kernel
Input datasets must share a consistent spatial grid for force
balance calculations. To achieve this, the velocity field is
resampled at 1 km spacing to match the coarser DEMs. The
bedrock DEM is projected to the same spatial projection
as the velocity and surface elevation products, and linearly
interpolated so that all datasets are populated along the same
spatial coordinates. The bed DEM is then subtracted from the
surface DEM to yield ice thickness. The force balance must be
computed over a coarser resolution than 1 km in order to reduce
the propagation of input data uncertainties. To achieve this,
each dataset is smoothed using a two dimensional triangular
smoothing window of size 4 × 4 km, and resampled at 4
km spacing to generate final datasets for the force balance
calculations. The resulting ice thickness, surface slope, and
surface speed are displayed in Figure 5.

Each computed force balance term has a corresponding
uncertainty that is a function of the input dataset uncertainty
and length scale over which the spatial derivatives are computed
(van der Veen, 2013). We use this error to inform the length
scale of the smoothing window. Force balance components
are computed using centered differences to calculate spatial
derivatives over the resampled and smoothed data. We calculate
uncertainty propagation following methods reported by Taylor
(1997). Individual force balance and error components are
computed as vectors on the x- and y-axes defined by the
spatial projection, and then rotated to the local flow direction
(which closely follows the projection x-axis) following established
methods (van der Veen, 2013). Sensitivity testing indicates that
the uncertainty in computed basal drag decreases to <20% of the
averaged basal drag values when the gridded data are resampled
over 4 km (Figure 6). Input data are thus resampled over this
length scale.
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FIGURE 5 | Ice thickness (A), surface slope (B), and surface speed (C)

fields used for the force balance calculations after pre-processing as

described in the text.

FIGURE 6 | Mean basal drag uncertainty over the study domain (△τb)

displayed as a fraction of the mean computed basal drag (τb) for

different smoothing window scales.

RESULTS

Results from the force balance analysis over the study area
are displayed in Figure 7. Figure 8 presents the force balance

components along the flowline shown in Figure 2. This flowline
is chosen because it terminates in the Isunnguata Sermia outlet.
We have no reason to assume it is less representative than other
flowlines through the study area.

Driving Stress and Surface Velocity
With the exception of diminishing driving stress from thin ice
near the margin, calculated driving stress across the study area is
between ∼50 and 120 kPa (Figure 7A). Along the flowline from
the interior toward the ice margin, the driving stress shows an
increasing trend from 75 kPa at 250 km to 100 kPa at 115 km
(Figure 8B). Over the subsequent 20 km, driving stress falls by
50% from 100 kPa to a minimum of 50 kPa at 95 km. Away
from the ice sheet edge, this marks the lowest driving stress
along the entire flowline. Following the driving stress minimum,
values slowly increase to a maximum of 140 kPa at 15 km before
dropping near the ice sheet margin.

Surface flow speed generally increases from the interior
toward the ice margin (Figures 5C, 8A). A brief plateau in speed
at 110 km along the flowline is followed by a sharp increase to a
peak value of 105m a−1 ∼50 km from the margin. The onset of
the surface speed-up is coincident with declining driving stress
and, with the exception of the ice sheet margin, the lowest driving
stress values of the profile at 90–100 km align with the greatest
increase in surface speed (Figure 8).

Force Balance
Lateral drag over the study area is small, and does not exceed
15 kPa in magnitude (Figure 7B). Gradients in longitudinal
stresses (τl) are larger in magnitude than lateral drag.
Fluctuations in τl are small in the interior, and increase in
magnitude toward the ice sheet margin, locally reaching values
between−25 and 25 kPa (Figure 7C).

Along the flowline, the largest positive τl are coincident with
the acceleration in surface speed at 100 km. Here, τl reaches
values that are ∼20% of the local driving stress, or 15 kPa
(Figure 8D). Positive longitudinal stress gradients subsequently
decline toward the ice margin, trending to negative values
that approach −20 kPa at 60 km. Negative τl acting against the
direction of driving stress correspond to a change in curvature of
the velocity profile from concave to convex.

Computed with our chosen averaging length scale,
resistive stress components are no greater than ∼20% of
the corresponding driving stress anywhere on the flowline.
Consequently, the deviations between basal drag and driving
stress remain small (e.g., Figures 8B,E). Similar to the driving
stress decline along the flowline, basal drag decreases by nearly
50% from 82 to 44 kPa between 103 and 95 km. Surface speed
increases from 54 to 65m a−1 over the same distance.

DISCUSSION

Force Balance and Surface Velocity
The main conclusion from the force balance calculations is that
basal traction balances most of the driving stress, including in the
anomalous region where declining driving stress and increasing
surface speed coincide. In ice stream settings, coincidence of
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FIGURE 7 | Force balance calculation results across the study domain

showing driving stress (A), lateral drag (B), longitudinal stress gradient

(C), and the basal drag residual (D). Black line shows the approximate long

term ELA (1553m elevation) for reference. Note the difference in scale

between resistive terms (B,C), and driving stress (A) and basal shear (D).

declining driving stress, and increasing surface velocity has been
used to define the onset of streaming flow, where a weak bed
supports limited basal shear stress (e.g., Alley andWhillans, 1991;
Bindschadler et al., 2001). The weak bed promotes increased
sliding that draws down the ice surface, reduces surface slopes,
and lowers driving stresses. The low resistive stress gradients
we compute suggest that this behavior is not unique to marine
terminating ice streams, but also occurs in our study area which
terminates on land.

This interpretation, however, hinges on the assumption that
ice sheet velocity and geometry are in balance over similar time
scales. The datasets used in the force balance analysis span a
period of a couple of years (assumptions and limitations of the
force balance results are detailed in the Supplemental Material).
While the datasets are self-consistent over this period, each likely
reflects conditions that are unchanging over a different time scale.
Observations show that the study area is not undergoing rapid
thinning (Pritchard et al., 2009; Helm et al., 2014), suggesting
that the surface geometry has been in a relatively steady state over
perhaps many decades. However, while the velocity observations
in the study area are consistent over multiple years, large changes
in ice motion have been observed elsewhere on the ice sheet over
time periods much shorter than the decadal scale that is likely
represented by the surface geometry (Rignot and Kanagaratnam,
2006; Joughin et al., 2010). While these changes are generally
limited to marine terminating regions, whether the observations
in our study area can be interpreted to reflect ice dynamics over

a longer time scale that is consistent with the surface geometry
remains questionable.

This caveat complicates the interpretation of relationships
between driving stress and velocity not just at our study area,
but also in any study assimilating ice geometry and velocity into
a physical modeling framework. Nevertheless, the unexpected
finding that a substantial decline in driving stress is coincident
with increasing surface velocity over such a large region (∼20 km
wide) begs explanation. We next explore processes that could
explain this observation, bearing in mind the above caveat.

Enhanced Internal Deformation
Both direct observations and modeling indicate that in
the study areas ablation zone the contribution to ice flow
from internal deformation is secondary (see Supplementary
Material). Nevertheless, in an effort to explore all possible
scenarios, we assess whether enhanced internal deformation
could accommodate the observed speed-up, despite declining
driving stress. A zeroth order assessment can be achieved
by assuming that deformation occurs by laminar flow, and
estimating the minimum degree of softening necessary for ice
deformation to maintain a constant velocity under reduced
driving stress. Integrating the deformation rate through an ice
column of thicknessH yields the formula for surface velocity (U):

U =
2EA

n+ 1
Hτd

n (10)

where E is an ill-constrained enhancement factor
accommodating rheological changes and A is related to
Equation (9) by A = B−n. In the absence of thickness changes,
Equation (10) requires that the product of rheological factors E
and A increase >6 fold to accommodate the documented drop
in driving stress.

Achieving the required six-fold softening through warmer
ice alone requires temperature changes that are unsupported
by data. For instance, ice at −15◦C must warm by 11◦C in
order to achieve the required softening, but this is contrary
to borehole observations which show temperatures are still
much colder lower in the ablation zone (Harrington et al.,
2015). A more modest temperature increase (e.g., 5◦C) would
require doubling of the enhancement factor. Liquid water-
induced softening through growth of a temperate basal layer is
not physically viable, considering that a thick temperate layer
is absent in the measured profile 50 km from the observed
low driving stress (Harrington et al., 2015). Other factors
influencing ice rheology (e.g., related to impurity content or
crystal orientation) can cause E to change by a factor of two
or more with ice depth (e.g., Shoji and Langway, 1984; Lüthi
et al., 2002), but changes of a similar magnitude over the
necessary horizontal length scales (∼10 km) lack observational
or conceptual basis.

Enhanced Basal Slip
If enhanced deformation is not a viable explanation, then
the observed acceleration must result from enhanced basal
slip. Knowledge of the thermal state of the ice-bed interface
far from the ice sheet margin is lacking. However, there
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FIGURE 8 | Force balance calculation results along the flowline presenting driving stress (B), lateral drag (C), longitudinal stress gradient (D), and

basal drag (E). Surface speed is presented in (A) for reference. Shaded regions represent the computed uncertainty for each force balance component. Dashed

black line locates the approximate long term ELA (1553m elevation) for reference.

is broad agreement by numerical models that temperate
basal conditions extend well inland of the ELA at our
study area (Seroussi et al., 2013; Meierbachtol et al., 2015;
Poinar et al., 2015), despite evidence of low geothermal heat
flux (Meierbachtol et al., 2015). Consequently, it is unlikely
that increased basal slip results from a frozen to temperate
transition.

Assuming that temperate basal conditions extend above the
ELA at our study region, the increased slip may result from a
reduction in bed strength. If the basal substrate is composed
of subglacial till, weakening must occur through changes in
pore pressure and water saturation (Cuffey and Patterson,
2010). Alternatively, if the bed is predominantly hard bedrock,
a redistribution of stresses to smaller contact patches would
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increase basal motion. In either scenario, a change in the amount
or distribution of water at the bed is the most likely forcing
mechanism.

Routing of surface water to the bed is well established lower
in the ablation zone, but its inland extent remains unclear.
Surface crevasses provide one mechanism facilitating meltwater
transport. It has been suggested that conditions promoting
crevasse formation are limited to below ∼1400m (Clason et al.,
2015) to 1600m elevation (Poinar et al., 2015) in the study area.
Meltwater-induced seasonal variations in ice motion have been
observed to elevations reaching ∼1500–1600m (Bartholomew
et al., 2011; Palmer et al., 2011). Given this evidence, the long
term measured ELA of 1553m (van de Wal et al., 2012) appears
to serve as a plausible limit of the inland extent of seasonal
surface meltwater routing to the bed. Its location also aligns
with the greatest rate of velocity change along the flowline
(Figure 8), suggesting that the increase in velocity is related to
the introduction of surface meltwater to the bed. If true, the fact
that the velocity observations were collected during the winter
period implies that the enhanced slip persists beyond the melt
season.

Although the long term ELA aligns closely with accelerating
velocity and declining driving stress, it has exhibited large
variability over the past >20 years. Observational records along
the nearby K-transect have shown that the annual ELA has
varied from ∼1400 to 1800m (van de Wal et al., 2012). If the
surface velocity and the ice sheet geometry are in a state of
balance and reflect steady state flow dynamics over a decadal
time scale across the study area, this implies that increased rates
of sliding are sufficiently insensitive to seasonal variations in
meltwater input so as to produce the observed ice geometry.
Exactly why this is so is an intriguing question of basal hydrology
beyond the scope of this paper. However, we note several factors
which are perhaps relevant. First, owing to long travel paths
(>100 km), and thick ice facilitating creep closure, the basal
drainage system likely exhibits a high degree of isolation this
far from the ice margin. Second, while the hydraulic potential
field does not indicate a closed basin facilitating long term melt
storage (see Supplementary Figure 2), the computed hydraulic
gradient driving water flow is small due to the low surface slope.
Coincident with the reduction in driving stress along the flowline,
the hydraulic gradient declines in magnitude from nearly 80 Pa
m−1 to <40 Pa m−1. And third, the integration of basally
generated melt from upstream temperate bed regions provides
a continued source of basal water that introduces a buffering
capacity against interannual variations in surface meltwater flux.
These three factors may underpin the insensitivity of basal sliding
to seasonal variations in meltwater input by modulating water
flow variability at the bed.

CONCLUSIONS

Available datasets of ice geometry and surface speed indicate an
unexpected relationship between gravitational driving stress and
ice speed in a land terminating region of the western GrIS. Nearly
100 km from the ice sheet margin, driving stress declines by 50%

over 20 km. This decline is colocated with an increase in surface
speed that is the largest observed along a flowline through the
well-studied Isunnguata Sermia drainage catchment. This finding
shows that such behavior is not unique to ice stream onset in
marine-terminating settings. Through force balance calculations,
the effects of resistive stress gradients inmodulating driving stress
transmission to the bed are assessed. Lateral drag is found to be
negligible over this interior region of the ice sheet. Longitudinal
stress gradients locally reach 20% of the driving stress, but the
declining driving stress is largely taken up by basal drag.

The surface speed for a given gravitational driving stress is
a sensitive function of the properties of the ice and processes
governing ice flow. At our study area, we find that possible
explanatory mechanisms for increased surface motion despite
low driving stress are limited to those associated with enhanced
basal sliding. We hypothesize that this reflects a change in basal
processes associated with the configuration and volume of water
at the bed, rather than a transition from frozen to temperate basal
conditions. This is supported by the colocation of the surface
speed-up with the long term ELA in the study area, below which
seasonal routing of surface meltwater to the ice sheet bed is
likely.

The study area is defined by high ablation rates and
low accumulation, owing to the blocking of southwesterly
atmospheric moisture flow from the nearby Sukkertoppen ice cap
(Ohmura and Reeh, 1991), which combine to yield the highest
estimated ELA on the ice sheet (e.g., Reeh, 1991). At this elevation
the ice is relatively thick and flat, making the driving stress
sensitive to flattening from our hypothesized weakening of the
bed. In this way, the interplay of surface mass balance and ice
flow processes can generate unique driving stress and velocity
characteristics in this heavily studied region.
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