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Spatially explicit assessments of alien species environmental and socio-economic

impacts, and subsequent management interventions for their mitigation, require large

scale, high-resolution data on species presence distribution. However, these data are

often unavailable. This paper presents a method that relies on Random Forest (RF)

models to distribute alien species presence counts at a finer resolution grid, thus

achieving spatial downscaling. A bootstrapping scheme is designed to account for

sub-setting uncertainty, and subsets are used to train a sufficiently large number of

RF models. RF results are processed to estimate variable importance and model

performance. Themethod is testedwith an∼8× 8 km2 grid containing floral alien species

presence and several potentially exploratory indices of climatic, habitat, land use, and soil

property covariates for the Mediterranean island of Crete, Greece. Alien species presence

is aggregated at 16 × 16 km2 and used as a predictor of presence at the original

resolution, thus simulating spatial downscaling. Uncertainty assessment of the spatial

downscaling of alien species’ occurrences was also performed and true/false presences

and absences were quantified. The approach is promising for downscaling alien species

datasets of larger spatial scale but coarse resolution, where the underlying environmental

information is available at a finer resolution. Furthermore, the RF architecture allows for

tuning toward operationally optimal sensitivity and specificity, thus providing a decision

support tool for designing a resource efficient alien species census.

Keywords: downscaling, data analytics, alien species, hydro-ecological data, random forests, vascular plants,

Crete

INTRODUCTION

The rate at which species are being translocated by humans beyond their native ranges, through
a variety of pathways, has been accelerating (Essl et al., 2015). Alien species pose a grave risk to
biodiversity, ecosystem services, and human health, and their presence is an important constituent
of the global change that we currently face (Vilà et al., 2011; Simberloff et al., 2013; Katsanevakis
et al., 2014), hence there is an urgent need for targeted actions for prevention and mitigation.
Despite global efforts to tackle biological invasions, so far there is no sign of saturation in the
accumulation of alien species (Hulme et al., 2009; Tittensor et al., 2014; Seebens et al., 2017).

A better understanding of the factors controlling alien species introduction, initial dispersal,
establishment success, distribution, abundance, spatio-temporal dynamics, and invasiveness is
essential for the efficient prioritization of measures to prevent further introductions and mitigate
the impacts of invasive alien species (Byers et al., 2002; Thuiller et al., 2006). Reliable fine scale
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spatio-temporal information of alien species distribution at
large scales is thus crucial (Collingham et al., 2000; Giakoumi
et al., 2016). However, the spatial resolution of available data
often poses limitations in the analyses. For species distribution
data, spatial resolution and spatial extent are typically inversely
proportional (Collingham et al., 2000). The European Alien
Species Information Network (EASIN; Katsanevakis et al., 2015),
which has compiled the largest spatial dataset of alien species
distribution in Europe, reports species presence data at a 10 ×
10 km2 spatial resolution and for some species only at country
level. Such coarse resolution is often inadequate for the needs
of management and research, as data availability up to a point
determines the outputs of the analysis in several ways including
complexity, generality, utility, and predictive power (Evans et al.,
2014; Evans and Moustakas, 2016). Therefore, either more data
need to be collected or computational and statistical methods
could be used to increase the utility of readily available data and
the reliability of the analyses. To that end, accurate methods
for downscaling coarse spatial data can be extremely useful in
assessments of environmental and socio-economic impacts of
alien species and in management interventions for mitigation.

Based on the fundamental assumption that detectable
relationships exist between information across spatial scales,
spatial downscaling refers to the process and methodologies of
using coarse resolution input to infer finer resolution output.
Although, it has extensively been used in other scientific
disciplines (Trzaska and Schnarr, 2014), downscaling is not a
trivial process. Keil et al. (2013) lists four strictly computational
approaches that have been used to predict fine-gridded species
presence based on a coarse grid. Assumptions made by direct
and iterative approaches (Keil et al., 2013) are often criticized
for speculating similar species association with environmental
variables across scales (Menke et al., 2009). On the other hand,
point sampling and clustering approaches make assumptions
regarding habitat suitability within the coarse grid (Keil et al.,
2013). In their review, Trzaska and Schnarr (2014) distinguish
downscaling methods between the relatively straight-forward but
normality-limited linear methods (e.g., delta method, simple and
multiple linear regression, canonical-correlation analysis, etc.)
and the more versatile but data-intensive and extrapolation-
limited non-linear methods (e.g., analogmethod, cluster analysis,
artificial neural networks, self-organizing maps, etc.).

Since essentially spatial downscaling is largely based on
the inter-relationship between local and large-scale properties,
given the absence of fine scale alien species data, potential
environmental explanatory covariates available at the resolution
of the alien species, as well as at finer resolutions, could be used
to infer alien species presences at finer resolutions. While data
on alien species presences may be scarce, environmental data
may be readily available. Recent advances in remote sensing,
social networks, and digital technology resulted in the availability
of large spatially and temporally explicit datasets (Moustakas,
2017). Ecology, epidemiology, and biogeography need to employ
novel methods for big data analytics combing statistics and
computer science, as the analysis of such datasets requires
advancedmethods for compiling the data, their visualization, and
their analyses (Moustakas, 2017; Moustakas and Evans, 2017).

Furthermore, computational methods for data analytics and
simulation modeling are facilitated by the existence of increased
computer power (Moustakas and Evans, 2015).

Recently, methods that generate numerous classifier functions
and aggregate their output, widely referred to as “ensembles
methods,” have attracted wide interest. In this context, Random
Forest (RF) algorithms are ensembles of decision trees (Breiman
et al., 1984), each trained on a randomly sampled subset of
the available dataset, thus reducing the chance of overfitting
(Breiman, 2001). In the domain of ecology, RFs have been
applied for tropical forest carbon mapping using LiDAR (Light
Detection and Ranging)-based carbon estimates (Mascaro et al.,
2014), downscaling of global livestock census data (Nicolas et al.,
2016), occurrence of fish species in relation to environmental
variables (Vezza et al., 2015), forest health and vitality in relation
to climate and air pollution parameters (Vitale et al., 2014),
classification of tree species using an ensemble of remote sensing
data (Naidoo et al., 2012), and vegetation spatial distribution
assessment under current and future climate scenarios (Prasad
et al., 2006). Especially regarding alien species, RFs have been
used for mapping of presence using spatial (Peerbhay et al.,
2016) or spatiotemporal (Dorigo et al., 2012) analysis of remote
sensing data, prediction of presence based on environmental
variables (Cutler et al., 2007; Jarošík et al., 2011), and invasion risk
assessment based on biogeographical and life-history variables
(Chen et al., 2015).

Here we showcase the applicability of spatial downscaling
alien species presences using data from vascular plant species
coupled with environmental, potential explanatory, covariates
comprised of climatic, soil, habitat, and land use indicators at
a finer resolution at the Mediterranean island of Crete, Greece.
Apart from investigating the potential of using the fine-resolution
environmental covariates as predictors for spatial downscaling
alien species presences, the developed methodology also assesses
the relevant importance of predictors for the downscaling process
as well as visualizing and quantifying their actual response on
alien species presences. Furthermore, considering an operational
framework for assessing presence, themethodology integrates the
use of a detection sensitivity threshold.

CASE STUDY

The Island of Crete
Covering an area of 8,700 km2, Crete is the largest and
most populated island of Greece, and the fifth largest in the
Mediterranean. According the Köppen classification, Crete has
a Mediterranean—Semiarid climate featuring long and dry
summers, and relatively wet and cold winters (Kottek et al., 2006).
Crete receives on average about 7.7 billionm3 of rainfall, of which
only and 10–15% produces runoff, while 68–76% evapotranspires
and 14–17% infiltrates (Koutroulis et al., 2016). The intense
tectonic history has formed the island’s complex topography
that ranges from sea level to 2,450 m, and is abundant in
small, ephemeral watersheds (Tsanis et al., 2011). This highly-
rugged terrain has been definitive for human development as
well as its spatial allocation (Koutroulis et al., 2016). Similarly,
this variability has spurred the development of the wide variety
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of biotopes present on the island (Sfikas, 1987), ranging from
coastal to alpine, and the reciprocal plethora of endemic and
rare species that constitute one of the 10 biodiversity hotspots in
the Mediterranean (Medail and Quezel, 1997) numbering 1,624
native and 47 introduced vascular floral species (Turland et al.,
1993). The importance of this biodiversity is highlighted by the
fact that over 30% of the island has been included in the Natura
2000 protected area network (Dimitrakopoulos et al., 2004).

Plant Data
Maps of presence-absence of vascular plant species distributions
in Crete were digitized from Turland et al. (1993) and its latest
supplement (Chilton and Turland, 2004). The island of Crete
and its surrounding islets were divided into 162 grid cells, each
covering an area of 8.25× 8.25 km2, following the grid cell size of
Turland et al. (1993). On each cell, the native, endemic, and alien
species richness was calculated. We used (Turland et al., 1993;
Chilton and Turland, 2004; and references therein) to define
native (nnat = 1,395) and endemic (nend = 174) species, and
the vascular plants from D’Agata et al. (2009) that are listed
in Chilton and Turland (2004) and Turland et al. (1993) were
used to define alien species richness. Only species present in at
least two cells were used (nalien = 47). Coarse-grid information
was estimated by aggregating this dataset by a factor of two,
thus reducing resolution to grid cells of 16.5 × 16.5 km2. The
spatial distribution of the original as well as the resampled data
regarding alien species presences are visualized in Figure 1. All
input variables and their ranges (min – max values within each
cell) are listed in Table 1.

Habitat Data
Habitat classification relied on the most detailed resolution
available of the CORINE Landcover (level 3, spatial resolution
100 m; EEA-ETC/TE., 2002), to calculate the richness and
percentage of every land cover class within every grid cell, using
Patch Analyst 5.1 within ArcGIS. In order to avoid potential
temporal deviance between habitat classifications and species
presences in cells, the last updated available supplement for the
flora of Crete published in 2008 (Chilton and Turland, 2004) and
the closest available time snapshot of the CORINE landcover for
Crete in 2010 were used. The classification process resulted in 29
habitat types, of which 9 agricultural, 7 artificial, and 13 natural.
We recorded habitat richness per cell as the number of different
land cover types present on each cell (total, artificial, agricultural,
and natural habitat richness) as well as percentage of cover (total,
artificial, agricultural, and natural % of cell cover).

Climatic, Soil, and Altitude Data
Climatic variables were derived fromWorldClim (Hijmans et al.,
2005) for Crete and surrounding islets. The original resolution
of the climatic data was 1 × 1 km2. In order to re-scale them
to 8.25 km and match them with the grid of the plant data, the
mean values of the 1 km data within the 8.25 km cells were
calculated and used. The climatic variables used were annual
mean temperature (Tempmean), annual mean temperature of
warmest quarter (Tempwarm), annual mean temperature of
coldest quarter (Tempcold), all in ◦C, annual mean precipitation

(Precipmean), precipitation of wettest quarter (Precipwet), and
precipitation of driest quarter (Precipdry), all in mm year−1. Soil
data were derived from SoilGrid (Hengl et al., 2014) and rescaled
from 1 to 8.25 km as the climatic data. The soil variable used
was soil richness in the cell (Soildiv) derived as the number of
different soil types occurring within each cell. The indices of
elevation recorded were the mean of all elevation values within
the cell (Alt) and the range of elevation within the cell (Alt range)
both in meters.

METHODOLOGY

Random Forests
Random Forests (RFs; Breiman, 2001) take advantage of boosting
(Schapire et al., 1998) and bagging (bootstrap aggregating;
Breiman, 1996a) of the Classification And Regression Tree
(CART; Breiman et al., 1984) model, and adapt a more
random but nevertheless more efficient node splitting strategy
than standard CARTs (Liaw and Wiener, 2002). In RFs, each
individual tree is developed after the following steps: (1) Given
a set of training data N, n random samples with repetition
(bootstrap) are taken as training set; (2) For each node of the
tree, M input variables are determined, and m≪M, variables are
selected for each node. The most important variable randomly
chosen is used as a node. The value of m remains constant;
(3)Each tree is developed to its maximum expansion.

RFs have been employed in a wide variety of classification
and prediction problems (Scornet et al., 2015; Cano et al.,
2017) as they are among the most effective computationally-
intensive algorithms to extract information from unstable
estimates (Scornet et al., 2015). They are especially well suited
for large, high-dimensional datasets, where problem complexity
and scale render direct discovery of a good model in a single
step impossible (Büchlmann and Yu, 2002; Kleiner et al., 2014;
Wager et al., 2014). The fact that RFs require tuning of only two
parameters (the tree population in each forest and the number of
input variablesm randomly selected at each node) for which they
are usually not very sensitive (Liaw and Wiener, 2002), and their
accuracy and competence when faced with scarce, multivariate
datasets of intricate structure (Scornet et al., 2015), have greatly
contributed to their popularity.

Similar to other data-driven approaches, RFsmay not perform
equally well when the task at hand is extrapolatory beyond
the range of the recovered predictor-predictand relationship
or involves scenario analysis (Daliakopoulos and Tsanis, 2016).
Furthermore, Strobl and Boulesteix (2007) showed that variable
importance measures of the original RF algorithm may be
biased due to differences among predictor structure and scale,
adding to the interpretability challenges of data-driven methods.
Nevertheless, an extensive data-driven model inter-comparison
by Fernández-Delgado et al. (2014) showed that they may be the
first weapon of choice for real-world problems.

Evaluation Criteria
Typically, CARTs error is estimated following the out-of-bag
(OOB) error R(D) of a selection of the input observations based
on bagging, otherwise an OOB sample D (James et al., 2013).
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FIGURE 1 | Original (Left) and resampled (Right) spatial distribution of alien species presence in Crete.

TABLE 1 | Environmental variables used as input for the estimation of alien

species presence.

Type Variable Value range

Ecological Habitat richness 2–16

Artificial habitat richness 0–9

Agricultural habitat richness 0–7

Natural habitat richness 1–9

Endemic species richness 0–54

Topographical Altitude 0–2,673 m

Altitude range 0–1,579 m

Climate Mean annual temperature 0–19.0◦C

Maximum annual temperature 17.1–26.0◦C

Minimum annual temperature 3.2–13.2◦C

Temperature range 11.9–13.9◦C

Mean annual precipitation 519–1,023 mm

Maximum annual precipitation 265–539 mm

Minimum annual precipitation 0–31 mm

Precipitation range 260–514 mm

Land use Natura % of cover 0–100%

Artificial % of cover 0–43%

Agricultural % of cover 0–100%

Natural % of cover 0–100%

Soil type richness 1–8

In RFs, for each tree t, prediction error of D is estimated
before and after randomly permuting the values of the j-th

variable, thus giving R
(

Dt
n

)

and R
(

D
tj
n

)

, respectively. Typically,

imbalanced datasets favor correct classification of the majority
class, nevertheless, RFs can account for this bias by adjusting the
voting cut-off from the default 1/c, where c is the number of
classes. This provides additional flexibility to the RF algorithm
(Ma et al., 2006) and allows for favoring sensitivity or specificity
to different classes. A variable can be considered a strong
predictor when permuting it increases the prediction error
(Gregorutti et al., 2017), therefore it’s importance IV can be
defined as:

IV
(

Xj, t
)

= R
(

D
tj
n

)

− R
(

Dt
n

)

(1)

The Mean Decrease in Accuracy (MDA) is estimated by
averaging this difference over all trees, and normalizing it by the
standard deviation of the differences. The more the accuracy of
the RF decreases due to the exclusion (or permutation) of a single
predictor, the more important that predictor is considered, and
therefore variables with a largeMDA are more important for data
classification.

Gini is one of the most encountered impurity functions,
providing a measure of the “goodness-of-split” for CARTs by
favoring splits that allocate a single pure node for the largest class
and the rest for the remaining classes (Breiman, 1996b). The Gini
index for a node t can be calculated as:

IG (t) =
c

∑

i 6= j

p (i|t) p
(

j|t
)

= 1−
c

∑

j

p
(

j|t
)2

(2)

where c is the number of classes and p (i|t), p
(

j|t
)

are the
estimated probabilities of classes i, j at node t (Cano et al., 2017).
In this context, Mean Decrease Gini (MDG) aggregates the Gini
gain over all splits and trees to assess the classifying capacity of
a variable (Friedman et al., 2009) and is thus a metric of the
homogeneity of nodes and leaves in the RF (Bluemke and Stepień,
2016).

MDA and MDG can rank each independent variable for its
effectiveness as a predictor of alien species richness, but don’t
show or quantify the actual positive, negative, humped, etc.
relationship between them. Nevertheless, this is an elementary
process under conditions of multiple acting variables (Häring
et al., 2012), such as cumulative human impacts. For this reason,
partial dependence plots (Friedman, 2001; Friedman et al., 2009)
can be used to depict the relationship of alien species presence
probability on each predictor after averaging out the effects of all
classification predictors (Cutler et al., 2007).

Finally, the Receiver Operating Characteristics (ROC) analysis
has been an indispensable tool for signal detection and diagnostic
systems. As documented by Pontius and Si (2014), ROC has been
employed in a wide range of applications requiring a threshold-
independent measure to compare predicted against observed
values. ROC plots have been previously considered in plant
ecology, both at a theoretical (Guisan and Zimmermann, 2000)
and applied (Manel et al., 2002; Wang et al., 2014) level as
effective indicators of model performance independent of the
threshold probability. Typically, ROC curves depict true positive
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rate (TPR), otherwise sensitivity, recall or hit rate, against true
negative rate (TNR), otherwise called specificity. In terms of
model estimates, TPR and TNR are defined as:

TPR = TP�P =
TP

TP + FN
(3)

TNR = TN�N =
TN

TN + FP
(4)

where T, F, P, and N stand for true, false, positive and negative,
respectively. The complementary values of TPR and TNR are
false negative rate (FNR), otherwise miss rate, and false positive
rate (FPR), otherwise fall-out or false alarm. Based on these
values, the Matthew’s correlation coefficient (MCC; Matthews,
1975), a reduction of the Pearson correlation coefficient for
binary variables (Baldi and Brunak, 2001), is a popular evaluation
criterion of machine learning performance (Bhasin and Raghava,
2004; Chen et al., 2004; Bao and Cui, 2005):

MCC =
TP × TN − FP × FN

√
(TN + FN) (TN + FP) (TP + FN) (TP + FP)

(5)

MCC has an advantage in imbalanced datasets where the
disparity in the number of presence and absence samples is
significant.

Random Forest Application
Experiments were developed using the latest (v4.6–12)
implementation of Breiman and Cutler’s original Fortran
code by Liaw and Wiener (2002) in R. While RFs can be trained
very efficiently and avoid overfitting (Breiman, 2001), predictions
and variable significance ranking are seldom the identical after
each random training, especially for small datasets. To account
for this uncertainty, a bootstrapping approach of training
multiple RFs is adopted. For each training iteration k, RFk is
presented with 70% of the dataset, sampled with replacement,
and the remaining is reserved for testing. Presenting only part
of the dataset to the RFs also simulates operational use where
only part of the study area is sampled at fine grid and the rest
is sampled at coarse-grid resolution. Furthermore, as subsets of
alien species presence and absence were imbalanced, training
was executed using a variable training cutoff, ranging from 0.1
to 0.9. The full code in R used for the analysis is provided in
Supplementary Material.

RESULTS

Importance and Gini
Mean decrease in accuracy (MDA) results as estimated from
bootstrap randomizations indicate that, apart from the coarse
resolution alien species presence, the percentage of natural cover
within each cell was the most important predictor of alien
species presence, followed by the endemic species richness,
altitude, minimum temperature, and altitude range within each
cell (Figure 2, left). From the ones explored here, the least
predictive in MDA were artificial habitat richness, temperature
range, habitat richness, the percentage of the surface area of
each cell within the Natura 2,000 protected area network, and

the soil type richness (Figure 2, left). In the latter cases, some
bootstrap samples have yielded negative results suggesting that
permuting these variables from the predictor vector increases
accuracy. Results in Mean Decrease Gini (MDG) are in general
agreement with those of MDA, also evaluating natural cover,
endemic species richness, and altitude as the most efficient
splitting variables (Figure 2, right). Agricultural cover replaces
minimum temperature for the MDG rating but both variables
score highly for both criteria. The least efficient node splits
according to MDG were performed by artificial habitat richness,
natural habitat richness, agricultural habitat richness, soil type
richness, and temperature range (Figure 2, right). Emphatically,
artificial habitat richness is the worst predictor for both metrics,
essentially boosting the noise in the dataset.

Partial Dependence Plots
Results from partial dependence plots among the most predictive
variables according to the MDA and MDG criteria indicate
that the percentage of natural cover has an overall positive
relationship with alien species richness, while the percentage of
agricultural cover has an overall negative relationship with alien
species richness (Figure 3). Altitude, and altitude range has an
overall positive relationship between alien species richness, mean
temperature has a negative relationship for larger temperature
values while mean annual precipitation and precipitation range
has a humped relationship with alien species richness (Figure 3).
Therefore, for the case at hand, in the event of a survey
priority may be given to low-temperature, elevated natural areas
with high topographic variability, far from agricultural use and
precipitation extremes. The percentage of each cell within the
Natura 2,000 protected area network has a positive relationship
with alien species richness (Figure 3), albeit this variable was
not within the most predictive of alien species richness based on
MDA or MDG.

As shown by the results, the bootstrapping method followed
herein is helpful for drawing a more robust conclusion,
particularly regarding the partial dependence plots. Bootstrapped
predictors (solid black lines in Figure 3) are more stable, less
prone to overfit and more inclusive than single experiment
predictors. This becomes obvious in the Mean Temperature plot
of Figure 3, where the red line representing an OOB sample does
not cover the entire range of temperature values in the dataset.
As low temperatures are not common in the dataset, the OOB
estimation of dependence does not always include these values.
Using an additional layer of bootstrapping ensures that the full
range of values is explored.

Uncertainly and Risk Assessment
True negative detection rates (TNR; not detecting alien species
in cells where alien species are not present) declines with an
increasing cut-off rate while true positive detection rates (TPR;
detecting alien species in cells where alien species are present)
increases with an increasing cut-off rate (Figure 4). MCC values
indicate a strong positive relationship at cut-offs between 0.2
and 0.5 and are otherwise acceptable correlation. When cut-off
increases TNs decrease and TFs increase, therefore more alien
species can be detected but by being more exhaustive more false
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FIGURE 2 | Distribution of Mean Decrease in Accuracy (MDA) and Mean Decrease Gini (MDG) estimated from the bootstrap runs.

FIGURE 3 | Partial dependence plots for selected independent variables for random forest downscaling of alien species presence. Y-axis is on the logit scale. Here

3rd degree polynomial splines (solid black lines) are fitted over the output the Monte Carlo runs (gray points). Red lines connect points from a single random sample of

the bootstrap experiment.

alarms are also generated. When cut-off remains low, less risk is
taken with surveying resources but a significant fraction of alien
species presences is missed.

DISCUSSION

Aichi Target 9 of the Convention on Biological Diversity, states
that “by 2020, invasive alien species and pathways are identified

and prioritized, priority species are controlled or eradicated
and measures are in place to manage pathways to prevent
their introduction and establishment.” Prioritization of species,
pathways of introduction, and sites for management measures
is crucial for the implementation of Aichi Target 9, but the lack
of adequate data often compromises the ability of countries to
make substantial progress (McGeoch et al., 2016). Large scale,
high-resolution data on alien species distributions as well as the
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FIGURE 4 | Performance of Random Forest ensemble vs. training cut-off value. A nonparametric bootstrap is used to obtaining confidence limits (gray areas) and

bootstrap means for the Matthews correlation coefficient (MCC), True Negative Rate (TNR), True Positive Rate (TPR), without assuming normality.

FIGURE 5 | Distribution of alien plants in Europe on a 10 × 10 km2 grid

according to the available data in the European Alien Species Information

Network (EASIN; Katsanevakis et al., 2015). These spatial data, integrated in

EASIN, originate from the following sources: (1) the Global Biodiversity

Information Facility (GBIF; http://www.gbif.org/); (2) the Global Invasive

Species Information Network (GISIN; http://www.gisin.org); (3) the Regional

Euro-Asian Biological Invasions Centre (REABIC; http://www.reabic.net/);

(4) the European and Mediterranean Plant Protection Organization (EPPO;

http://www.eppo.int/); (5) the Norwegian Biodiversity Information Centre

(NBIC, http://www.biodiversity.no/) and (6) EASIN-Lit (http://easin.jrc.ec.

europa.eu/About/EASIN-Lit; Trombetti et al., 2013).

associated human and environmental pressures are necessary
when performing a spatially explicit quantitative environmental
and socio-economic evaluation and prioritizing interventions for
their mitigation and management (Hobbs and Humphries, 1995;
McGeoch et al., 2016).

It is only evident that substantial part of model output
reliability is based on model input validity, thus uncertainty
needs to be accounted for (Burgman et al., 2005). Therefore,
investment in conservation actions that have been supported by
poor field observations has a high probability of yielding poor
outcomes (McGeoch et al., 2016), regardless of the subsequent
decision process quality. Moreover, ecological processes are
often inherently non-linear, and potential explanatory covariates
include correlated independent variables, as well as interacting
effects.As shownhere,RFs canmakeuseof input variableswithout
prior scaling and knowledge of physical or other dependences
between predictors and predictands. RFs make no assumptions
regarding linearity, handle multiple correlated independent
variables well, quantify the importance of each predictor variable,
and through partial plots depict the contribution of each
independent variable. By assessing the importance of predictors
for the desired classification, RFs can effectively permute noisy
or otherwise unprofitable data. In addition to enhancing existing
model accuracy, this output can have operational value by
providing data/survey managers with hints about which data
recovery is worth investing in and which not.

Decision makers’ requirements for confronting
environmental risks and prioritizing mitigation measures at fine
grid scale are often much higher than what model limitations
and data availability allow. In these cases, a commonly used
approach is to employ statistical tools in order to infer impacts
at the required scale (Trzaska and Schnarr, 2014). It is crucial
to identify and evaluate the premises under which analyses and
techniques are used to deduce such output, and to recognize
their constraints and inherent uncertainties. In the case of
alien species presence downscaling, the approach relies on the
assumption that fine-resolution presence is a combination of a
coarse-grid presence assessment and environmental conditions,
and fine-grid environmental conditions. A common drawback
of such approaches is that inherent uncertainties from both
initial projections and downscaling procedure are not quantified
or adequately conveyed to decision makers and end-users,
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thus creating an over-confidence to the inferred results and
causing validation and updating of downscaled information to
be omitted.

Here we have performed spatial downscaling of alien species
presences using a relatively idiosyncratic and tricky dataset: the
spatial distribution of alien species is clustered, the spatial sample
size in terms of the number of cells of the grid of the study area
are limited (162 cells in total), and the study area is an island
meaning that there are edge effects, unequal land surface areas
in coastal cells than in mainland cells, and a very idiosyncratic
physical geography, as the island has over 50 mountain summits
above 2,000m (Vogiatzakis et al., 2003). Despite this, the method
worked well in the sense that environmental data/covariates
of finer scale than the ones of alien species presences can
produce finer resolution alien species presences spatial data,
and predicted presences or absences were verified and thus
the predictive accuracy is explicitly quantified. While additional
validation studies in different spatial contexts may highlight
other downscaling determining variables, this study outlines
an exploratory analysis for variable selection and operational
use where underlying environmental information is available
at higher resolution. In view of new, spatially and temporally
richer data sources (e.g., remote sensing products), results of
the present study can be greatly enhanced. Starting from a
cost-effective targeted survey design based on the proposed
downscaling approach, an improved alien species mapping result
can be reached. Beyond the downscaling process itself, a better
understanding of alien species distribution and environmental
factors that facilitate their presence on the island can be achieved.

Furthermore, the RF architecture allows for tuning toward
operationally optimal sensitivity and specificity, thus providing
a decision support tool for designing a resource-efficient alien
species census. For example, according to one of the most
updated alien species dataset in Europe, the distribution of
alien plant species appears to be highly clustered with some
countries such as the UK, Germany and France appearing to
contain the majority of alien species (EASIN dataset; see Figure 5
and references therein). This is unlikely to reflect the actual
situation; alien species sampling effort is not evenly distributed
among countries and even within countries some areas are better
sampled than others. Using the approach proposed here, areas
where alien species are not detected but are likely to occur and

thus detected once sampled as well as areas where alien species
are not detected but are unlikely to occur once sampled can be
identified. Additionally, the acceptable risk of false negative and
false positive occurrences, also reflecting field detection effort
and human labor, can be quantified. In this study, the predicted
variable was alien species richness of all alien species, however,
given the number of alien species records in the EASIN dataset,
the analysis performed here can be adapted at single species level.

CONCLUSIONS

The science needs for conducting research on biological
invasions and the policy needs for management prioritization
to prevent further introductions and to mitigate the impacts
of invasive alien species, include high-resolution spatiotemporal
data of species distributions. We herein demonstrated the
applicability of RFs for spatial downscaling, which is an effective,
advantageous and useful approach when environmental data are
available at better resolution than that of alien species’ spatial
information. In relation to other downscaling approaches, RFs
don’t rely on assumptions about environmental parameters and
their effect on alien species presence; rather these relationships
emerge from the classification process. This way, RFs can provide
a better understanding of facilitating and limiting factors of alien
species presence, both for research and management purposes.
By effectively downscaling coarse-grid alien presence, the RFs
can facilitate targeted actions for prevention and mitigation, thus
providing an operational exploration tool.
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