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The New Zealand conifers (20 species of trees and shrubs in the Araucariaceae,
Podocarpaceae, and Cupressaceae) are often regarded as ancient Gondwanan
elements, but mostly originated much later. Often thought of as tall trees of humid,
warm forests, they are present throughout in alpine shrublands, tree lines, bogs,
swamps, and in dry, frost-prone regions. The tall conifers rarely form purely coniferous
forest and mostly occur as an emergent stratum above evergreen angiosperm trees.
During Maori settlement in the thirteenth century, �re-sensitive trees succumbed rapidly,
most of the drier forests being lost. As these were also the more conifer-rich forests,
ecological research has been skewed toward conifer dynamics of forests wetter and
cooler than the pre-human norm. Conifers are well represented in the pollen record
and we here we review their late Quaternary history in the light of what is known
about their current ecology with the intention of countering this bias. During glacial
episodes, all trees were scarce south of c. 40� S, and extensive conifer-dominant forest
was con�ned to the northern third of the North Island. Drought- and cold-resistant
Halocarpus bidwillii and Phyllocladus alpinusformed widespread scrub in the south.
During the deglacial, beginning 18,000 years ago, tall conifers underwent explosive
spread to dominate the forest biomass throughout. Conifer dominance lessened in favor
of angiosperms in the wetter western lowland forests over the Holocene but the dryland
eastern forests persisted largely unchanged until settlement. Mid to late Holocene climate
change favored the more rapidly growing Nothofagaceae which replaced the previous
conifer-angiosperm low forest or shrubland in tree line ecotones and montane areas. The
key to this dynamic conifer history appears to be their bimodal ability to withstand stress,
and dominate on poor soils and in cool, dry regions but, in wetter, warmer locations, to
slowly grow thorough competing broadleaves to occupy an exposed, emergent stratum
where their inherent stress resistance ensures little effective angiosperm competition.

Keywords: conifer, history, New Zealand, glaciation, palyn ology, Holocene, ecology, niche

INTRODUCTION

In 1935, Lucy Cranwell—a young New Zealand researcher attending the VI International Botanical
Congress in Amsterdam—was invited to work with Lennart von Post on the pollen analysis of
peat sequences collected from southern New Zealand by the Swedish glaciologist Carl Caldenius
(Cameron, 2000). Their resulting paper on the postglacial history of the far south of the South
Island (Cranwell and von Post, 1936) was the �rst such e�ort for Australasia and provided
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a compelling narrative of vegetation and climate change thatwas
adopted by ecologists and Quaternary researchers alike. Several
decades later, palynologist Bill Harris—who had worked for Lucy
Cranwell—asked whether “. . . the two techniques, that of the
ecologist, and that of the palynologist can be mutually helpful. . . ”
(Harris, 1963), and this question remains relevant both in
New Zealand and elsewhere (Rull, 2010; Reitalu et al., 2014).
Palaeoecology and neoecology often appear to be proceeding
on quite di�erent tracks, publishing in di�erent journals and
addressing quite separate themes. The purpose of this paper is
to address Bill Harris's question with particular emphasis on
the history of the New Zealand conifers, and to assess progress
in integrating the two disciplines over the 80 years since Lucy
Cranwell and Lennart von Post's pioneering publication.

New Zealand conifers o�er an excellent opportunity to
integrate the rapidly developing understanding of their ecology
and biogeography with insights derived from nearly a century of
palynological research. The 20 conifer species in New Zealand
(Table 1; Figure 1) are represented by three distinct families:
Araucariaceae (1 genus, 1 species), Cupressaceae (1 genus,
2 species) and Podocarpaceae (including the synapomorphic
Phyllocladaceae; 8 genera, 16 species). Six of the most abundant
of the tree conifer species are easily identi�ed by their
pollen (Table 1); many of the conifer species are emergent;
and all are wind-pollinated. These traits have resulted in
a detailed representation of conifer taxa in the terrestrial
and marine pollen records from across the entire geological

TABLE 1 | New Zealand conifer species: ecological parameters.

Species Max Max age b Dist. Alt. range Moist Dryland Infertile Wetland-wet In alpi ne

height a forest forest soils soils ecotone

Agathis australis* 40 1,700 NN L-M • •

Libocedrus bidwillii 20 805 N, S M-S • •

Libocedrus plumosa 25 – NN L •

Dacrycarpus dacrydioides* 50 775 N, S, St L-M • • •

Dacrydium cupressinum* 40 1,200 N, S, St L-M • • •

Halocarpus bidwillii 5 280 N, S, St L-A • • • •

Halocarpus biformis 10 1,000 N, S, St L-S • • •

Halocarpus kirkii 25 – NN L • •

Lepidothamnus intermedius 15 247C N, S, St L-S • • •

Lepidothamnus laxifolius 0.1 Clonal N, S, St L-A • • •

Manoao colensoi* 15 800 N, S L-M • •

Phyllocladus alpinus 12 260 N, S Mostly M-A • • • • •

Phyllocladus toatoa 20 441 NN L-M • • •

Phyllocladus trichomanoides 25 >300 N, S L-M • •

Podocarpus acutifolius 10 – S L-M •

Podocarpus laetus 24 625 N, S, St L-S • • • •

Podocarpus nivalis 3 Clonal N, S M-A •

Podocarpus totara 35 1,000 N, S, St L-S • •

Prumnopitys ferruginea* 30 770 N, S, St L-M •

Prumnopitys taxifolia* 30 1,400 N, S, St L-M • •

*Unique pollen type in New Zealand;� Taxon favors this environment. NN, northern North Island; N, North Island; S, South Island; St, Stewart Island. L, lowland; M, montane; S, subalpine;
A, alpine.aMcGlone et al. (2010), bData from: Wardle (1991), Ogden and Stewart (1995)updated by data compiled by the authors for the NZ Plant Traits Database.

sequence in New Zealand, allowing the long-term dynamics
of conifers to be con�dently reconstructed. In contrast,
many of the angiosperm trees and shrubs in New Zealand
are insect pollinated, have poorly dispersed pollen that is
mostly identi�able to genus level, and tend to be under-
represented in the pollen records relative to their local
abundance (Macphail and McQueen, 1983). The New Zealand
conifer pollen records therefore provide an ideal setting to
expand understanding of conifer history, biogeography, and
ecology.

Ecological studies of New Zealand conifers have focused
on their forest dynamics at small spatial and limited time
scales (sub-millennial) although progress has also been made in
understanding their physiology, and soil preferences and climate
drivers at a national level. In contrast, pollen analytical studies
typically address time scales ranging from hundreds to millions
of years, are often carried out by researchers with a geological or
geographic background, and the major preoccupation has been
interpreting pollen sequences in terms of climate or landscape
change. This mismatch means integration of ecological and
palynological data has been somewhat neglected.

Conifers are abundant in New Zealand forests and shrublands
(Ogden and Stewart, 1995). They are found from tree line to
the lowlands, from the driest to the wettest regions and from
the northern tip of the North Island to Stewart Island in the
far south, absent only from some of the o�shore islands of
the archipelago (Table 1). They include the tallest tree (50 m)
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and also sprawling, prostrate shrubs. Many of the conifers are
large, emergent trees and often dominate forest biomass. Several
(Agathis australis, Prumnopitys taxifolia, Podocarpus totara,
Dacrycarpus dacrydioides, and Dacrydium cupressinum) yield
valuable timber, which underpinned the New Zealand economy
in the �rst few decades of European settlement and continued to
be exploited until the closing decades of the twentieth century.
Understandably, these ubiquitous, dominant and valuable trees
have been a focus of biogeographic and ecological research in
New Zealand, and debates over their origin, ecological roleand,
in particular, regeneration dynamics, have continued unabated
over the last 120 years.

Leonard Cockayne was the �rst New Zealand ecologist
and, in The Vegetation of New Zealand(Cockayne, 1928),
formulated ideas about the ecology of the conifers, many of
which remain current. However, more controversially, drawing
on both ecological and macrofossil evidence he argued that
conifer and angiosperm species were locked in a longstanding
evolutionary con�ict. The historical tendency, as he saw it,
was for conifer retreat in the face of angiosperm competition
and, although disturbance and poor soils could give them a
temporary advantage from time to time, his opinion was that
eventually they would become relic: “. . . a remnant merely
of ancient conifer forests which have been in the process of
gradual extinction by certain broad-leaved dicotyledonous
trees—a process of extreme slowness” (Cockayne, 1928, p. 21).
Cockayne's ideas were championed byRobbins (1962)who,
after a descriptive survey of the conifer-angiosperm forests
of the North Island, likewise claimed the angiosperm forest
“represents a broadleaf forest climax which is surely replacing
a more ancient podocarp forest climax, remnants of which still
remain mingled with the broadleaf forest” (p 34). This view
has persisted that the conifers and other older broadleaved
genera represent an unchanging rainforest element from a
Gondwana predating the 80–85 Ma separation of the ancestral
Zealandia continental fragment (Kirkpatrick and DellaSala,
2011). The popular conservation literature often refers to the
conifer-rich lowland forests of New Zealand as “dinosaur forest”
(http://www.aucklandbotanicgardens.co.nz/whats-on/events/
dinosaurs-in-the-gardens/). A recent publication on the fossil
history of the Southern Hemisphere rainforests referred to their
characteristic taxa as “southern wet forest survivors” (Kooyman
et al., 2014), thus emphasizing their antiquity and embattled
persistence. It has been claimed that the conifers—because of
their antiquity and slow adaptation to Pleistocene climates—are
photosynthetically adapted to function at higher temperatures
than are optimal for present day New Zealand (Hawkins and
Sweet, 1989). It is not unreasonable to see this presumption of
“primitiveness” as implicitly guiding the tenor of much ecological
discussion about southern conifers, which becomes focussed on
their survival in an “advanced” angiosperm dominated world.

Here we provide an overview of the reaction of New Zealand
conifers to climate and landscape transformation during and
after the Last Glacial Maximum (LGM), including the impact
of recent human arrival and the introduction of �re. We then
use this background to explore to what extent the long-term
perspective provided by pollen analytical data can shed light on

FIGURE 1 | Examples of New Zealand conifer growth forms and habitats.
(a) Agathis australis-dominated forest, Puketi Forest, northern North Island
(b) alluvial conifer forest on pumice soils withPrumnopitys taxifolia,
P. ferruginea,and Dacrycarpus dacrydioides, Ngaputahi, central North Island
(c) Dacrycarpus dacrydioidesswamp forest, Arohaki Lagoon, central North
Island(d) dryland Prumnopitys taxifoliaforest with dense divaricating shrub
understorey, Isolation Creek, north-eastern South Island(e) even-aged,
landslide-inducedLibocedrus bidwilliistand, Ghost Valley, north-west South
Island(f) Halocarpus biformisshrubland at treeline, Hunts Creek, Westland
(g) shrubby Halocarpus bidwilliion frosty, leached terraces, south-west South
Island(h) prostrate Podocarpus nivalis, Kakanui Mountains, south-eastern
South Island. All images by the authors except(h) from John Barkla sourced
under CC-BY-NC from iNaturalist.

their current ecology and if, the concept of southern conifers as
besieged relics is either valid or useful.

NEW ZEALAND VEGETATION CHANGE
OVER THE LAST 30,000 YEARS

General locations are given inFigure 2andFigures 3, 4 and5–9
provide representative pollen diagrams illustrating the changes
discussed.Table 2 summarizes the typical climatic regimes of
important conifer-dominant vegetation types in relation to their
current and past distributions.
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FIGURE 2 | Localities mentioned in the text. Areas in black, above treeline. Baseline data, Landcare Research.

Last Glacial Maximum
The LGM (29 to 19 ka) (kaD thousands of calibrated radiocarbon
years before 1950 CE) was the coldest period of the present
glacial-interglacial cycle (Lorrey et al., 2012). During this period
mean annual temperatures fell by 4–7� C (Newnham et al., 2013),
glaciers advanced throughout the Southern Alps, extending
below current sea level in the west. Overall precipitation was
lower, perhaps by as much as a third (Alloway et al., 1992) and
the prevailing westerly air�ow meant that the rain shadow region
east of the axial ranges became semiarid. The plains of the interior
south-eastern South Island have been described as approximating
a polar desert (McIntosh et al., 1990).

Last Glacial Maximum (LGM) pollen sequences (Figure 3)
show a forested or partly forested northern third of the
North Island (above c. latitude 38� ). In Northland, although
Nothofagaceae were the dominant tree cover (with abundant
Lophozonia menziesiiand Fuscospora truncata), tall conifers
played an important role, particularlyDacrydium cupressinum

(Newnham, 1992; Wright et al., 1995; Elliot, 1998; Newnham
et al., 2017). From the Auckland Isthmus southwards, tall
forest became sparser or con�ned to the coast while in
the central districts of the North Island and the north
of the South Island, conifer shrubland to low forest of
Phyllocladus alpinusand Halocarpus bidwilliiformed a mosaic
with Nothofagaceae forest patches, broadleaved shrubland,and
grassland. The western districts of the South Island, even
those adjacent to the glacier fronts, had angiosperm shrubland-
grassland cover, but also patches of low conifer forest, and
sparse stands of tall conifers (Vandergoes et al., 2005). This
vegetation type extended to coastal Fiordland in the far south
of the mainland (Pickrill et al., 1992). In eastern lowland
districts, grassland, low-growing angiosperm shrubland and
sparse prostrate shrubs and herb�eld were the main cover
and conifers of any type were rare or absent over large areas
although maintaining a regional presence (Moar, 1980; McGlone,
2002).
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FIGURE 3 | Pollen and spore results for representative samples withinsites dating to the LGM. In descending order of increasing latitude within broad zones: northern
North Island (NNI–north of latitude 37� S); southern North Island (SNI–south of 37� S but including the overlapping portion of the South Island);western South Island
(WSI–west of the Southern Alps); eastern South Island (ESI–east of the Southern Alps). Pollen sum: all terrestrial types excluding ferns, lycopods, and wetland forbs,
rushes, and sedges. AfterMcGlone et al. (2010).

The Deglaciation (18 to 11.6 Ka)
A hemispheric warming and rapid retreat of glaciers began at
about 17–18 ka following the last LGM advance at around 19 ka
(Moreno et al., 2015; Darvill et al., 2016). Conifer-angiosperm
forest spread in the central and northern North Island from
17 to 14 ka replacing previous forest-scrub-grassland mosaics
(Figures 4–6). For instance, lowland forest expanded in the
Auckland Isthmus between 15.5 and 14 ka (Sandiford et al., 2002,
2003; Newnham et al., 2007; Augustinus et al., 2011); at Kaipo
Lagoon in the montane North Island, 16.5–14 ka (Newnham and
Lowe, 2000), in lowland Taranaki at 15 ka (McGlone and Neall,
1994); and at Lake Rotoaira on the montane central Volcanic
Plateau 16.5–15 ka (McGlone and Topping, 1977, 1983).

In the South Island, stands of forests expanded in
what was still a largely grass and shrub covered landscape
(Figures 4, 7–9). Northwest Nelson saw expansion of conifer
forest at around 14.5 ka (Jara et al., 2015), and at Okarito on the
west coast, between 15 and 14.5 ka (Vandergoes et al., 2005); at
Cass Basin in inland Canterbury, 15.7–14.5 ka (McGlone et al.,
2004) and at Clarks Junction, eastern South Island, 15.5–13.5 ka
(McGlone et al., 2003). A minor reversal of this warming trend
occurred between 14.5 and 12.9 ka with glacial readvances in
the Southern Alps (Darvill et al., 2016). By this time, dense tall
conifer forest had occupied all but the driest eastern districts
of the North Island and extensive stands were present in
the lowland South Island throughout. These early deglacial
forest pollen spectra were dominated byPrumnopitys taxifolia
(Figures 5–9) but with signi�cant input from Phyllocladus,
Libocedrusand, in places, the NothofagaceousLophozonia
menzesiiand the deciduous angiosperm treePlagianthus regius
were common. These trees are all frost-hardy (Bannister, 2007)

and can tolerate a certain amount of drought, in sharp contrast
to the angiosperms that became abundant in the early Holocene
(e.g.,Ascarina, Metrosideros) (Leathwick and Whitehead, 2001;
Hall and McGlone, 2006).

The Holocene
The beginning of the Holocene period at 11.7 ka, marks the
transition to true interglacial climates. Warming continued in
New Zealand with increasing rainfall in the west, and the period
between c. 11 and 8 ka was characterized by a greatly weakened
westerly air�ow (Shulmeister et al., 2004). The intensely oceanic
climate promoted the spread of the small treeAscarina lucida
which cannot tolerate dry air or frost (McGlone and Moar, 1977;
Martin and Ogden, 2005). A forest dynamic model was used to
explore the climatic implications of a deglacial-Holocene pollen
sequence from a montane rainfall spill-over area of the Southern
Alps. Warmer than present winters, somewhat cooler summers,
and less but more evenly spread rainfall were predicted for the
early Holocene (McGlone et al., 2004).

In northern districts of the North Island, and western
districts throughout, conifer forests with abundantDacrydium
cupressinum, Prumnopitys ferruginea, and Dacrycarpus
dacrydioidesand tree ferns dominated (Figures 4, 5). In
rain-shadow eastern districtsPrumnopitys taxifolia and
Podocarpusspp. spread in lowland to montane locations
(McGlone, 2002; McGlone et al., 2004), but low forest of
Phyllocladus alpinusand Halocarpus bidwillii occupied the
drier, frosty inland basins and hill slopes (McGlone and Moar,
1998). Stewart Island at the far south of the South Island was
the last region where lowland conifers spread (Figures 4, 9,
Toitoi). The early postglacial forests on Stewart Island were
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FIGURE 4 | Summary percentage pollen diagrams (sum: all terrestrial types excluding ferns, lycopods and wetland forbs, rushes, and sedges) and site locations.
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FIGURE 5 | Conifer and Nothofagaceae pollen sequences. Kaitaia bog, Northland (Elliot, 1998). Lake Maratoto, Hamilton Basin (McGlone, 2001a). Wairehu, Rotoaira
Basin (McGlone and Topping, 1977).
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FIGURE 6 | Conifer and Nothofagaceae pollen sequences (cont.). Eltham Bog, Taranaki (McGlone and Neall, 1994). Reporoa Bog, upland central North Island
(Rogers and McGlone, 1989). Lake Poukawa, Hawkes Bay (McGlone, 2002).
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FIGURE 7 | Conifer and Nothofagaceae pollen sequences (cont.). Adelaide Tarn, treeline, Northwest Nelson (Jara et al., 2015). Cass Basin, Kettlehole Tarn, inland
Canterbury (McGlone et al., 2004). Okarito bog, central West Coast (Newnham et al., 2007).
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FIGURE 8 | Conifer and Nothofagaceae pollen sequences (cont.). Rubicon River, inland Canterbury (Moar, 1973). Eweburn Bog, Southland (Wilmshurst et al., 2002).
Clarks Junction, Otago (McGlone et al., 2003).
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FIGURE 9 | Conifer and Nothofagaceae pollen sequences. Waitutu, Fiordland (Turney et al., 2017). Ajax Bog, Southland (McGlone et al., 2003). Toitoi Flat, Stewart
Island (McGlone and Wilson, 1996).
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TABLE 2 | Climate regimes for major conifer associations past and present.

Climate regime Characteristic vegetation Current distribut ion Past distribution

S: warm, relatively dry, long
W: mild, wet

Conifer-broadleaved, most tall conifers
present, Agathis in north

Northland, lowland central NI Mid- to late Holocene, NNI

S: mild, moderate to abundant rainfall
W: mild, wet

Conifer-broadleaved, most tall conifers
present, Dacrydiumand Dacrycarpus
abundant

Western districts of southern NI and SI Early deglacial onwards in west
throughout

S: mild, excessively cloudy and humid
W: mild, wet

Broadleaved canopy trees and tree fern
dominant

Coastal, damp gullies Coastal far southern districts, early
Holocene

S: cool, but with warm clear spells,
wet to very wet. Short
W: cold

Nothofagaceae with subdominant
Phyllocladus alpinusin places

Upper montane and treeline throughout Mid to late Holocene,Northland early
postglacial

S: cool, cloudy; moist to very wet.
W: mild

Conifer scrub,Phyllocladus alpinus,
Halocarpus bidwillii,and broadleaved
scrub

Upper montane and treeline in central
Southern Alps, Taranaki

Widespread in axial ranges early to
mid Holocene. Lowland western
districts LGM

S: warm, dry. Short
W: cold

Conifer-broadleaved, dominant
Prumnopitys taxifolia, Podocarpus laetus,
Dacrycarpus. Kunzeastands

Eastern dryland rainshadow Widespread in early deglacial in North

S: warm, very dry. Short.
W: very cold and dry

Phyllocladus alpinusconifer scrub
dominant, small-leaved angiosperm scrub

Southeastern SI interior basins and
montane slopes

Widespread during LGM in NI

Climate data after Leathwick et al. (2003). S, summer (January mean temperatures): warm, 18� CC; mild, 18–14� C; cool, 13.9–10� C; cold, below 10� C. W, winter (July mean
temperatures): mild, 8� CC; cool, 8–5� C; cold, 4.9–0; very cold, below zero. NI, North Island; SI, South Island.

entirely dominated by broadleaved angiosperms and tree
ferns. Although Stewart Island was connected to the mainland
well into the early postglacial, neither Nothofagaceae nor
Phyllocladus alpinus, both abundant on the adjacent mainland,
are present on the island, suggesting climatic factors or climate-
moderated competition prevented their establishment while land
connections existed.

The Mid to Late Holocene
The intensely oceanic climates of the early Holocene gave way
from 8 ka onwards to more seasonal regimes characterized
by longer, cooler winters and shorter, but warmer, summers.
Increased south-westerly wind �ow over New Zealand brought
increased winter rainfall (McGlone et al., 2004). This increased
seasonality strongly favored some trees over others. In thefar
North, it is only post 8 ka thatAgathis australis—the giant
Araucarian forest dominant (Figure 1)—becomes universally
common in the pollen rain (Ogden et al., 1992) at about the same
time that Prumnopitys taxifolia, Podocarpusspp.,Phyllocladus
spp., andLibocedrus plumosabecame also more prominent
(Elliot, 1998; Newnham, 1999; Elliot et al., 2005) (Figure 5).
Some caution is needed in interpretingAgathisfossil records as
pollen and macrofossil occurrences may not match because of
di�erential preservation, and thus �uctuations during the mid to
late Holocene may simply re�ect changing wetland watertables
(D'Costa et al., 2009). In the very far southern Stewart Island,
the conifersDacrydium cupressinum, Prumnopitys ferruginea,
Halocarpus biformis, and Lepidothamnusspp. began their
spread into the previously dominantMetrosideros-Weinmannia
broadleaf forests from about 6 ka onwards (McGlone and Wilson,
1996; Figure 9). On the adjacent south-eastern South Island
mainland,Phyllocladusand Podocarpuslow forest occupied the
dry interior basin-and-range country only after 8 ka (McGlone
et al., 1995, 1997).

The mid to late Holocene saw spread of Nothofagaceae in
most districts (McGlone et al., 1996). There are two exceptions.
The Northland Peninsula and the Auckland Isthmus had
extensive Nothofagaceae forest, mostlyFuscospora truncataand
Lophozonia menziesiiduring the LGM and early postglacial
but this was replaced during the early Holocene byAgathis-
podocarp-broadleaved communities (Elliot, 1998; Newnham
et al., 2017). Lophozonia menziesiiformed part of the lowland
deglacial forests in the central North Island but was eliminated
before the beginning of the Holocene by conifer-broadleaved
forests (Newnham et al., 1989, 1999; Alloway et al., 1992).
Nothofagaceae at the LGM occurred only in scattered patches
in the far south but had a more substantial presence in coastal
areas of the north-west of the South Island (Marra and Leschen,
2004). Fuscosporaspread appears to have started more-or-
less synchronously throughout the uplands of the central and
southern North Island and northern South Island during the
early Holocene (Figures 4, 6–9). Fuscosporaforests are currently
the most common cover of the uplands and axial ranges of the
central and southern North Island and northern South Island, but
only became treeline dominants from about 9 to 3 ka, depending
on the site (Rogers and McGlone, 1989; McGlone et al., 1996;
Jara et al., 2015). Fuscospora cli�ortioides—the most abundant
tree line forest tree—almost invariably spread into pre-existing
alpine forests and shrubland ofLibocedrus bidwillii, Phyllocladus
alpinus, andHalocarpusspp.

Lophozoniaspread after c. 7–6 ka across the south of the
South Island in widely separated areas mainly upland treeline
sites, but including montane-lowland conifer-broadleaved forest
(McGlone et al., 2003). Where Lophozoniatook part in these
mid to late Holocene successions in lowland to lower montane
settings, it mostly spread into conifer-broadleaved forest
wherePrumnopitys ferrugineaor Dacrydium cupressinumwere
abundant (see Eweburn,Figure 8). In these lowland-montane
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sites,Fuscosporaspp. follow the initial invasion or spread by
Lophozonia.

Late Holocene and Polynesian Fire
Fire occurred frequently on the large, raised restiad bogs of
northern New Zealand (Newnham, 1992; Battersby et al., 2017;
Haen�ing et al., 2017) but elsewhere was sporadic. Along the
rain-shadow regions in the ranges to the east of the Southern
Alps �res burnt from time to time, inducing a patchy landscape of
conifer low forest, shrubland and grassland (Burrows et al., 1993;
Burrows, 1996; Wardle, 2001b; Pugh and Shulmeister, 2010). Fire
frequency may have increased at around 3 ka in some eastern
parts of the North and South Islands but was still infrequent
(McGlone and Moar, 1998; Ogden et al., 1998; Horrocks et al.,
2001; Woodward et al., 2014). Few New Zealand woody plants
have signi�cant adaptations to �re (Perry et al., 2014) and
conifers in particular appear to be highly vulnerable to �re. A
notable exception isHalocarpus bidwillii, which has thick bark
and can recover through basal resprouting after �re (Wardle,
1991). Polynesian �res beginning in the late thirteenth century,
ultimately removed about 40% of the montane and lowland forest
cover (McWethy et al., 2010; Perry et al., 2014). This forest loss
was concentrated among conifer-rich lowland forests wherec.
30% of this type was lost in the North Island, and nearly 90%
in the South Island (Perry et al., 2012a). Some o�shore islands
were thought never to have had conifer forest, but pre-Polynesian
pollen sequences have demonstrated that they did (Wilmshurst
et al., 2014).

A GLACIAL-INTERGLACIAL PERSPECTIVE
ON THE ENVIRONMENTAL NICHE OF THE
NEW ZEALAND CONIFERS

Ecological Niche
An outline of the ecological niche of the conifers has been given
in Table 1, and in Table 2 we summarize how the changing
climate and seasonality over a glacial-interglacial cyclehas shifted
the distribution of broadly de�ned conifer vegetation groupings.
The loss of 80% of New Zealand's lowland forests since human
settlement, along with nearly all the forest from rain shadow
eastern districts, has left wet conifer-broadleaved forests and
montane to alpine Nothofagaceae dominant forests as the most
common forest types. Our understanding of their niches derives
mainly from ecological observations made in dense, wet forests—
which do not fully cover the environmental range of most of the
species—and correlations between environmental variablesand
their abundance in these same forests. Nevertheless, a number of
statements can be made about New Zealand conifer ecological
niches (seeCoomes and Bellingham, 2011) which are likely to be
robust.

New Zealand conifers are slow growing and long-lived in
comparison with competing angiosperms (Ogden and Stewart,
1995) and markedly taller. Despite conifers making up only
8% of the tree �ora, 33% of the trees growing 20 m or
more in height are conifers. As a group, the conifers are
markedly frost-tolerant, most resisting frosts of� 7� C or more,

and the three most frost-tolerant trees and shrubs in the
�ora ( Halocarpus bidwillii, Phyllocladus alpinus, andPodocarpus
nivalis) are conifers (Bannister, 2007). With regard to low rainfall
and drought,Prumnopitys taxifolia, Podocarpus laetus(formerly
P. hallii), P. totara, and Dacrycarpus dacrydioidesare among
a small group of trees singled out as currently having their
maximum abundance under wet climate regimes, but also being
capable of tolerating dry, warm lowland sites (Leathwick and
Whitehead, 2001). Agathis australis, grows best under drier
summer conditions and can tolerate severe drought (Macinnis-
Ng et al., 2016). In particular, these species can tolerate low
atmospheric de�cits.Dacrydium cupressinumand Prumnopitys
ferrugineaare, on the other hand, far less tolerant of both dry
soils and atmospheric de�cits. Some species have an ambiguous
relationship to drought:Dacrycarpus dacrydioidescan tolerate
warm, dry lowland situations (Leathwick and Whitehead, 2001)
but physiological measures show it has a very low tolerance of
water de�cit (Brodribb and Cochard, 2009) and remaining stands
are often associated with wet soils (Figure 1).

New Zealand conifers are generally regarded as being
tolerant of poor soils (Coomes and Bellingham, 2011; de
Jonge et al., 2012), and have an a�nity for leached, low
nutrient, acid or poorly drained soils that form in ever-wet
environments and some (Dacrydium cupressinum, Dacrycarpus
dacrydioides, Lepidothamnus intermedius, Manoao colensoi,
Libocedrus plumosa, Halocarpus bidwillii, H. biformis) are
characteristic of such sites (Richardson et al., 2005b). Where
the climate supports tall trees, conifers usually dominate the
tree biomass as there are only three tall angiosperm trees
that tolerate wetlands (Elaeocarpus hookerianus, Laurelia novae-
zelandiaeandSyzygium maire; McGlone, 2009). Pollen diagrams
con�rm this and peat sites usually show conifer sequences with
Dacrycarpus dacrydiodesat the fertile, often swamp or lagoon
beginning of the sequence, andDacrydium cupressinum, Manaoa
colensoi, Lepidothamnus intermedius, and Halocarpus bidwillii
at the infertile bog later stages (McGlone, 2009). However, in
some situations conifers are quick to colonize fertile soils after
disturbance, losing ground to angiosperm broadleaves as the
succession proceeds, and this is most apparent in the pollen
record after large-scale volcanic disturbance (Wilmshurst and
McGlone, 1996; Horrocks and Ogden, 1998) but it also occurs
after smaller scale disturbances (Bray, 1989; Carswell et al., 2007;
de Jonge et al., 2012).

This tolerance of frost, drought, dry air and low nutrient or
water-saturated soils can to a certain extent be attributedto their
narrow, embolism-resistant tracheids, conservative hydraulic
systems and thick, narrow leaves which lead to slow growth
relative to competing angiosperms but much greater stress
tolerance of poor soils, cold and drought (Sperry et al., 2006).
This combination of attributes is the key to conifer niche over
both long and short timescales. Despite slow growth rates,
longevity ensures that the crowns of New Zealand forest conifers
eventually rise well above the continuous lower broadleaved
canopy. They therefore spend most of their life span with their
crowns exposed to high solar radiation, higher wind speeds
and low humidity which induce a drying e�ect exacerbated by
the physiological water transport stress that scales with height
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(Koch et al., 2004). For instance, tropical emergent trees transpire
most of the water used in the forest they form part of (Kunert
et al., 2017). A second, related fact is that New Zealand conifers
within a conifer/broadleaf tract are often most abundant on
ridges and steeper slopes exposing their canopies to windier,
less humid conditions and drier soils. Just a handful of tall
angiosperms compete in this supracanopy emergent space (e.g.,
Laurelia novae-zelandiae, Metrosideros robusta, Knightia excelsa,
Fuscospora fusca, and F. truncata), and it has been argued that
the angiosperm and conifer components of the forests they co-
occur in are largely independent of each other (Ogden, 1985;
Lusk, 2002).

Regeneration
New Zealand conifers have long been believed to face
severe regeneration problems (Cockayne, 1928; Holloway, 1954;
Robbins, 1962; Wardle, 1963; Veblen and Stewart, 1982;
Smale et al., 2016). Most are bird-dispersed and dispersal
seems not a critical issue. The wind-dispersedAgathis australis
and Libocedrusspp. appear to have more limitations, and
the montane to alpineLibocedrus bidiwilliihas a markedly
discontinuous distribution (Wardle, 2011), but even so they
regenerate well after disturbance (Veblen and Stewart, 1982;
Steward and Beveridge, 2010). The essential problem faced by
the conifers in lowland forests is establishment in openingsthat
quickly �ll with tree ferns and fast-growing and/or vegetatively
resprouting angiosperm trees. This di�culty is compounded
by conifers rarely recruiting under closed canopies (Ogden
and Stewart, 1995). A marked feature of most New Zealand
conifers is distinct juvenile foliage or growth forms (Dorken
and Parsons, 2016)—most strikingly with the divaricate branched
juvenilePrumnopitys taxifolia, the drooping foliage ofDacrydium
cupressinumand the pyramidal “ricker” juvenile ofAgathis
australis. It is at least plausible that these monopodial juvenile
growth forms compensate for slow biomass accumulation by
favoring a single stem axis while the often elongated, planar
or dispersed leaves maximize photosynthesis in a complex light
environment. Although the New Zealand conifers are generally
considered to be shade-intolerant (Cameron, 1954; Ebbett and
Ogden, 1998), experimental studies suggest that this intolerance
varies between taxa.Lusk et al. (2009)report little relationship
between light availability and seedling presence ofDacrydium
cupressinumand Prumnopitys ferrugineain forest stands in the
central North Island. Observations in a northern North Island
conifer-broadleaved forest showed that while the conifershad
much the same shade tolerance as their angiosperm competitors,
they grew more slowly and it was only at forest edges that
their greater stress tolerance allowed them to overcome this
regeneration handicap (Lusk et al., 2015). Conifer regeneration
in drier regions is poorly known. However, we can postulate
that drier, relatively infertile sites have sparser understoreys
and ground-layers, providing better opportunities for conifer
regeneration (Wardle, 1963; Burns and Leathwick, 1996) and
the greater stress tolerance of the adult trees permit them to
dominate.

John Ogden proposed an in�uential model in which
successive generations of conifers form a lesser proportion of a

conifer-broadleaved forest due to recruitment di�cultiesuntil
a large-scale disturbance resets the forest with thickly stocked
conifer stands (Ogden, 1985). Some recent data suggests higher
conifer mortality and slower replacement in central North
Island forests a�ected by volcanic eruptions consistent with this
model (Smale et al., 2016), but complexities of forest history
make sweeping generalizations inadvisable. For instance, broad
scale analyses of North Island forests have shown some of the
largest conifers have lower mortality rates than angiospermtrees
(Richardson et al., 2009), and selective logging of conifers from
wide tracts of conifer-broadleaved communities has given rise to
anomalous contemporary patterns with virtually no regeneration
in some areas (driven by absence of conifer seed sources) vs.
massive regeneration in others (Carswell et al., 2007).

The pollen record seems to only detect the very largest of
disturbances because of its typically large spatial and temporal
scales. Once these are factored in, there appears to be little
overall trend in conifer-broadleaved forest toward angiosperm
dominance. There is little signal in the deglacial and Holocene
pollen record from extant conifer-broadleaved tracts that conifers
have ever been reduced to low levels (Figures 4, 5–9). During
the �rst few thousand years of conifer spread during the
deglacial period, conifer pollen input appears to have been
higher than subsequently: most sites show this period of great
conifer abundance did not last. However, in those areas that
have remained under conifer-broadleaved forests throughout the
Holocene, the conifers appear to have always been abundant.
There is one exception. During the late deglacial-early Holocene
period, coastal southern South Island and Stewart Island
appear to have had a broadleaved-tree fern community with
Weinmannia racemosaand Metrosideros umbellataprominent
members, and conifers all but excluded for an extended period
(Pickrill et al., 1992; McGlone and Wilson, 1996). Conifer
dominance was not established until well into the mid Holocene
(Figure 9). This island has extremely oceanic climate by global
standards (Meurk, 1984) which the low insolation, warm winter-
cool summer regime of the early Holocene intensi�ed. The
conifer strategy, which relies, in the absence of landscape-
level disturbance, on environmental conditions unfavorable to
angiosperms to regenerate well, was negated. A recent parallelat a
more local level may be found in some fertile, dark, moist gullies
where tree ferns, palms and broadleaves appear to permanently
exclude conifer regeneration.

Conifers and Drylands
New Zealand conifers extend into semi-arid areas (rainfall<
500 mm a� 1) and were dominant across a wider “dryland”
(Penman de�cit � 270 mm a� 1) region (Figure 10) mainly to
the east of the axial ranges that made up some 19% of the land
area of New Zealand prior to human settlement in the thirteenth
century (Rogers et al., 2005). Because dryland conifer forest was
largely destroyed by Polynesian �res (Perry et al., 2012b) little is
known about its ecology.Figure 11shows how human clearances
have reduced the representation of current forests to vestigial
levels in areas with less than about 900 mm a� 1 rainfall, and
how conifers dominated the pre-deforestation pollen rain in this
dryland zone. The pre-deforestation extension of taxa, suchas

Frontiers in Earth Science | www.frontiersin.org 14 November 2017 | Volume 5 | Article 94



McGlone et al. Palynology and the Ecology of the New Zealand Conifers

FIGURE 10 | Dryland zone. Modi�ed fromWalker et al. (2009). Baseline data
held by Landcare Research.

Dacrycarpus dacrydioides, Halocarpus, Podocarpus, Phyllocladus,
and Prumnopitys taxifoliainto the dryland zone is particularly
clear and thus palynological investigations have focused much
more on this zone than have ecological ones.

Conifer forests were more widespread during the early
deglacial and Prumnopitys taxifolia and Podocarpusspp.
dominated the transition from shrubland-grassland to closed
forests (McGlone and Bathgate, 1983; McGlone and Topping,
1983; Newnham et al., 1989; Vandergoes et al., 1997; Sandiford
et al., 2003; Augustinus et al., 2012; Jara et al., 2015). These
earlyPrumnopitysandPodocarpusforests were not accompanied
by an abundance of tree ferns, nor signi�cant amounts of tall
angiosperm trees, as the laterDacrydium dominated forests
were and still are, and thus it seems that the early deglacial
was drier than now. Dryland pollen sequences show that the
forests existing just before deforestation strongly resembled
the �rst forests to establish after the early deglacialMyrsine-
Muehlenbeckiashrubland/grasslands, and then changed little
during the Holocene (McGlone et al., 2003). In the driest areas
of the southeastern South Island, conifer-broadleaved forest co-
existed with patches of grassland and shrubland (McGlone,
2001b; Walker et al., 2004a; Rogers et al., 2005). It was
only on the wet, western �anks of the Southern Alps (where

Dacrydium cupressinumwas abundant;Newnham et al., 2007)
and Northland (whereFuscosporawas abundant) that this classic
tall dryland conifer forest failed to establish.

A generalized dryland pattern that prevailed just before the
Polynesian deforestation can be reconstructed from macrofossil
and pollen data (Molloy, 1968; McGlone et al., 2003). The pre-
deforestation pollen rain of the drylands was largely dominated
by conifers (Figure 11), and the drylands may have supported
denser conifer stands than elsewhere (Hall and McGlone, 2006).
Tall Prumnopitys taxifolia- and Podocarpus totara-dominated
associations on the lowland, deeper, more fertile soils extended
up into inland valleys in higher rainfall areas, withDacrycarpus
dacrydioidesprominent on swamp or lagoon soils. Stonier,
shallower soils throughout were dominated byPodocarpus laetus,
especially on the midslopes of the inland valleys. Areas with
cold winters and dry, droughty summers would have favored
Phyllocladus alpinusdominance, with the most leached or
acid soils carrying a cover ofHalocarpus bidwilliishrubland.
Prumnopitys taxifoliadominated the dryland pollen rain in most
places, but there are only a few macrofossil or charcoal remains
to corroborate this dominance.Podocarpus laetus(like the other
Podocarpusspecies) is not well represented in the pollen rain,
but occurs as a continuous component alongsidePrumnopitys
taxifolia. Preserved wood ofPodocarpus laetusis widespread on
tussock-clad hill slopes throughout eastern districts and isoften
accompanied byPhyllocladus alpinuscharcoal (Molloy et al.,
1963; Ogden et al., 1998; Wardle, 2001b). Pollen and charcoal
show that the driest regions of the central southeastern South
Island, and intermontane valley bottoms of the eastern central
Southern Alps hadPhyllocladus alpinusandHalocarpus bidwillii
low forest to scrub cover.

A wide range of angiosperm shrubs and trees co-existed with
the dryland conifers but only a handful of these were tall or
capable of dominating forest tracts. The few remaining fragments
of dryland forest suggest that they would have been heavily
stocked with conifers over a low and subordinate canopy of
small angiosperm trees, such asMelicytus rami�orus, Griselinia
littoralis, Elaeocarpus hookerianus, and Hoheria angustifolia.
Most of these species are in the 10–15 m height range, with only
Sophora microphylla, Kunzeaspp., andPlagianthus regiustaller
(15–20 m), but even they rarely match the 20–50 m heights of
the podocarps. TheKunzeaspecies complex of Myrtaceaeous
small leaved (leptophyll), wind-dispersed shrubs to tall trees
formed extensive forest tracts: the tallerKunzea(K. serotina,
K. robusta, and K. ericoides) range throughout the mainland
islands and occupied the very driest sites but generally theydo
not form an integral part of mature conifer forest; rather they
occur as ecotonal or early successional dominants (de Lange,
2014). Interestingly, their small, linear needle-like leaves,erect
multi-branched form, ectomycorrhizal status, ability to occupy
bare ground, relatively fast growth and resistance to stresses,
and rapid recovery after disturbance, including �re, is strongly
reminiscent of Northern HemispherePinus. It is unlikely that
the dryland conifers were as dependent for regeneration on
large-scale disturbance as they are in denser, moist forests, as
these dryland forests lacked a dense understory, ferns being
particularly sparse.
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FIGURE 11 | Pollen (orange) and basal area biplots (gray) for conifers and Nothofagaceae. Pollen percentages (orange) based on terrestrial sum excluding ferns and
lycopods. Basal areas for trees (blue) from the LUCAS programme national Natural Forest plot (20� 20 m) data. Data on individual panels scaled relative to largest
value.

Conifers and the Nothofagaceae
A striking feature of many pollen pro�les from the New Zealand
mainland south of the Northland Peninsula, and in particular
along the axial ranges, is the rise to dominance over the
postglacial period of the Nothofagaceae (Figures 4, 5–9). On the
basis of their Southland pollen diagrams,Cranwell and von Post
(1936)divided the New Zealand postglacial into three periods:
(I) Grassland; (II) Podocarp forest; (III) Nothofagaceae forest
and grassland mosaic period. Period I was regarded as the �nal
stages of the glaciation, with cool, severe climates with little
regional di�erentiation; Period II, wet with probably maximum
warmth; and Period III, climatic deterioration (Cranwell, 1938).
That cooling climates had driven the spread of Nothofagaceae
was readily accepted at �rst becauseFuscospora cli�ortioides
and Lophozonia menziesiifavor cooler regions and climatic
explanations for anomalous Nothofagaceae distributions became
popular for a time (Holloway, 1954; Nicholls, 1956). However,
it had also been long known that the Nothofagaceae have
a number of broad gaps in their distribution (the Taranaki
volcanoes, the central and highest section of the Southern
Alps, central Southland and Stewart Island;Cockayne, 1928).
Willett (1950) suggested that the forest cover is in a state
of disequilibrium because of the lasting e�ects of exclusion
of Nothofagaceae trees at the height of the LGM by ice
or severe climates and thus attributed the long-term forest
dynamics of glacial a�ected areas to the slow, but inexorable
encroachment of Nothofagaceae trees into conifer-broadleaf
dominated associations. The Nothofagaceae have winged, but

poorly dispersed seeds and a requirement for ectomycorrhizal
infection (Wardle, 1984) and thus dispersal limitation became the
favored explanation for Nothofagaceae gaps at all scales (Molloy
et al., 1963; Burrows, 1965; Moar, 1971). Palynological evidence
suggests that neither of these explanations—glacial exclusion or
deteriorating climates—is su�cient alone. To see why, we have
to look at how the environmental niche of Nothofagaceae and
conifers di�er.

New Zealand Nothofagaceae, in general, occupy sites with
cooler mean annual temperatures than the tall tree conifers
(Leathwick, 1995) and dominate most current tree lines (Case
and Duncan, 2014). While overlapping to a large extent with
conifers in their environmental tolerances (Figure 11), and thus
co-existing over wide areas, Nothofagaceae are mostly absent
from the warmest locations—mainly the north of the North
Island and southern North Island lowlands. Like conifers, they
are vulnerable to having their regeneration supressed by fast-
growing broadleaves under warm, moist climates but lack the
slow-growing emergent strategy that permits conifers to persist in
dense broadleaved forests (Lusk et al., 2013). They are also largely
absent from the drier, more drought-prone, frostier regions
where several tall conifer trees (most notablyPodocarpus laetus
and Prumnopitys taxifolia) are abundant. However, ecosystem
models predict that Nothofagaceae should dominate over most of
its range gaps (Hall and McGlone, 2001, 2006; Leathwick, 2001).

The absence of Nothofagaceae from the seasonally dry and
frosty areas, such as the south-eastern South Island, even though
model results project its presence, seems unproblematic once
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the limitations of the regeneration niche (which is not explicitly
included in the models) is understood. The models project
Nothofagaceae dominance because it is quite frost resistant but
also fast-growing, and excellent at colonizing slips and clearings
(Wardle, 1984; Richardson et al., 2011). However, they are
poor at regenerating in grassland—where their sensitivity to
late season dryness appears to be a factor—and are subject to
local dispersal and mycorrhizal limitations. AsWardle (1984,
pp. 381–382) comments, “Beech seedlings are poor competitors
and have di�culty in establishing where the forest understory is
dense, especially where turf or fern covers the ground. Young
seedlings are prone to unseasonal frosts and both winter and
summer desiccation. Even saplings over 2 m high can be killed
by winter desiccation. Establishment success is thereforeusually
poor in the open, particularly where the climate tends to be cold
and dry.”

If di�culties with establishment are overcome, Nothofagaceae
have on average more rapid height growth and biomass
accumulation than do competing conifers (Wardle, 1991). This
advantage is particularly marked at tree line in relation to
the competing conifersPodocarpus laetus, Phyllocladus alpinus,
and Halocarpus biformis. In upland Nothofagaceae forest,
Phyllocladus alpinusand Halocarpusspp. are often con�ned to
the more stressed sites, such as frost-prone terraces and valley
heads (Wardle, 1985) or on poorly drained soils. In broad
terms, the Nothofagaceae have higher photosynthetic rates and
therefore are well equipped to take advantage of high insolation
days and short summers (Richardson et al., 2005a; Whitehead
et al., 2011). The Nothofagaceae are also ectomycorrhizal and
this brings with it the ability to directly use nutrients locked
into organic complexes and also to lower the nutrient contentof
organic soils to such an extent that they are largely unsuitable
for trees with arbuscular mycorrhizal infection (Dickie et al.,
2014). However, these advantages over conifers are lessened
under cloudy, low insolation summers (growth rate premium
reduced) and long, mild winters (breakdown of soil organic
matter and release of nutrients enhanced). When this is the
climatic regime, other angiosperm broadleaved species prevail,
dense fern groundcover forms restricting regeneration of the
Nothofagaceae seedlings. We thus have the early Holocene
conifer-dominant treeline associations ofPhyllocladus alpinus,
Halocarpus bidwilliiand H. biformis, Podocarpus laetusand
P. nivalis, andLibocedrus bidwilli(McGlone et al., 2011; McGlone
and Basher, 2012) remnants of which persist throughout the
axial ranges but most commonly in the central Southern Alps.
There is a strong association of these conifer-dominant treelines
with low insolation situations, such as in the southern Ruahine
and northern Tararua Ranges (Rogers and McGlone, 1994),
but limited Nothofagaceae spread across alpine-montane valley
systems most likely contributed to this pattern (Wardle and Lee,
1990; McGlone et al., 1996; Hall and McGlone, 2006).

Mixed Nothofagaceae-conifer tall lowland forest is common
in some regions, but most prevalent in the north-western
South Island. Trade-o�s in growth-rate and regeneration strategy
can facilitate their long-term co-occurrence (Lusk and Smith,
1998). However, the propensity of Nothofagaceae to form
monospeci�c stands means they are either segregated by site

from conifers—with Nothofagaceae along river courses or
ridges—or the tall conifers (mainlyDacrydium cupressinum,
Prumnopitys ferruginea, P. taxifolia, andPodocarpus laetus) form
a discontinuous, sparse overstratum (Wardle, 1984, 1991). Only
rarely are isolated Nothofagaceae trees scattered in conifer-
broadleaved forest (Wardle, 1984). Holocene pollen sequences
from the wide Nothofagaceae gap in central western South Island
show that these boundaries have been largely static over the mid
to late Holocene both at theFuscosporadominated northern
edge (Pocknall, 1980) and in theLophozonia menziesiidominated
southern margin of the gap (Li et al., 2008). Ecosystem models
also predict mixed conifer-Nothofagaceae associations in both
regions (Hall and McGlone, 2006).

NEW ZEALAND CONIFERS FROM A
GLOBAL BIOGEOGRAPHIC PERSPECTIVE

New Zealand Conifers: Relictual?
Extant New Zealand conifers are clearly not relic. They are
ubiquitous within the New Zealand mainland, and their close
relatives thrive in similar oceanic forest environments elsewhere
(McGlone et al., 2016). Their ecological success should not be
measured by their species richness, but by their dominance of
the forest biomass (Bond, 1989) and on this measure they are
the most successful plant group in New Zealand. The lineages
from which they come mostly evolved during the Palaeogene-
early Neogene (Pittermann et al., 2012; Yang et al., 2012; Lu
et al., 2014). Some are quite recent: the alpine-upper montane
shrub and small tree group ofP. lawrencei(SE Australia),
P. gnidioides(New Caledonia) andP. nivalis (New Zealand)
is indicated by molecular clock methods to have originated
< 5 ma ago (Condamine et al., 2017) and this is consistent
with the timing of the uplift of the Southern Alps of New
Zealand (Heenan and McGlone, 2013). Prumnopitys taxifolia
(New Zealand) andP. andina(southern South America) are a
closely related two-species clade, and may have diverged only
10 ma ago. The New Zealand conifers are therefore not holdovers
from pre-angiosperm or even pre Gondwana-separation times
but represent continuing adaptation to changing environments
and competitors. However, that said, rainforest conifers have had
to compensate for the structural and physiological limitations
imposed by their hydraulics based on narrow tracheids, narrow,
simple veined leaves, sluggish stomatal responses and, overall,
low photosynthetic and growth rates (Brodribb et al., 2012). They
do this by leveraging the inbuilt stress tolerance these attributes
bring with them, and the longevity that accompanies their slow
growth rate [henceBond's (1989)“tortoise” analogy].

Given conifer dominance in many di�erent New Zealand
forest types we suggest that, rather than having severe
disadvantages, they have been extraordinarily successfulin
a range of niches characteristic of an oceanic temperate
environment. The biology and biogeographic history of the
New Zealand conifers therefore can only be understood against
the constraints and opportunities presented by the uncommon
climate and unusual geographic position of the New Zealand
archipelago.
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Adaptation and Historical Contingency
Despite sharing its highly oceanic, moist climate regime with
restricted temperate coastal regions elsewhere on the margins
of the major continents New Zealand is, from a biogeographical
viewpoint, unique. The archipelago has the only large temperate
islands that are remote from a continental mainland and
therefore never connected during the course of a glacial-
interglacial cycle. Small, oceanic landmasses experience muted
climatic extremes—both seasonally and at glacial-interglacial
scales. However, during the extreme cold and dry of a glacial
maximum, the archipelago has to fall back on its own �oristic
resources as it has no access to permanent cold boreal, arctic
or dry steppe zones. Even New Zealand treelines cannot �ll the
gap, as they have exceptionally mild climates (Cieraad et al.,
2012; Cieraad and McGlone, 2014). The trees of New Zealand,
therefore, are evolutionarily adjusted to a limited climatic range.
The brief intervals of a few thousand years during which
the southern third of the archipelago experiences glacial cold,
dry climates merely punctuate an otherwise highly oceanic
environment.

Given the double �lter of oceanicity and isolation, do
New Zealand conifers represent unique adaptations to the
oceanic climate regime? And has historical contingency played
a role in that some niches have not been �lled? Globally,
oceanic temperate forests are extraordinarily diverse in terms
of their structural and taxonomic makeup (DellaSala, 2011).
They include single canopy deciduous angiosperm forests of the
western fringe of Europe, dense, conifer-dominant forests of
north-western North America, tall evergreenEucalyptusforests
of eastern Australia, but also structurally and taxonomically
similar southern conifer-evergreen angiosperm forest of the
southern Atlantic coast of Brazil, southern Chile and the
highlands of New Guinea. Near-identical oceanic climate
regimes have therefore generated very di�erent structural and
plant functional trait solutions. We argue that the southern
conifers have, by virtue of their continuous presence in oceanic
environments, arrived at an evolutionary solution that takes
advantage of their stress resistant physiology and morphology
and minimizes the consequences of the accompanying slow
growth. In an oceanic temperate, evergreen forest, supra-canopy
space is potentially available, but only to trees with foliagethat
can endure winter conditions and survive episodic drying, wind,
and high insolation in summer. The hydraulic physiology and
leaf morphology of the conifers is clearly superior in this zone
to that of all but a few angiosperms. The trade-o� is the sacri�ce
of fast-seedling and sapling growth, which they partially o�set
with specialized juvenile growth forms. Once established, their
longevity is the key to their long-term success as they can
wait for the rare occasions which favor large-scale regeneration.
Disturbance of a size that permits them to regenerate must be (at
an evolutionary timescale) as certain as the alternation ofseasons,
and this is recognized in the conceptual models developed to
explain their regeneration strategy (Ogden, 1985; Ogden and
Stewart, 1995; Enright et al., 1999).

It is only under certain climatic conditions that the conifers
fail to persist. The �rst is under hyperoceanic situations—such
as that of Stewart Island during the early Holocene. Here, we

suggest, a fern-rich ground layer, dense broadleaf shrub and
canopy with abundant tree ferns can successfully resist conifer
invasion. At a small scale, these conditions also prevail in shady
gullies on rich soils where only sporadic conifer regeneration is
possible (Coomes et al., 2005). The second situation in which the
New Zealand conifers are at a disadvantage is in the presence
of Nothofagaceae.Libocedrus bidwillii, Phyllocladus alpinusand
Halocarpusdominated the subalpine and upper montane zone
in the earlier part of the postglacial, but in nearly all locations
have since lost this dominance during the Holocene. While
the relatively slow spread rates of Nothofagaceae account for
some of the early prevalence of conifer-dominated associations
in alpine/montane environments, the underlying driver is
almost certainly a climatic switch beginning around 9,000 years
ago, from long, low insolation summers and mild winters—
which favored slow-growing conifers—to short, high insolation
summer and colder, longer winters—which favored the fast-
growing mycorrhizal Nothofagaceae (Wilmshurst et al., 2002).

Vacant Tree Niches?
It is possible that there is a vacant tree niche in New
Zealand currently represented by the winter cold dryland
environments of the rain-shadow of the Southern Alps
and a vacant conifer niche at tree line. During the full
glacial, a very large area of New Zealand had only sparse,
scattered forest, and the open, dry eastern lowlands something
approaching open herb �eld with prostrate shrubs. In Northern
Hemisphere temperate regions the LGM was characterized by
open conifer dominated parklands unless the desert-steppe
climates prevailed (McGlone et al., 2012). The current rapid
spread of exotic fast-growing mycorrhizal wilding pines (in
particularPinus contortaandP. nigra) into lowland to montane
�re-induced grassland/shrublands (Ledgard, 2001) indicates a
vacant “conifer” niche in the drylands that is only partly �lled
by the MyrtaceousKunzea. Evolution of such a tree type
presumably requires a permanent, highly seasonal, winter-cold
environment that is absent in the Southern Hemisphere from
all but Antarctica. At some tree lines in the drier eastern side
of the axial mountain ranges, exotic pines are spreading above
the Nothofagaceae tree line and this likewise suggests a tree
line “pine/�r/spruce” niche remains un�lled for similar reasons
(Cieraad et al., 2014; Tomiolo et al., 2016).

ARE PALYNOLOGY AND ECOLOGY
MUTUALLY SUPPORTIVE?

In New Zealand, history cannot be ignored. Besides the
alternation of glacial-interglacial cycles, frequent, massive
disruption caused by earthquakes, volcanic eruptions, cyclonic
storms and the recent imposition of historically unprecedented
human-lit �res have left major historical legacies. Therefore,
in New Zealand, palaeoecological and neoecological researchers
frequently collaborate as our exploration of conifer history shows.
Not only that, neoecologists have often taken the lead in study
of the past, as exempli�ed by Peter Wardle with his Quaternary
investigations of soil charcoal (Wardle, 2001a), Colin Burrows
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and the palaeoecology of the South Island mountains (Burrows
et al., 1993), Susan Walker, Bill Lee and Geo� Rogers on the
history of the drylands of the southern South Island (Walker
et al., 2004b), and the ground-breaking neo-palaeoresearch
by ecologist John Ogden and colleagues on many aspects of
northern plant successions and Quaternary history (for example:
Ogden et al., 1992, 1997).

The answer then to the question posed by Bill Harris many
years ago is that the unbroken legacy of Lennart von Post and
Lucy Cranwell continues in New Zealand, palaeoecology and
ecology combining in a productive relationship to document the
past, understand the present, and anticipate the future.
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