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The New Zealand conifers (20 species of trees and shrubs in ¢ Araucariaceae,
Podocarpaceae, and Cupressaceae) are often regarded as ament Gondwanan
elements, but mostly originated much later. Often thought bas tall trees of humid,
warm forests, they are present throughout in alpine shrublads, tree lines, bogs,
swamps, and in dry, frost-prone regions. The tall conifersarely form purely coniferous
forest and mostly occur as an emergent stratum above evergen angiosperm trees.
During Maori settlement in the thirteenth century, re-sesitive trees succumbed rapidly,
most of the drier forests being lost. As these were also the me conifer-rich forests,
ecological research has been skewed toward conifer dynamg of forests wetter and
cooler than the pre-human norm. Conifers are well represent in the pollen record
and we here we review their late Quaternary history in the hty of what is known
about their current ecology with the intention of counterig this bias. During glacial
episodes, all trees were scarce south of ¢c. 40 S, and extensive conifer-dominant forest
was con ned to the northern third of the North Island. Drought- and cold-resistant
Halocarpus bidwilliand Phyllocladus alpinusformed widespread scrub in the south.
During the deglacial, beginning 18,000 years ago, tall coférs underwent explosive
spread to dominate the forest biomass throughout. Conifer dminance lessened in favor
of angiosperms in the wetter western lowland forests over ta Holocene but the dryland
eastern forests persisted largely unchanged until settleemt. Mid to late Holocene climate
change favored the more rapidly growing Nothofagaceae whit replaced the previous
conifer-angiosperm low forest or shrubland in tree line edones and montane areas. The
key to this dynamic conifer history appears to be their bimoal ability to withstand stress,
and dominate on poor soils and in cool, dry regions but, in weer, warmer locations, to
slowly grow thorough competing broadleaves to occupy an expsed, emergent stratum
where their inherent stress resistance ensures little efféve angiosperm competition.

Keywords: conifer, history, New Zealand, glaciation, palyn ology, Holocene, ecology, niche

INTRODUCTION

In 1935, Lucy Cranwell—a young New Zealand researcher attgtide VI International Botanical
Congress in Amsterdam—was invited to work with Lennart varsPon the pollen analysis of
peat sequences collected from southern New Zealand by thdiS$wgaciologist Carl Caldenius
(Cameron, 2000 Their resulting paper on the postglacial history of the fautboof the South
Island (Cranwell and von Post, 19B@vas the rst such e ort for Australasia and provided
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a compelling narrative of vegetation and climate changew®s# sequence in New Zealand, allowing the long-term dynamics
adopted by ecologists and Quaternary researchers alikergbev of conifers to be condently reconstructed. In contrast,
decades later, palynologist Bill Harris—who had worked foryt.  many of the angiosperm trees and shrubs in New Zealand
Cranwell—asked whether “... the two techniques, that of thare insect pollinated, have poorly dispersed pollen that is
ecologist, and that of the palynologist can be mutually helpfil mostly identi able to genus level, and tend to be under-
(Harris, 1963, and this question remains relevant both in represented in the pollen records relative to their local
New Zealand and elsewherBU(l, 2010; Reitalu et al., 2014 abundance Nlacphail and McQueen, 19%83The New Zealand
Palaeoecology and neoecology often appear to be proceedicmnifer pollen records therefore provide an ideal setting to
on quite di erent tracks, publishing in dierent journals and expand understanding of conifer history, biogeography, and
addressing quite separate themes. The purpose of this papereisology.
to address Bill Harris's question with particular emphasis on Ecological studies of New Zealand conifers have focused
the history of the New Zealand conifers, and to assess pregresn their forest dynamics at small spatial and limited time
in integrating the two disciplines over the 80 years sinceyLucscales (sub-millennial) although progress has also been made i
Cranwell and Lennart von Post's pioneering publication. understanding their physiology, and soil preferences andatém
New Zealand conifers oer an excellent opportunity to drivers at a national level. In contrast, pollen analytidaldges
integrate the rapidly developing understanding of their eggl typically address time scales ranging from hundreds to amiBi
and biogeography with insights derived from nearly a century oof years, are often carried out by researchers with a gezabgr
palynological research. The 20 conifer species in New Zealag@ographic background, and the major preoccupation has been
(Table 1; Figure 1) are represented by three distinct families:interpreting pollen sequences in terms of climate or landscape
Araucariaceae (1 genus, 1 species), Cupressaceae (1 gedoange. This mismatch means integration of ecological and
2 species) and Podocarpaceae (including the synapomorphpalynological data has been somewhat neglected.
Phyllocladaceae; 8 genera, 16 species). Six of the mostatiund Conifers are abundantin New Zealand forests and shrublands
of the tree conifer species are easily identied by thei{Ogden and Stewart, 1995They are found from tree line to
pollen (Table 1); many of the conifer species are emergentthe lowlands, from the driest to the wettest regions and from
and all are wind-pollinated. These traits have resulted irthe northern tip of the North Island to Stewart Island in the
a detailed representation of conifer taxa in the terrestriafar south, absent only from some of the o shore islands of
and marine pollen records from across the entire geologicdahe archipelago Table 1). They include the tallest tree (50 m)

TABLE 1 | New Zealand conifer species: ecological parameters.

Species Max Max age b Dist. Alt. range Moist Dryland Infertile Wetland-wet In alpi ne
height 2 forest forest soils soils ecotone

Agathis australig 40 1,700 NN L-M . .

Libocedrus bidwillii 20 805 N, S M-S . .

Libocedrus plumosa 25 - NN L .

Dacrycarpus dacrydioides 50 775 N, S, St L-M . . .

Dacrydium cupressinunt 40 1,200 N, S, St L-M . . .

Halocarpus bidwillii 5 280 N, S, St L-A . . . .

Halocarpus biformis 10 1,000 N, S, St L-S . . .

Halocarpus kirkii 25 - NN L . .

Lepidothamnus intermedius 15 247C N, S, St L-S . . .

Lepidothamnus laxifolius 0.1 Clonal N, S, St L-A . . .

Manoao colensof 15 800 N, S L-M . .

Phyllocladus alpinus 12 260 N, S Mostly M-A . . . . .

Phyllocladus toatoa 20 441 NN L-M . . .

Phyllocladus trichomanoides 25 >300 N, S L-M . .

Podocarpus acutifolius 10 - S L-M .

Podocarpus laetus 24 625 N, S, St L-S . . . .

Podocarpus nivalis 3 Clonal N, S M-A .

Podocarpus totara 35 1,000 N, S, St L-S . .

Prumnopitys ferrugined 30 770 N, S, St L-M .

Prumnopitys taxifoli& 30 1,400 N, S, St L-M . .

*Unique pollen type in New Zealand; Taxon favors this environment. NN, northern North Island; N, North Isid; S, South Island; St, Stewart Island. L, lowland; M, montane; S, subalpine
A, alpine.2McGlone et al. (2010) P Data from: Wardle (1991) Ogden and Stewart (1995)updated by data compiled by the authors for the NZ Plant Traits Database.
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and also sprawling, prostrate shrubs. Many of the conifers a
large, emergent trees and often dominate forest biomassr&e
(Agathis australis Prumnopitys taxifolia Podocarpus totara
Dacrycarpus dacrydioideand Dacrydium cupressinunyield
valuable timber, which underpinned the New Zealand econom
in the rst few decades of European settlement and continued t
be exploited until the closing decades of the twentieth centu
Understandably, these ubiquitous, dominant and valualdedr
have been a focus of biogeographic and ecological research i
New Zealand, and debates over their origin, ecologicalaabs
in particular, regeneration dynamics, have continued unetia
over the last 120 years.

Leonard Cockayne was the rst New Zealand ecologis
and, in The Vegetation of New Zealan@ockayne, 1928
formulated ideas about the ecology of the conifers, many d@
which remain current. However, more controversially, dragvi
on both ecological and macrofossil evidence he argued th
conifer and angiosperm species were locked in a longstandingge =5
evolutionary conict. The historical tendency, as he saw it '
was for conifer retreat in the face of angiosperm competition
and, although disturbance and poor soils could give them
temporary advantage from time to time, his opinion was that
eventually they would become relic: “...a remnant merely
of ancient conifer forests which have been in the process of
gradual extinction by certain broad-leaved dicotyledosou
trees—a process of extreme slownes§sidkayne, 192&. 21).
Cockayne's ideas were championed Bybbins (1962)who,
after a descriptive survey of the conifer-angiosperm forest
of the North Island, likewise claimed the angiosperm fores
“represents a broadleaf forest climax which is surely reptacin
a more ancient podocarp forest climax, remnants of which stil
remain mingled with the broadleaf forest” (p 34). This view
has persisted that the conifers and other older broadleavedFIGURE 1 | Examples of New Zealand conifer growth forms and habitats.
genera represent an unchanging rainforest element from a(a)Agathis au§tralisdominated ft_)rest, Fukgti Forest, rjortherr? Nprth Island
Gondwana predating the 80-85Ma separation of the ancestraf™ 2!ia! conifer forest on pumice soils witiPrumnopitys taxifolia

K X ; . ferruginea,and Dacrycarpus dacrydioides Ngaputahi, central North Island
Zealandia continental fragmentK(rkpatrlck and DellaSala, (c) Dacrycarpus dacrydioidesswamp forest, Arohaki Lagoon, central North
201). The popular conservation literature often refers to the island (d) dryland Prumnopitys taxifoliaforest with dense divaricating shrub
conifer-rich lowland forests of New Zealand as “dinosaueft”’ understorey, Isolation Creek, north-eastern South Islan¢e) even-aged,
(http://www.aucklandbotanicgardens.co.nz/whats-oa/ras/ landslide-induced Liboc.:edruls bidwilliistand, Gh.ost Valley, north-west South
dinosaurs-in-the-gardens/). A recent publication on thesgi Island (f) Halocarpus blfor_mls_s_ljrubland at treeline, Hunts Creek, Westland

. X ' i (g) shrubby Halocarpus bidwilliion frosty, leached terraces, south-west South
hlStOt’y of the Southern Hemlsphere rainforests referrednigirt Island (h) prostrate Podocarpus nivalis Kakanui Mountains, south-eastern
characteristic taxa as “southern wet forest survivor&jdyman South Island. All images by the authors excepth) from John Barkla sourced
et al., 201}, thus emphasizing their antiquity and embattled| under CC-BY-NC from iNaturalist.
persistence. It has been claimed that the conifers—becduse o
their antiquity and slow adaptation to Pleistocene climatese
photosynthet_ically adapted to function at higher temperamre their current ecology and if, the concept of southern corsfas
than are optlmgl for present day New Zeale_mda(/vklns a_nd besieged relics is either valid or useful.
Sweet, 19991t is not unreasonable to see this presumption of
“primitiveness” as implicitly guiding the tenor of much ecgiloal
discussion about southern conifers, which becomes fodusse NEW ZEALAND VEGETATION CHANGE
their survival in an “advanced” angiosperm dominated world. QOQVER THE LAST 30,000 YEARS

Here we provide an overview of the reaction of New Zealand
conifers to climate and landscape transformation during andseneral locations are given Figure 2andFigures 3 4 and5-9
after the Last Glacial Maximum (LGM), including the impact provide representative pollen diagrams illustrating the ademn
of recent human arrival and the introduction of re. We then discussedTable 2 summarizes the typical climatic regimes of
use this background to explore to what extent the long-termmportant conifer-dominant vegetation types in relation toetr
perspective provided by pollen analytical data can shed light oourrent and past distributions.

~wn
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FIGURE 2 | Localities mentioned in the text. Areas in black, above trebne. Baseline data, Landcare Research.

Last Glacial Maximum (Newnham, 1992; Wright et al., 1995; Elliot, 1998; Newnham
The LGM (29to 19 ka) (k& thousands of calibrated radiocarbon et al., 201). From the Auckland Isthmus southwards, tall
years before 1950 CE) was the coldest period of the preseiorest became sparser or conned to the coast while in
glacial-interglacial cycld_rrey et al., 2012 During this period the central districts of the North Island and the north
mean annual temperatures fell by 4€7(Newnham et al., 20)3 of the South Island, conifer shrubland to low forest of
glaciers advanced throughout the Southern Alps, extendinBhyllocladus alpinuand Halocarpus bidwilliformed a mosaic
below current sea level in the west. Overall precipitation waith Nothofagaceae forest patches, broadleaved shrubéard,
lower, perhaps by as much as a thirtlllpway et al., 1992and  grassland. The western districts of the South Island, even
the prevailing westerly air ow meant that the rain shadowieg  those adjacent to the glacier fronts, had angiosperm shruablan
east of the axial ranges became semiarid. The plains of tkeant grassland cover, but also patches of low conifer forest, and
south-eastern South Island have been described as apprangnat sparse stands of tall conifer§/gndergoes et al., 2005This
a polar desertl{Icintosh et al., 1990 vegetation type extended to coastal Fiordland in the far lsout
Last Glacial Maximum (LGM) pollen sequencdsgured  of the mainland Pickrill et al., 1999 In eastern lowland
show a forested or partly forested northern third of thedistricts, grassland, low-growing angiosperm shrublandl an
North Island (above c. latitude 38 In Northland, although sparse prostrate shrubs and herbeld were the main cover
Nothofagaceae were the dominant tree cover (with abundardand conifers of any type were rare or absent over large areas
Lophozonia menziesand Fuscospora truncgtatall conifers although maintaining a regional presenéédar, 1980; McGlone,
played an important role, particularlipacrydium cupressinum 2002).
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FIGURE 3 | Pollen and spore results for representative samples withisites dating to the LGM. In descending order of increasing l&tide within broad zones: northern
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The Deglaciation (18 to 11.6 Ka) and can tolerate a certain amount of drought, in sharp coritras
A hemispheric warming and rapid retreat of glaciers began ab the angiosperms that became abundant in the early Holocene
about 17-18 ka following the last LGM advance at around 19 kée.g.,Ascaring Metrosideros(Leathwick and Whitehead, 2001,
(Moreno et al., 2015; Darvill et al., 2Q1€onifer-angiosperm Hall and McGlone, 2006

forest spread in the central and northern North Island from

17 to 14 ka replacing previous forest-scrub-grassland mesaid he Holocene

(Figures 4-6). For instance, lowland forest expanded in theThe beginning of the Holocene period at 11.7 ka, marks the
Auckland Isthmus between 15.5 and 14 ka(diford et al., 2002, transition to true interglacial climates. Warming contirgién
2003; Newnham et al., 2007; Augustinus et al., pCdtlKaipo New Zealand with increasing rainfall in the west, and the peri
Lagoon in the montane North Island, 16.5-14 kéefvnham and  between c. 11 and 8 ka was characterized by a greatly weakened
Lowe, 200 in lowland Taranaki at 15 ka\(cGlone and Neall, westerly air ow Shulmeister et al., 20D4The intensely oceanic
1999; and at Lake Rotoaira on the montane central Volcaniclimate promoted the spread of the small trAscarina lucida
Plateau 16.5-15 k&/cGlone and Topping, 1977, 1983 which cannot tolerate dry air or frost(cGlone and Moar, 1977;

In the South Island, stands of forests expanded inviartin and Ogden, 2005 A forest dynamic model was used to
what was still a largely grass and shrub covered landscapgplore the climatic implications of a deglacial-Holocene polle
(Figures 4 7-9). Northwest Nelson saw expansion of conifersequence from a montane rainfall spill-over area of the Semtth
forest at around 14.5 kalgra et al., 20)5and at Okarito on the  Alps. Warmer than present winters, somewhat cooler summers,
west coast, between 15 and 14.5 Kan(dergoes et al., 200%@t  and less but more evenly spread rainfall were predicted for the
Cass Basin in inland Canterbury, 15.7-14.5 Kka@lone et al., early HoloceneNicGlone et al., 2004
2009 and at Clarks Junction, eastern South Island, 15.5-13.5 ka In northern districts of the North Island, and western
(McGlone et al., 2003 A minor reversal of this warming trend districts throughout, conifer forests with abundabacrydium
occurred between 14.5 and 12.9 ka with glacial readvances ¢opressinum Prumnopitys ferruginea and Dacrycarpus
the Southern Alpsarvill et al., 201} By this time, dense tall dacrydioidesand tree ferns dominated F{gures4 5). In
conifer forest had occupied all but the driest eastern disdri rain-shadow eastern districtsPrumnopitys taxifolia and
of the North Island and extensive stands were present ifPodocarpusspp. spread in lowland to montane locations
the lowland South Island throughout. These early deglaciglvicGlone, 2002; McGlone et al., 20p%ut low forest of
forest pollen spectra were dominated Byumnopitys taxifolia Phyllocladus alpinusind Halocarpus bidwillii occupied the
(Figures 5-9) but with signi cant input from Phyllocladus drier, frosty inland basins and hill slopesI¢Glone and Moar,
Libocedrusand, in places, the Nothofagaceol®phozonia 1999. Stewart Island at the far south of the South Island was
menzesiand the deciduous angiosperm tr&éagianthus regius the last region where lowland conifers spredeg(ires 4 9,
were common. These trees are all frost-harByifnister, 2007  Toitoi). The early postglacial forests on Stewart Island were
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Canterbury (McGlone et al., 2004). Okarito bog, central West Coast{lewnham et al., 2007).
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FIGURE 9 | Conifer and Nothofagaceae pollen sequences. Waitutu, Fidland (Turney et al., 2017. Ajax Bog, Southland [icGlone et al., 2003. Toitoi Flat, Stewart
Island McGlone and Wilson, 199§.
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TABLE 2 | Climate regimes for major conifer associations past and psent.

Climate regime

Characteristic vegetation

Current distribut ion

Past distribution

S: warm, relatively dry, long

W: mild, wet

S: mild, moderate to abundant rainfall
W: mild, wet

S: mild, excessively cloudy and humid
W: mild, wet

S: cool, but with warm clear spells,
wet to very wet. Short
W: cold

S: cool, cloudy; moist to very wet.
W: mild

S: warm, dry. Short

Conifer-broadleaved, most tall conifers
present, Agathisin north
Conifer-broadleaved, most tall conifers
present, Dacrydiumand Dacrycarpus
abundant

Broadleaved canopy trees and tree fern
dominant

Nothofagaceae with subdominant
Phyllocladus alpinusin places

Conifer scrub, Phyllocladus alpinus
Halocarpus bidwillii,and broadleaved
scrub

Conifer-broadleaved, dominant

Northland, lowland central NI

Western districts of southern NI and Sl

Coastal, damp gullies

Upper montane and treeline throughout

Upper montane and treeline in central
Southern Alps, Taranaki

Eastern dryland rainshadow

Mid- to late Holocene, NNI

Early deglacial onwds in west
throughout

Coastal far southern districts, earl
Holocene

Mid to late HolocenelNorthland early
postglacial

Widespread in axial ranges early to
mid Holocene. Lowland western
districts LGM

Widespread in early deglacial North

W: cold Prumnopitys taxifolia Podocarpus laetus

Dacrycarpus Kunzeastands
S: warm, very dry. Short.
W: very cold and dry

Phyllocladus alpinusconifer scrub Southeastern Sl interior basins and
dominant, small-leaved angiosperm scrub montane slopes

Widespread during LGM in NI

Climate data after Leathwick et al. (2003) S, summer (January mean temperatures): warm, 18C; mild, 18-14 C; cool, 13.9-10 C; cold, below 10 C. W, winter (July mean
temperatures): mild, 8 CC; cool, 8-5 C; cold, 4.9-0; very cold, below zero. NI, North Island; SI, South Island.

entirely dominated by broadleaved angiosperms and tree The mid to late Holocene saw spread of Nothofagaceae in
ferns. Although Stewart Island was connected to the mathlanmost districts (icGlone et al., 1996 There are two exceptions.
well into the early postglacial, neither Nothofagaceae nofhe Northland Peninsula and the Auckland Isthmus had
Phyllocladus alpinys$oth abundant on the adjacent mainland, extensive Nothofagaceae forest, moBtlscospora truncatnd
are present on the island, suggesting climatic factors aratk- Lophozonia menziesduring the LGM and early postglacial
moderated competition prevented their establishment whitedl  but this was replaced during the early Holocene Agathis
connections existed. podocarp-broadleaved communitie€ljot, 1998; Newnham

et al., 201). Lophozonia menziediormed part of the lowland
The Mid to Late Holocene deglacial forests in the central North Island but was eliméuhat
The intensely oceanic climates of the early Holocene gave wagfore the beginning of the Holocene by conifer-broadleaved
from 8 ka onwards to more seasonal regimes characterizd@rests (lewnham et al., 1989, 1999; Alloway et al., }992
by longer, cooler winters and shorter, but warmer, summersNothofagaceae at the LGM occurred only in scattered patches
Increased south-westerly wind ow over New Zealand broughin the far south but had a more substantial presence in coastal
increased winter rainfall\lcGlone et al., 2004 This increased areas of the north-west of the South Islaride{ra and Leschen,
seasonality strongly favored some trees over others. Irfahe 2009. Fuscosporaspread appears to have started more-or-
North, it is only post 8 ka thatAgathis australis-the giant less synchronously throughout the uplands of the central and
Araucarian forest dominant Higure 1)—becomes universally southern North Island and northern South Island during the
common in the pollen rain@Qgden et al., 199t about the same €arly HoloceneRigures 4 6-9). Fuscosportorests are currently

time that Prumnopitys taxifoliaPodocarpuspp., Phyllocladus the most common cover of the uplands and axial ranges of the
spp., andLibocedrus plumoshecame also more prominent centraland southern North Island and northern South Island, but

(Elliot, 1998; Newnham, 1999; Elliot et al., 2p@Bigure5).  only became treeline dominants from about 9 to 3 ka, depending
Some caution is needed in interpretifgathisfossil records as 0n the site Rogers and McGlone, 1989; McGlone et al., 1996;
pollen and macrofossil occurrences may not match because é#ra et al., 20)5Fuscospora cli ortioidesthe most abundant

di erential preservation, and thus uctuations during the shto  tree line forest tree—almost invariably spread into pre-engsti
late Holocene may simply re ect changing wetland watertablealpine forests and shrubland bfbocedrus bidwillii, Phyllocladus
(D'Costa et al., 20091n the very far southern Stewart Island, alpinus andHalocarpuspp.

the conifersDacrydium cupressinunPrumnopitys ferruginea ~ Lophozoniaspread after c. 7-6 ka across the south of the
Halocarpus biformjs and Lepidothamnusspp. began their South Island in widely separated areas mainly upland treeline
spread into the previously dominaiMetrosiderodVeinmannia Sites, but including montane-lowland conifer-broadledverest
broadleaf forests from about 6 ka onwardléoGlone and Wilson, (McGlone et al., 2003 Where Lophozoniatook part in these
1996 Figure 9. On the adjacent south-eastern South Islandmid to late Holocene successions in lowland to lower montane
mainland, Phyllocladusind Podocarpuow forest occupied the Settings, it mostly spread into conifer-broadleaved forest

dry interior basin-and-range country only after 8 k&¢Glone ~ WherePrumnopitys ferruginear Dacrydium cupressinunwere
etal., 1995, 1997 abundant (see Eweburrkigure 8). In these lowland-montane

Frontiers in Earth Science | www.frontiersin.org 12 November 2017 | Volume 5 | Article 94



McGlone et al. Palynology and the Ecology of the New Zealand Conifers

sites, Fuscosporapp. follow the initial invasion or spread by and the three most frost-tolerant trees and shrubs in the

Lophozonia ora (Halocarpus bidwilliiPhyllocladus alpinysindPodocarpus
nivalis) are conifersBannister, 200)7 With regard to low rainfall
Late Holocene and Polynesian Fire and drought,Prumnopitys taxifoliaPodocarpus laetigormerly

Fire occurred frequently on the large, raised restiad bogys & - halli), P. totara and Dacrycarpus dacrydioidese among
northern New Zealandewnham, 1992; Battersby et al., 2017& Small group of trees singled out as currently having their
Haen ing et al., 201y but elsewhere was sporadic. Along theMaximum abunda_nce under wet climate regimes, bu_t also being
rain-shadow regions in the ranges to the east of the Southerf@Pable of tolerating dry, warm lowland sitéise@thwick and
Alps res burnt from time to time, inducing a patchy landscape of Whitehead, 200 Agathis australisgrows best under drier
conifer low forest, shrubland and grasslardi¢rows et al., 1993; Summer conditions and can tolerate severe droughaginnis-
Burrows, 1996; Wardle, 2001b; Pugh and Shulmeister)2pire N et al., 201p In particular, these species can tolerate low
frequency may have increased at around 3 ka in some eastefmnospheric de citsDacrydium cupressinurand Prumnopitys
parts of the North and South Islands but was still infrequenti€’Tugineaare, on the other hand, far less tolerant of both dry
(McGlone and Moar, 1998; Ogden et al., 1998; Horrocks et as0ils and atmospheric de cits. Some species have an ambiguous
2001; Woodward et al., 20)L4/ew New Zealand woody plants relationship to drought:Dacrycarpus dacrydioidesin tolerate
have signi cant adaptations to re Herry et al., 20l)4and Warm, dry lowland situationsLeathwick and Whitehead, 20p1
conifers in particular appear to be highly vulnerable to re. Abut physiological measures show it has a very low tolerance of
notable exception i#falocarpus bidwillii which has thick bark ~Water de cit (Brodribb and Cochard, 200@nd remaining stands
and can recover through basal resprouting after i&/4rdle, ~are often associated with wet soisdure 1). _
1999. Polynesian res beginning in the late thirteenth century ~ Neéw Zealand conifers are generally regarded as being
ultimately removed about 40% of the montane and lowlandgore folérant of poor soils Coomes and Bellingham, 2011; de
cover (VicWethy et al., 2010; Perry et al., 201This forest loss Jonge et al., 20)2and have an anity for leached, low
was concentrated among conifer-rich lowland forests where hutrient, acid or poorly drained soils that form in ever-wet
30% of this type was lost in the North Island, and nearly 90ognvironments and someDacrydium cupressinunDacrycarpus

in the South Island Rerry et al., 201JaSome o shore islands dacrydioides Lepidothamnus intermediusManoao  colenspi
were thought never to have had conifer forest, but pre-Patjare  Libocedrus plumosaHalocarpus  bidwillii H. biformig are

pollen sequences have demonstrated that they didngshurst ~ characteristic of such sitesichardson et al., 200xbWhere
etal., 201)4 the climate supports tall trees, conifers usually dominate the

tree biomass as there are only three tall angiosperm trees
that tolerate wetlandsHlaeocarpus hookerianlsurelia novae-

A GLACIAL-INTERGLACIAL PERSPECTIVE zelandiaeand Syzygium mairgVicGlone, 2000 Pollen diagrams
ON THE ENVIRONMENTAL NICHE OF THE con rm this and peat sites usually show conifer sequences with

NEW ZEALAND CONIFERS Dacrycarpus dacrydiodes the fertile, often swamp or lagoon
) _ beginning of the sequence, abdcrydium cupressinurivianaoa
Ecological Niche colensoiLepidothamnus intermediusnd Halocarpus bidwillii

An outline of the ecological niche of the conifers has beeremi at the infertile bog later stage$/¢Glone, 200p However, in
in Table 1, and in Table 2 we summarize how the changing some situations conifers are quick to colonize fertile saiter
climate and seasonality over a glacial-interglacial dyassshifted disturbance, losing ground to angiosperm broadleaves as the
the distribution of broadly de ned conifer vegetation gmpimgs.  succession proceeds, and this is most apparent in the pollen
The loss of 80% of New Zealand's lowland forests since humaecord after large-scale volcanic disturban@éilnshurst and
settlement, along with nearly all the forest from rain shado McGlone, 1996; Horrocks and Ogden, 1)®it it also occurs
eastern districts, has left wet conifer-broadleaved feresmid after smaller scale disturbancésdy, 1989; Carswell et al., 2007;
montane to alpine Nothofagaceae dominant forests as the mode Jonge et al., 20)L.2
common forest types. Our understanding of their niches desiv. This tolerance of frost, drought, dry air and low nutrient or
mainly from ecological observations made in dense, wesfere-  water-saturated soils can to a certain extent be attribtettieir
which do not fully cover the environmental range of most oéth narrow, embolism-resistant tracheids, conservative hylita
species—and correlations between environmental variads systems and thick, narrow leaves which lead to slow growth
their abundance in these same forests. Nevertheless, aenwohb relative to competing angiosperms but much greater stress
statements can be made about New Zealand conifer ecologitalerance of poor soils, cold and drougtterry et al., 2006
niches (se€oomes and Bellingham, 20hich are likely to be This combination of attributes is the key to conifer nicheeov
robust. both long and short timescales. Despite slow growth rates,
New Zealand conifers are slow growing and long-lived inongevity ensures that the crowns of New Zealand forestfeomi
comparison with competing angiosperm®dden and Stewart, eventually rise well above the continuous lower broadléave
1995 and markedly taller. Despite conifers making up onlycanopy. They therefore spend most of their life span with their
8% of the tree ora, 33% of the trees growing 20m orcrowns exposed to high solar radiation, higher wind speeds
more in height are conifers. As a group, the conifers ar@nd low humidity which induce a drying e ect exacerbated by
markedly frost-tolerant, most resisting frosts o7 C or more, the physiological water transport stress that scales witghiei
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(Koch et al., 2004 For instance, tropical emergent trees transpireconifer-broadleaved forest due to recruitment di cultiesntil
most of the water used in the forest they form part éfuqert  a large-scale disturbance resets the forest with thicldgketd

et al., 201). A second, related fact is that New Zealand conifergonifer stands ©Qgden, 198p Some recent data suggests higher
within a conifer/broadleaf tract are often most abundant onconifer mortality and slower replacement in central North
ridges and steeper slopes exposing their canopies to windi¢sland forests a ected by volcanic eruptions consistent witis th
less humid conditions and drier soils. Just a handful of talmodel Smale et al., 20),6but complexities of forest history
angiosperms compete in this supracanopy emergent space (ergake sweeping generalizations inadvisable. For instanoadbr
Laurelia novae-zelandiag®letrosideros robust&nightia excelsa scale analyses of North Island forests have shown some of the
Fuscospora fuscand F. truncatg, and it has been argued that largest conifers have lower mortality rates than angiospeess
the angiosperm and conifer components of the forests they cqRichardson et al., 20)%and selective logging of conifers from
occur in are largely independent of each othé€rg(len, 1985; wide tracts of conifer-broadleaved communities has givse to

Lusk, 2002 anomalous contemporary patterns with virtually no regenenati
_ in some areas (driven by absence of conifer seed sources) vs.
Regeneration massive regeneration in otheiSgrswell et al., 2007

New Zealand conifers have long been believed to face The pollen record seems to only detect the very largest of
severe regeneration problenisqckayne, 1928; Holloway, 1954;disturbances because of its typically large spatial and teahpor
Robbins, 1962; Wardle, 1963; Veblen and Stewart, 198%cales. Once these are factored in, there appears to be little
Smale et al., 20)6 Most are bird-dispersed and dispersaloverall trend in conifer-broadleaved forest toward angiesn
seems not a critical issue. The wind-dispergegthis australis dominance. There is little signal in the deglacial and Holazen
and Libocedrusspp. appear to have more limitations, and pollenrecord from extant conifer-broadleaved tracts thatifers
the montane to alpinelLibocedrus bidiwillihas a markedly have ever been reduced to low levafg(res 4 5-9). During
discontinuous distribution \(Vardle, 201), but even so they the rst few thousand years of conifer spread during the
regenerate well after disturbanc®eblen and Stewart, 1982; deglacial period, conifer pollen input appears to have been
Steward and Beveridge, 2)1The essential problem faced by higher than subsequently: most sites show this period of great
the conifers in lowland forests is establishment in openitigg  conifer abundance did not last. However, in those areas that
quickly II with tree ferns and fast-growing and/or vegelatly  have remained under conifer-broadleaved forests througtite
resprouting angiosperm trees. This diculty is compounded Holocene, the conifers appear to have always been abundant.
by conifers rarely recruiting under closed canopi€3gflen There is one exception. During the late deglacial-early Holecen
and Stewart, 1995 A marked feature of most New Zealand period, coastal southern South Island and Stewart Island
conifers is distinct juvenile foliage or growth form®drken  appear to have had a broadleaved-tree fern community with
and Parsons, 20)-&-most strikingly with the divaricate branched Weinmannia racemosand Metrosideros umbellatarominent
juvenilePrumnopitys taxifoliathe drooping foliage dbacrydium  members, and conifers all but excluded for an extended period
cupressinumand the pyramidal “ricker” juvenile ofAgathis (Pickrill et al., 1992; McGlone and Wilson, 199&Conifer
australis It is at least plausible that these monopodial juveniledominance was not established until well into the mid Holocene
growth forms compensate for slow biomass accumulation byFigure 9). This island has extremely oceanic climate by global
favoring a single stem axis while the often elongated, planatandards/{leurk, 1983 which the low insolation, warm winter-
or dispersed leaves maximize photosynthesis in a complex lighbol summer regime of the early Holocene intensied. The
environment. Although the New Zealand conifers are gengrallconifer strategy, which relies, in the absence of landscape-
considered to be shade-intolerar®{meron, 1954; Ebbett and level disturbance, on environmental conditions unfavdeato
Ogden, 1998 experimental studies suggest that this intolerancangiosperms to regenerate well, was negated. A recent patallel
varies between taxausk et al. (2009yeport little relationship  more local level may be found in some fertile, dark, moistigsi
between light availability and seedling presencédatrydium where tree ferns, palms and broadleaves appear to permanently
cupressinunand Prumnopitys ferrugineen forest stands in the exclude conifer regeneration.
central North Island. Observations in a northern North Isth
conifer-broadleaved forest showed that while the conitmd ~ Conifers and Drylands
much the same shade tolerance as their angiosperm competitoldew Zealand conifers extend into semi-arid areas (rainfall
they grew more slowly and it was only at forest edges th&800mm al) and were dominant across a wider “dryland”
their greater stress tolerance allowed them to overcoms th{Penman decit 270mm al) region Figure 10 mainly to
regeneration handicap_(isk et al., 2015 Conifer regeneration the east of the axial ranges that made up some 19% of the land
in drier regions is poorly known. However, we can postulatearea of New Zealand prior to human settlement in the thirtdent
that drier, relatively infertile sites have sparser undmesgys century Rogers et al., 20D5Because dryland conifer forest was
and ground-layers, providing better opportunities for comife largely destroyed by Polynesian re8d(ry et al., 2012Hittle is
regeneration \(Vardle, 1963; Burns and Leathwick, 19%hd known aboutits ecologyigure 11shows how human clearances
the greater stress tolerance of the adult trees permit them tbave reduced the representation of current forests to viestig
dominate. levels in areas with less than about 900 mnt @ainfall, and
John Ogden proposed an inuential model in which how conifers dominated the pre-deforestation pollen rainhist
successive generations of conifers form a lesser proporfien o dryland zone. The pre-deforestation extension of taxa, sagh
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Dacrydium cupressinumwas abundantNewnham et al., 2007
and Northland (wherd-uscosporaras abundant) that this classic
tall dryland conifer forest failed to establish.

A generalized dryland pattern that prevailed just before the
Polynesian deforestation can be reconstructed from massifo
and pollen datal¢lolloy, 1968; McGlone et al., 2003 he pre-
deforestation pollen rain of the drylands was largely donedat
by conifers Figure 11), and the drylands may have supported
denser conifer stands than elsewherl( and McGlone, 2006
Tall Prumnopitys taxifolia and Podocarpus totardominated
associations on the lowland, deeper, more fertile soilsnebete
up into inland valleys in higher rainfall areas, wibacrycarpus
dacrydioidesprominent on swamp or lagoon soils. Stonier,
shallower soils throughout were dominated®gdocarpus laetus
especially on the midslopes of the inland valleys. Areas with
cold winters and dry, droughty summers would have favored
Phyllocladus alpinusiominance, with the most leached or
acid soils carrying a cover dflalocarpus bidwilliishrubland.
Prumnopitys taxifolimlominated the dryland pollen rain in most
places, but there are only a few macrofossil or charcoal mesnai
to corroborate this dominancé&odocarpus laetske the other
Podocarpuspecies) is not well represented in the pollen rain,
but occurs as a continuous component alongsitemnopitys
taxifolia. Preserved wood d?odocarpus laetus widespread on
tussock-clad hill slopes throughout eastern districts anaffisn
accompanied byPhyllocladus alpinusharcoal (olloy et al.,
1963; Ogden et al., 1998; Wardle, 200Rollen and charcoal
show that the driest regions of the central southeasterntiSou
Island, and intermontane valley bottoms of the eastern i@@nt
Southern Alps hadPhyllocladus alpinusnd Halocarpus bidwillii
FIGURE 10 | Dryland zone. Modi ed from Walker et al. (2009) Baseline data low forest to scrub cover.
held by Landcare Research. A wide range of angiosperm shrubs and trees co-existed with
the dryland conifers but only a handful of these were tall or
capable of dominating forest tracts. The few remaining fragta
Dacrycarpus dacrydioidd$alocarpusPodocarpushyllocladus  of dryland forest suggest that they would have been heavily
and Prumnopitys taxifoliainto the dryland zone is particularly stocked with conifers over a low and subordinate canopy of
clear and thus palynological investigations have focusedhmu small angiosperm trees, such Mglicytus rami orus Griselinia
more on this zone than have ecological ones. littoralis, Elaeocarpus hookerianuand Hoheria angustifolia

Conifer forests were more widespread during the early\Most of these species are in the 10-15m height range, with only
deglacial and Prumnopitys taxifolia and Podocarpusspp. Sophora microphylldunzeaspp., andPlagianthus regiusller
dominated the transition from shrubland-grassland to @ds (15-20m), but even they rarely match the 20-50 m heights of
forests MicGlone and Bathgate, 1983; McGlone and Toppingthe podocarps. Th&unzeaspecies complex of Myrtaceaeous
1983; Newnham et al., 1989; Vandergoes et al., 1997; Sahdifesmall leaved (leptophyll), wind-dispersed shrubs to tall trees
et al.,, 2003; Augustinus et al., 2012; Jara et al.,)20tese formed extensive forest tracts: the talléunzea(K. serotina
earlyPrumnopitysand Podocarpuforests were not accompanied K. robusta and K. ericoidesrange throughout the mainland
by an abundance of tree ferns, nor signi cant amounts of tallislands and occupied the very driest sites but generally tieey
angiosperm trees, as the latBracrydium dominated forests not form an integral part of mature conifer forest; rather yhe
were and still are, and thus it seems that the early deglaciatcur as ecotonal or early successional dominadts l(ange,
was drier than now. Dryland pollen sequences show that the0149. Interestingly, their small, linear needle-like leavegct
forests existing just before deforestation strongly rdsech multi-branched form, ectomycorrhizal status, ability tocaupy
the rst forests to establish after the early degladirsine  bare ground, relatively fast growth and resistance to stiess
Muehlenbeckiashrubland/grasslands, and then changed littleand rapid recovery after disturbance, including re, is stgn
during the Holocene{icGlone et al., 20Q3In the driest areas reminiscent of Northern Hemispher®inus It is unlikely that
of the southeastern South Island, conifer-broadleaveddioco- the dryland conifers were as dependent for regeneration on
existed with patches of grassland and shrublantt@lone, large-scale disturbance as they are in denser, moist forasts
2001b; Walker et al., 2004a; Rogers et al., R0OG5was these dryland forests lacked a dense understory, ferns being
only on the wet, western anks of the Southern Alps (whereparticularly sparse.
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FIGURE 11 | Pollen (orange) and basal area biplots (gray) for conifera@ Nothofagaceae. Pollen percentages (orange) based on terstrial sum excluding ferns and
lycopods. Basal areas for trees (blue) from the LUCAS progname national Natural Forest plot (20 20 m) data. Data on individual panels scaled relative to laegt
value.

Conifers and the Nothofagaceae poorly dispersed seeds and a requirement for ectomycorrhizal
A striking feature of many pollen pro les from the New Zealand infection (Wardle, 198)¥and thus dispersal limitation became the
mainland south of the Northland Peninsula, and in particularfavored explanation for Nothofagaceae gaps at all scallesof/
along the axial ranges, is the rise to dominance over thet al., 1963; Burrows, 1965; Moar, 1RPalynological evidence
postglacial period of the Nothofagace&égres 4 5-9). Onthe  suggests that neither of these explanations—glacial eanlosi
basis of their Southland pollen diagranizanwell and von Post deteriorating climates—is su cient alone. To see why, weda
(1936)divided the New Zealand postglacial into three periodsto look at how the environmental niche of Nothofagaceae and
(I) Grassland; (ll) Podocarp forest; (Ill) Nothofagaceagest conifers di er.

and grassland mosaic period. Period | was regarded as the nal New Zealand Nothofagaceae, in general, occupy sites with
stages of the glaciation, with cool, severe climates witle li cooler mean annual temperatures than the tall tree conifers
regional di erentiation; Period Il, wet with probably maxinmu  (Leathwick, 1996and dominate most current tree line€ése
warmth; and Period Ill, climatic deteriorationdranwell, 1938  and Duncan, 201¢ While overlapping to a large extent with
That cooling climates had driven the spread of Nothofagaceamonifers in their environmental toleranceBi¢ure 11), and thus
was readily accepted at rst becauBescospora cliortioides co-existing over wide areas, Nothofagaceae are mosthntabse
and Lophozonia menziesfavor cooler regions and climatic from the warmest locations—mainly the north of the North
explanations for anomalous Nothofagaceae distributiomsb®e Island and southern North Island lowlands. Like conifers,ythe
popular for a time Holloway, 1954; Nicholls, 19%x6However, are vulnerable to having their regeneration supressed hy fas
it had also been long known that the Nothofagaceae havgrowing broadleaves under warm, moist climates but lack the
a number of broad gaps in their distribution (the Taranaki slow-growing emergent strategy that permits conifers toigeirs
volcanoes, the central and highest section of the Southemfense broadleaved forestsigk et al., 2003 They are also largely
Alps, central Southland and Stewart Islari@éipckayne, 1928 absent from the drier, more drought-prone, frostier regions
Willett (1950) suggested that the forest cover is in a statevhere several tall conifer trees (most notaBlydocarpus laetus
of disequilibrium because of the lasting e ects of exclusiorand Prumnopitys taxifolip are abundant. However, ecosystem
of Nothofagaceae trees at the height of the LGM by icenodels predictthat Nothofagaceae should dominate over miost o
or severe climates and thus attributed the long-term foresits range gapsHall and McGlone, 2001, 2006; Leathwick, 2001
dynamics of glacial a ected areas to the slow, but inexorable The absence of Nothofagaceae from the seasonally dry and
encroachment of Nothofagaceae trees into conifer-bradle frosty areas, such as the south-eastern South Island, evagtiho
dominated associations. The Nothofagaceae have winged, buodel results project its presence, seems unproblematic once
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the limitations of the regeneration niche (which is not exfily ~ from conifers—with Nothofagaceae along river courses or
included in the models) is understood. The models projectidges—or the tall conifers (mainlfpacrydium cupressinum
Nothofagaceae dominance because it is quite frost resibtan Prumnopitys ferruginea, P. taxifglendPodocarpus laetpyform
also fast-growing, and excellent at colonizing slips andraigs  a discontinuous, sparse overstratukivgrdle, 1984, 19910nly
(Wardle, 1984; Richardson et al., 2D1However, they are rarely are isolated Nothofagaceae trees scattered in ezonif
poor at regenerating in grassland—where their sensitivity tbroadleaved forest/(ardle, 198} Holocene pollen sequences
late season dryness appears to be a factor—and are subjecfrtam the wide Nothofagaceae gap in central western Southdslan
local dispersal and mycorrhizal limitations. A§ardle (1984  show that these boundaries have been largely static overithe m
pp. 381-382) comments, “Beech seedlings are poor competitdis late Holocene both at th&uscosporalominated northern
and have di culty in establishing where the forest undemstas  edge Pocknall, 198Pand in theLophozonia menziesiominated
dense, especially where turf or fern covers the ground. Youngputhern margin of the gap.( et al., 2008 Ecosystem models
seedlings are prone to unseasonal frosts and both winter aradso predict mixed conifer-Nothofagaceae associationsoth b
summer desiccation. Even saplings over 2m high can be killaggions {Hall and McGlone, 2006

by winter desiccation. Establishment success is therefsually

poor in the open, particularly where the climate tends to be cold

and dry.” NEW ZEALAND CONIFERS FROM A
If di culties with establishment are overcome, Nothofage® G| OBAL BIOGEOGRAPHIC PERSPECTIVE

have on average more rapid height growth and biomass
accumulation than do competing conifersvérdle, 199). This New Zealand Conifers: Relictual?
advantage is particularly marked at tree line in relation toExtant New Zealand conifers are clearly not relic. They are
the competing conifer®odocarpus laetuBhyllocladus alpinys ubiquitous within the New Zealand mainland, and their close
and Halocarpus biformis In upland Nothofagaceae forest, relatives thrive in similar oceanic forest environmentsegthere
Phyllocladus alpinuand Halocarpusspp. are often con ned to (McGlone et al., 2006 Their ecological success should not be
the more stressed sites, such as frost-prone terraces al®y valmeasured by their species richness, but by their dominance of
heads {Vardle, 198% or on poorly drained soils. In broad the forest biomassBond, 198) and on this measure they are
terms, the Nothofagaceae have higher photosynthetic ratds athe most successful plant group in New Zealand. The lineages
therefore are well equipped to take advantage of high inswlati from which they come mostly evolved during the Palaeogene-
days and short summers:{chardson et al., 2005a; Whiteheadearly NeogeneHittermann et al., 2012; Yang et al., 2012; Lu
et al.,, 201). The Nothofagaceae are also ectomycorrhizal andt al., 201} Some are quite recent: the alpine-upper montane
this brings with it the ability to directly use nutrients lked shrub and small tree group oP. lawrencei(SE Australia),
into organic complexes and also to lower the nutrient conteint P. gnidioidegNew Caledonia) and?. nivalis (New Zealand)
organic soils to such an extent that they are largely unbiéta is indicated by molecular clock methods to have originated
for trees with arbuscular mycorrhizal infectioickie et al., <5ma ago Condamine et al., 20)7and this is consistent
2019. However, these advantages over conifers are lessengith the timing of the uplift of the Southern Alps of New
under cloudy, low insolation summers (growth rate premiumZealand Heenan and McGlone, 20).3Prumnopitys taxifolia
reduced) and long, mild winters (breakdown of soil organic(New Zealand) andP. andina(southern South America) are a
matter and release of nutrients enhanced). When this is thelosely related two-species clade, and may have diverged only
climatic regime, other angiosperm broadleaved species preval0 ma ago. The New Zealand conifers are therefore not hotdove
dense fern groundcover forms restricting regeneration lué t from pre-angiosperm or even pre Gondwana-separation times
Nothofagaceae seedlings. We thus have the early Holocehet represent continuing adaptation to changing environngent
conifer-dominant treeline associations Bhyllocladus alpinys and competitors. However, that said, rainforest conifensehiaad
Halocarpus bidwilliand H. biformis Podocarpus laetuand to compensate for the structural and physiological limitagon
P. nivalis andLibocedrus bidwil{(McGlone et al., 2011; McGlone imposed by their hydraulics based on narrow tracheids, nafrow
and Basher, 20)2remnants of which persist throughout the simple veined leaves, sluggish stomatal responses and]lovera
axial ranges but most commonly in the central Southern Alpslow photosynthetic and growth rateBodribb et al., 2012 They
There is a strong association of these conifer-dominarglines  do this by leveraging the inbuilt stress tolerance thesébaties
with low insolation situations, such as in the southern Ruhi bring with them, and the longevity that accompanies theimslo
and northern Tararua Rangesk@gers and McGlone, 1994 growth rate [hencé&ond's (1989jtortoise” analogy].
but limited Nothofagaceae spread across alpine-montanewall  Given conifer dominance in many di erent New Zealand
systems most likely contributed to this pattenvérdle and Lee, forest types we suggest that, rather than having severe
1990; McGlone et al., 1996; Hall and McGlone, 2006 disadvantages, they have been extraordinarily successful
Mixed Nothofagaceae-conifer tall lowland forest is commora range of niches characteristic of an oceanic temperate
in some regions, but most prevalent in the north-westernenvironment. The biology and biogeographic history of the
South Island. Trade-o s in growth-rate and regeneratiorattgy New Zealand conifers therefore can only be understood again
can facilitate their long-term co-occurrencéusk and Smith, the constraints and opportunities presented by the uncommon
1999. However, the propensity of Nothofagaceae to formclimate and unusual geographic position of the New Zealand
monospeci ¢ stands means they are either segregated by sdechipelago.
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Adaptation and Historical Contingency suggest, a fern-rich ground layer, dense broadleaf shrub and
Despite sharing its highly oceanic, moist climate regimehwit canopy with abundant tree ferns can successfully resist @onif
restricted temperate coastal regions elsewhere on the nsargiinvasion. At a small scale, these conditions also prevail &gh

of the major continents New Zealand is, from a biogeograghicagullies on rich soils where only sporadic conifer regenerats
viewpoint, unique. The archipelago has the only large temperapossible Coomes et al., 2005The second situation in which the
islands that are remote from a continental mainland andNew Zealand conifers are at a disadvantage is in the presence
therefore never connected during the course of a glaciabf Nothofagacead.ibocedrus bidwilljiPhyllocladus alpinuand
interglacial cycle. Small, oceanic landmasses experientedm Halocarpusdominated the subalpine and upper montane zone
climatic extremes—both seasonally and at glacial-inkeigl in the earlier part of the postglacial, but in nearly all locations
scales. However, during the extreme cold and dry of a glaciadlave since lost this dominance during the Holocene. While
maximum, the archipelago has to fall back on its own oristicthe relatively slow spread rates of Nothofagaceae account fo
resources as it has no access to permanent cold boreal, arctimme of the early prevalence of conifer-dominated assoostio
or dry steppe zones. Even New Zealand treelines cannot Il then alpine/montane environments, the underlying driver is
gap, as they have exceptionally mild climat€se(aad et al., almost certainly a climatic switch beginning around 9,0@@ng
2012; Cieraad and McGlone, 2017 he trees of New Zealand, ago, from long, low insolation summers and mild winters—
therefore, are evolutionarily adjusted to a limited climcatange.  which favored slow-growing conifers—to short, high insiaa

The brief intervals of a few thousand years during whichsummer and colder, longer winters—which favored the fast-
the southern third of the archipelago experiences glacial,col growing mycorrhizal Nothofagaceaé/{mshurst et al., 2002

dry climates merely punctuate an otherwise highly oceanic

environment. Vacant Tree Niches?

Given the double Iter of oceanicity and isolation, do |; g possible that there is a vacant tree niche in New
New Zealand conifers represent unique adaptations to theggiand currently represented by the winter cold dryland
oceanic climate regime? And has historical contingencygulay anvironments of the rain-shadow of the Southern Alps
a role in that some niches have not been lled? Globallygng a vacant conifer niche at tree line. During the full
oceanic temperate forests are extraordinarily diverse imse glacial, a very large area of New Zealand had only sparse,
of their structural and taxonomic makeupdgllaSala, 20)1  gcattered forest, and the open, dry eastern lowlands songthi
They include single canopy deciduous angiosperm forestseof thyyroaching open herb eld with prostrate shrubs. In Northern
western fringe of Europe, dense, conifer-dominant foredts ojemjsphere temperate regions the LGM was characterized by
north-western North America, tall evergreétucalyptudorests open conifer dominated parklands unless the desert-steppe
of eastern Australia, but also structurally and taxononiyca cjimates prevailed\(cGlone et al., 2092 The current rapid
similar southern conifer-evergreen angiosperm forest of th spread of exotic fast-growing mycorrhizal wilding pines (in
southern Atlantic coast of Brazil, southern Chile and thepariicularPinus contortand P. nigrg into lowland to montane
highlands of New Guinea. Near-identical oceanic climatera_induced grassland/shrublands_¢dgard, 200)Lindicates a
regimes have therefore generated very dierent structurad a \5cant “conifer” niche in the drylands that is only partly el
plant functional trait solutions. We argue that the southernby the MyrtaceousKunzea Evolution of such a tree type
conifers have, by virtue of their continuous presence in atea presumably requires a permanent, highly seasonal, wintetr-co
environments, arrived at an evolutionary solution that €8k enyironment that is absent in the Southern Hemisphere from
advantage of their stress resistant physiology and morplyology| pyt Antarctica. At some tree lines in the drier easterdesi
and minimizes the_consequences of the accompanying sloy the axial mountain ranges, exotic pines are spreading above
growth. In an oceanic temperate, evergreen forest, supraman ihe Nothofagaceae tree line and this likewise suggestsea tre

space is potentially available, but only to trees with folié@# |ine “pine/ r/ispruce” niche remains un lled for similar reams
can endure winter conditions and survive episodic dryingivi  (Cieraad et al., 2014; Tomiolo et al., 216

and high insolation in summer. The hydraulic physiology and

leaf morphology of the conifers is clearly superior in this @on
to that of all but a few angiosperms. The trade-o is the sacei ARE PALYNOLOGY AND ECOLOGY

of fast-seedling and sapling growth, which they partially 8 se MUTUALLY SUPPORTIVE?
with specialized juvenile growth forms. Once establishbdirt
longevity is the key to their long-term success as they calm New Zealand, history cannot be ignored. Besides the
wait for the rare occasions which favor large-scale regeimer.  alternation of glacial-interglacial cycles, frequent, sias
Disturbance of a size that permits them to regenerate musabe (disruption caused by earthquakes, volcanic eruptions, oyclo
an evolutionary timescale) as certain as the alternatiaeatons, storms and the recent imposition of historically unprecedente
and this is recognized in the conceptual models developed touman-lit res have left major historical legacies. Thene,
explain their regeneration strategy)den, 1985; Ogden and in New Zealand, palaeoecological and neoecological resgarch
Stewart, 1995; Enright et al., 1999 frequently collaborate as our exploration of conifer higtehows.

It is only under certain climatic conditions that the conife  Not only that, neoecologists have often taken the lead inlstu
fail to persist. The rst is under hyperoceanic situations-efsu of the past, as exempli ed by Peter Wardle with his Quaternary
as that of Stewart Island during the early Holocene. Here, wimvestigations of soil charcoal\(ardle, 2001g Colin Burrows
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and the palaeoecology of the South Island mountaiBisr(ows and ecological data, and prepared the gures; SR and GP
et al., 1998 Susan Walker, Bill Lee and Geo Rogers on theled the neoecological component of the review; JW organized
history of the drylands of the southern South Island/dlker  underpinning pollen databases and co-led the paleoecological
et al.,, 2004y and the ground-breaking neo-palaeoresearcttomponent. All authors contributed to draft revisions of times.

by ecologist John Ogden and colleagues on many aspects of

northern plant successions and Quaternary history (for epem
Ogdenetal., 1992, 1997
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