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We develop a viscous model of plate bending suitable for studying ice-sheet flexure

due to subglacial lake filling and draining, and apply this model to determine the area

of ice-sheet uplift surrounding a subglacial lake. The choice of a viscous model reflects

our interest in Antarctic subglacial lakes, which can fill and drain on time scales of months

to decades. Experiments with idealized lake shapes show that the size of the uplift area

relative to lake area depends on subglacial water pressure and ice-sheet thickness, with

the viscous material parameters scaling the magnitude of uplift rate within this area.

The water pressure therefore has a strong control on the evolution of the lake shape

and related subglacial hydrological development, but is not yet well constrained by

observations. Due to the likelihood that ice flexure will affect subglacial lake filling and

draining, we suggest that the insights of this study should be applied to development of

a realistic ice sheet-hydrological coupled model.

Keywords: subglacial lakes, hydrology, ice sheets, obstacle problem, viscous plate

1. INTRODUCTION

Models of subglacial hydrological processes are becoming more sophisticated, with the ability to
simulate 2D configurations of efficient and inefficient drainage systems (Hewitt, 2013; Werder et
al., 2013; de Fleurian et al., 2014) and are converging toward integrated description of entire basal
drainage networks. However, these models do not incorporate realistic criteria for ice flexure in
response to changing basal water pressure. This is particularly important when examining high
pressure regions associated with jökulhlaups (Evatt et al., 2006; Evatt and Fowler, 2007; Einarsson
et al., 2017), sites of rapid supraglacial lake drainage in Greenland (Tsai and Rice, 2010; Dow et al.,
2015), or subglacial lake growth and drainage in the Antarctic (Carter et al., 2011, 2012; Dow et al.,
2016).

Determining ice flexure rates above lakes is necessary so that basal hydrological models
investigating the lake characteristics (Pattyn, 2008; Carter et al., 2012; Dow et al., 2016) can be
compared with changes in ice surface elevation obtained by satellite altimetry methods (Fricker et
al., 2007; Siegfried et al., 2014). These measurements of surface change over time are used to assess
lake volumes and water budgets in areas such as the highly dynamic Antarctic ice streams (e.g.,
Recovery Ice Stream Fricker et al., 2014; Dow et al., 2016). Given that water at the base of the ice is
a vital control on glacier flow rates (e.g., Iken and Bindschadler, 1986; Kamb, 1987; Bartholomaus et
al., 2008; Bartholomew et al., 2012), determining patterns of lake growth and drainage is important.
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Here we apply a viscous model to explore how changes in
water pressure in Antarctic subglacial lakes control flexure of the
overlying ice sheet (cf. MacAyeal et al., 2015 for flexure caused by
supraglacial lakes) as a process that should be included in models
of entire hydrological systems. This problem is complicated by
the possibility of pressure-driven uplift extending beyond the
perimeter of the lake itself (i.e., a form of the “obstacle problem”).
Our primary aims are to (a) develop and implement such a
model; (b) solve the obstacle problem for simplified domains
to determine the controlling physical parameters; and (c) assess
the significance of the results for various lake configurations and
conditions, with the eventual aim of coupling the ice-sheet flexure
model with a 2D subglacial hydrological model.

2. MODEL

2.1. Derivation
We are looking for a model of ice-sheet flexure that can be
coupled with a subglacial hydrological model for an arbitrary
number and size of lakes, which suggests starting with a simpler
model. Because we expect the amount of uplift caused by
subglacial lakes to be much smaller than the thickness of the
overlying ice, we model flexure of the ice sheet using the thin
plate (Kirchoff) approximation. [Our assumptions are similar
to those of MacAyeal et al. (2015), though the details of the
derivation differ somewhat; also cf. Evatt and Fowler (2007) for
use of a viscous beam model in a jökulhaup problem.] The
moment equilibrium equation for a plate can be expressed over
a horizontal plane with coordinates (x, y) as (e.g., Boresi and
Schmidt, 2003).

∂2xMxx + 2∂x∂yMxy + ∂2yMyy = P, (1)

where the bending moments Mij are taken per unit length of the
j coordinate line (and assumed symmetric, soMxy = Myx) and P
is the load per unit area. We use the subscript notation for partial
derivatives, e.g., ∂x = ∂/∂x. The bending moments are defined in
terms of the stresses σij in the plate as:

Mxx =

∫ h/2

−h/2
σxx dz, (2)

Mxy =

∫ h/2

−h/2
σxy dz, (3)

Myy =

∫ h/2

−h/2
σyy dz, (4)

where the integration is from bottom to top of a plate of thickness
h, and z is the (positive upward) vertical coordinate.

In order to express the bending moments in terms of vertical
displacement, it is necessary to choose an ice rheology that
describes the relationship between stress and strain. When
considering all time scales, the simplest rheology that includes
both instantaneous elastic response and long-time viscous
behavior is the Maxwell rheology. The strain rate in a Maxwell
viscoelastic material is the sum of two components: an elastic
strain rate depending on the stress rate and a viscous strain rate
depending on the stress. (Related quantities, e.g., displacement

and velocity, can also be expressed as the sum of viscous and
elastic components.) For plane stress, the Maxwell rheology gives
the strain rates ǫ̇ij in terms of the deviatoric stresses σij and stress
rates σ̇ij as (e.g., Turcotte and Schubert, 2002):

ǫ̇xx =
1

E

[

σ̇xx + p− ν(σ̇yy + 2p)
]

+
1

2η
σxx, (5)

ǫ̇yy =
1

E

[

σ̇yy + p− ν(σ̇xx + 2p)
]

+
1

2η
σyy, (6)

ǫ̇xy =
1+ ν

E
σ̇xy +

1

2η
σxy, (7)

for elastic (Young’s) modulus E and viscosity η. Assuming that ice
is incompressible is equivalent to taking the Poisson ratio ν to be
0.5, so that the pressure p is eliminated; note that this is equivalent
to assuming that both the viscous and elastic strain components
depend on the deviatoric stresses only.

We also use the relations:

ǫxx = −z∂2xw, (8)

ǫxy = −z∂x∂yw, (9)

ǫyy = −z∂2yw, (10)

between strains and curvature of the plate (e.g., Turcotte and
Schubert, 2002) in order to express the bending moments (2–4)
in terms of the vertical displacement w(x, y).

For Antarctic subglacial lakes, which form from basal
meltwater, the time scale of filling and drainage can be months
to decades, so that we expect the viscous component of w
to dominate. However, the reverse will likely be the case for
the uplift processes in Greenland, where basal hydrology can
be strongly affected by rapid surface meltwater drainage (Dow
et al., 2015). (By comparison, the intermediate timescales of
ice response to Antarctic supraglacial lakes MacAyeal et al.,
2015, make both components significant.) As we are primarily
interested in the subglacial Antarctic case here, we will begin
by considering the viscous obstacle problem, and later briefly
comment on the elastic obstacle problem. In the viscous case
(limit as E → ∞), the strain rate and deviatoric stress are then
related by 2ηǫ̇ij = σij.

Integrating (2–4) using (8–10) and viscous rheology leads to:

Mxx =

∫ h/2

−h/2
2ηǫ̇xxz dz = −

∫ h/2

−h/2
2ηz

(

z∂2x ∂tw
)

dz

= −2η
h3

12
∂2x ∂tw (11)

Mxy =

∫ h/2

−h/2
2ηǫ̇xyz dz = −

∫ h/2

−h/2
2ηz

(

z∂x∂y∂tw
)

dz

= −2η
h3

12
∂x∂y∂tw (12)

Myy =

∫ h/2

−h/2
2ηǫ̇yyz dz = −

∫ h/2

−h/2
2ηz

(

z∂2y ∂tw
)

dz

= −2η
h3

12
∂2y ∂tw. (13)
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Defining D ≡ ηh3/6 as the viscous analog to elastic rigidity, (1)
becomes:

∂2x
(

D∂2x∂tw
)

+ 2∂x∂y
(

∂x∂y∂tw
)

+ ∂2y

(

D∂2y ∂tw
)

= P, (14)

which can be further rearranged as:

∇2
(

D∇2∂tw
)

−
[

∂2xD∂2y ∂tw− 2∂x∂yD∂x∂y∂tw+ ∂2yD∂2x ∂tw
]

= P.

(15)
Note that we have not assumed D to be constant in this
derivation, but in that case the bracketed terms cancel and we are
left with the simpler bilaplacian form of the bending equation.

2.2. Application to Subglacial Lakes
Here we consider subglacial lake formation and associated ice
flexure in the context of an entire hydrological system (at least
as modeled) rather than independently. In a state-of-the-art
2D subglacial hydrological model with both channelized and
distributed water flow (e.g.,Werder et al., 2013), lakes formwhere
water flow into an area (such as an overdeepening) exceeds the
downstream hydrological capacity of the system. The resulting
high water pressure can eventually contribute to lake drainage
by enhancing downstream flux and the formation of channels,
but pressure above overburden can persist in the lake for several
years before this occurs (Dow et al., 2016). It is reasonable to
expect that sustained overpressure should cause upward flexure
of the ice sheet that would decrease water pressure but possibly
cause the lake to spread. We therefore focus on areas where water
pressure exceeds overburden and their immediate surroundings.
Our intent is first to examine the extent of ice-sheet uplift around
a subglacial lake at a given time in the above context. In section
4 we discuss how the results inform models of the hydrological
system.

For flexure associated with subglacial lake formation, the load
P on the ice sheet above the lake is subglacial water pressure pw
minus the overburden pressure q = ρigh, for an ice sheet with
density ρi and thickness h, and acceleration due to gravity g; that
is, the load is the negative of the effective pressure q−pw typically
used in glacier hydrology. It follows that upward flexure occurs
when the effective pressure is negative and vice versa, with the
condition that w ≥ 0 because zero displacement corresponds
to the ice resting on its bed. Because the ice sheet must first be
fully supported by the subglacial hydrological system, only water
pressure above overburden contributes to upward flexure. It is
useful to define the upward component of P:

p+ =

{

pw, pw ≥ q,

0, pw < q,
(16)

so that P = p+ − q. We note that although p+ can be
discontinuous, this does not imply a discontinuity in the water
pressure pw, which should be assumed continuous throughout
the hydrological model domain.

Before applying the bending equation to an ice sheet, we
nondimensionalize it over a circular domain for convenience.
For (15) we use the scale R for horizontal distance, the scale

Wt for uplift rate, the scale V for viscosity, and the scale H for
ice thickness. Because we expect the subglacial water pressure
and overburden to be of similar magnitude, we take ρigH as the
scale for both, using ρi = 920 kg/m3 and g = 9.81 m/s2. The
nondimensional equation is then:

∇2
(

ηh3∇2∂tw
)

− Dnc = r4Ŵ(p+ − h), (17)

where r is the nondimensional radius,

Dnc = ∂2x
(

ηh3
)

∂2y ∂tw− 2∂x∂y
(

ηh3
)

∂x∂y∂tw+ ∂2y
(

ηh3
)

∂2x ∂tw
(18)

and

Ŵ =
6R4ρig

VH2Wt
, (19)

spatial derivatives are in terms of the scaled coordinates, and
all lowercase variables are dimensionless regardless of previous
usage. We note that Dnc comprises the terms accounting for the
effect of spatially variable h and/or η.

We can define the lake as the area where p+ > 0, so that a
circular lake has nondimensional radius rL where p+ becomes
zero. (Here we are focusing on upward flexure of the ice sheet; see
e.g., Evatt et al., 2006; Evatt and Fowler, 2007 for lake drainage.)
The simplest assumption is to solve (17) applying the “clamped”
boundary conditions w = 0 and normal derivative ∂nw = 0
(i.e., the solution is “flat” across the lake boundary) at r = rL
(cf. the laccolith problem in Turcotte and Schubert, 2002) to find
the uplift rate above the lake only. Coupling an ice flexure model
with a hydrological model (for any lake shape) will be easier and
less computationally expensive if this assumption is justifiable.

However, the stiffness of the ice sheet may result in the uplift
area being somewhat larger than the area of positive upward load,
even though p+ = 0 for r > rL. It is necessary to solve an obstacle
problem to obtain the largest radius such that the ice inside this
radius is uplifting and the ice outside remains in contact with the
bed. [An obstacle problem requires solving for the free boundary
between a region in contact with an obstacle, here the bed, and a
region above the obstacle, here the uplift area of the ice sheet.
See, e.g., Evans (1998) for a formal mathematical treatment.]
Without changing p+, we iterate to find the maximum r such
that the solution ∂tw of (17) is nonnegative everywhere within
the circle of (nondimensional) radius r (with clamped boundary
conditions applied at radius r in each iteration). We will call
this maximum value of r the uplift radius rU . That is, we apply
the (nondimensional) difference between water pressure and
overburden as the load above the lake and require that any ice
outside the lake and lifting away from the bed support its own
weight. In the iteration, any value of r greater than the eventual
solution rU results in some region where ∂tw < 0, that is, in
the nonphysical situation where the ice is sinking into the bed
(Figure 1). The result of solving the obstacle problem will be the
radius of the uplift area surrounding the lake, as well as the uplift
rate everywhere within this area.

We have so far set up the viscous obstacle problem for uplift of
the ice-sheet area surrounding a subglacial lake at one given time.
We first solve this problem over a broad range of parameters,
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FIGURE 1 | (A) Schematic of the obstacle problem (not to scale). The load above the lake (blue; r ≤ rL), where the subglacial water pressure exceeds overburden

[i.e., p+ > 0 in (16)], is the difference pW − ρgh. Outside the lake (r > rL), where overburden has not been reached (i.e., p+ = 0), any ice lifted above the bed (green)

bears its own weight. (B) rU is the largest radius for which the uplift rate ∂tw (green line) is nonnegative everywhere. Attempting to set r > rU as the radius of the uplift

area results instead in an unphysical solution in which the ice is sinking into the bed (red dashed line).

before returning in the Discussion to consider the likely effects
over time of flexural uplift on the (modeled) hydrological system.

2.3. Implementation
The flexure equations are solved by the finite element method,
using the GetFEM++ library (Y. Renard and J. Pommier, http://
getfem.org) via its MATLAB interface. GetFEM++ allows the
use of higher order elements that can directly handle clamped
boundary conditions; we use the third-order, continuously
differentiable Hsieh-Clough-Tocher triangular element (Ciarlet,
1978). We use a mesh with over 9,000 nodes, generated by the
DistMesh MATLAB package (Persson and Strang, 2004), which
provides a highly uniform mesh over a disk while allowing us to
require a node at the origin. We apply a simple bisection method
to solve for the largest r such that ∂tw ≥ 0 everywhere within the
circle of radius r.

3. EXPERIMENTS

3.1. The Viscous Obstacle Problem
We consider the obstacle problem (17) over a reasonable range of
the nondimensional variables η, h, p, and rL, with Ŵ given by the
chosen scales for the problem. For simplicity, we assume spatially
constant ice thickness h and viscosity η (i.e., Dnc = 0), and
consider spatially variable h in section 3.3. The nondimensional

results are easiest to evaluate if the scalings are taken from a
solution of the dimensional problem. In this case, we use H =
1,000 m, R = 5,000 m, V = 1018 Pa s, andWt = 0.10 m a−1.

With variable bed topography, we expect real lakes (or at least
lakes in subglacial hydrological models, e.g., Dow et al., 2016)
to have maximum pressure at some point inside the lake, with
pressure decreasing more gradually to overburden at the lake
boundary. (For our purposes in this study, zero pressure above
overburden defines the lake boundary.) Many different pressure
distributions meeting these conditions are possible. For a smooth
profile, we take the shape of the pressure above overburden to be
a cubic function:

p∗ = 1−
3

r2L

(

√

x2 + y2
)2

+
2

r3L

(

√

x2 + y2
)3

, x2 + y2 ≤ r2L

(20)
so that p∗ = 1 at the lake center and p∗ = 0 at and outside
the lake boundary rL, and its derivative is zero at both the center
and the boundary. The full pressure above overburden is then p∗

multiplied by the maximum nondimensional value pmax at the
lake center, so that p+ − h = p∗ · pmax over the lake.

We find that neitherŴ nor η affects the solution for rU , though
the resulting solution for ∂tw at radius rU is directly proportional
to Ŵ and inversely proportional to η. Furthermore, rU scales with
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rL; that is, the ratio of uplift radius to lake radius is independent
of the size of the lake.

We are left to consider the effects of the nondimensional
pressure p and thickness h on the solution of the obstacle
problem. The range of ice thicknesses for which subglacial
lakes have been observed is well known; here we will use 500–
3,000 m. However, water pressure in subglacial lakes is not well
constrained. In current subglacial hydrological models that are
not yet coupled to ice flexure models, the modeled water pressure
in lakes can become quite high as it is not eased by uplift. We
therefore run the model across a very broad range of pressures
above overburden, from 5 to 1,000 kPa. Figures 2, 3 show model
results for low and high pressures, plotted separately for ease of
viewing. Figure 4 presents the results in terms of ice thickness to
emphasize the nonlinearity with respect to this variable.

Figures 2, 3 show that rU/rL for a given ice thickness is a
weakly nonlinear function of the pressure above overburden,
particularly for lower pressures. For example, the H = 1, 000 m
results in Figure 2 can be linearly fitted with adjusted coefficient
of determination R̄2 = 0.969 (not to be confused with the radius
scale R), although the shape of the fit and the individual residuals
are much better with a cubic (R̄2 = 0.998) fit. In contrast,
rU/rL for a given pressure above overburden (Figure 4) is a more
strongly nonlinear function of ice thickness. For example, the
100 kPa pressure above overburden results can be linearly fitted
with an R̄2 of only 0.814, but a cubic fit (consistent with the
dependence of ice stiffness on thickness) produces a much better
agreement (R̄2 = 0.998).

3.2. The Viscous Obstacle Problem for
Elliptical Lakes
Because subglacial lakes vary in shape, solving the obstacle
problem for noncircular lakes is clearly important. We can make
a start toward determining the effect of lake shape by considering
elliptical lakes. For simplicity, we assume spatially constant ice
thickness h and viscosity. If we repeat the derivation of (17)
using scales of A for x and B for y (instead of R for both), we
arrive at:

ηh3
[

∂4x + 2
(a

b

)2
∂2x∂

2
y +

(a

b

)4
∂4y

]

∂tw = a4ŴA(p
+ − h), (21)

where aL is the lake’s minor semiaxis length, ŴA is (19) with
A replacing R, and as before all lower case variables are
nondimensional. The shape of the pressure above overburden is
a version of (20) recast for an ellipse:

p∗ = 1−
3

a2L

(

√

x2 +
(a

b

)2
y2

)2

+
2

a3L

(

√

x2 +
(a

b

)2
y2

)3

,

x2 +
(a

b

)2
y2 ≤ a2L. (22)

Similar to the circular case, we iterate to find themaximum a such
that ∂tw ≥ 0 everywhere within the ellipse with minor semiaxis
length a and major semiaxis length b, calling the solution aU .
By setting up the obstacle problem to be solved for only one of
the nondimensional semiaxis lengths, we have assumed that the

FIGURE 2 | Ratio rU/rL of uplift radius to lake radius for lake pressures up to 1

bar above ice overburden pressure [using the cubic profile (20)] and typical ice

thicknesses H.

FIGURE 3 | Ratio rU/rL of uplift radius to lake radius for lake pressures up to

10 bars above ice overburden pressure [using the cubic profile (20)] and typical

ice thicknesses H.

uplift area will have the same shape as the lake, with the ratio of
the semiaxis lengths fixed at a/b. This assumption, which seems
reasonable for an initial study, allows the obstacle problem to be
solved by a tractable one-parameter iteration.

Having already explored the effects of the other parameters in
the a = b circular case, we focus on changing the shape of the
lake by varying a/b. We note that aU/aL shows the same scale
independence as rU/rL for (17), so we can consider only a/b
without concern for the size of the lake. The results (Figure 5)
show that lake shape does indeed matter. With the assumption
that the uplift area has the same shape as the lake, a circular lake
produces the largest relative uplift area, and any narrowing by
reducing a/b results in progressively smaller relative uplift areas.
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FIGURE 4 | Ratio rU/rL of uplift radius to lake radius for selected lake

pressures up to 1 bar above ice overburden pressure [using the cubic profile

(20)], plotted against ice thickness to emphasize nonlinearity with respect to

this variable.

FIGURE 5 | Ratio aU/aL of uplift minor axis to lake minor axis for ellipses of

varying shape (using the cubic profile (22) with maximum overpressure 100

kPa). Note that results for equal major and minor axes match results for

circular lakes (Figure 2), as expected.

However, the maximum uplift rate ∂twmax is nearly inversely
proportional to a/b, slightly more than doubling for a/b = 0.5.

3.3. Varying Ice Thickness
Due to the effects of topography and basal friction, it is
reasonable to expect the ice above a lake to vary in thickness.
For nonconstant ice thickness h, we solve (17) with the Dnc

terms included. To vary the thickness, we choose a cubic function

similar to our pressure distribution (20):

h∗ = h0 +
1

r2L
(3− 3h0)

(

√

x2 + y2
)2

+
1

r3L
(2h0 − 2)

(

√

x2 + y2
)3

, x2 + y2 ≤ r2L (23)

where h0 is the relative thickness at the lake center, h
∗ = 1 at the

lake boundary, and the derivative is zero at both the center and
the boundary. Ice thickness h above the lake is then h∗ scaled by
the maximum (constant) value of thickness outside the lake.

As expected, rU/rL does increase for thinner ice and decrease
for thicker ice over the lake (Figure 6). For example, rU/rL
changes by ∼ 0.006 (H = 500 m) and ∼ 0.001 (H = 3, 000
m) for ± 10% thickness change at the center of the lake (using
the cubic profile (20) with 100 kPa maximum overpressure).
The maximum uplift rate increases approximately linearly with
thinning, increasing for example by∼ 10.5% for 10% thinning of
H = 1, 000 m and 100 kPa maximum overpressure. The effect
of spatial variations in the ice thickness over the lake by up to
± 10% is very similar to that caused by ± 10% changes in the
ice thickness in the “constant thickness” case (section 3.1), with
differences in rU/rL on the order of 1×10−4. Given this result and
the nonlinear dependence of rU/rL on ice thickness, moderate
thinning or thickening over the lake can noticeably affect the size
of the uplift area.

3.4. Effects of Overpressure Distribution
As noted earlier, different plausible profiles for water pressure
across a lake can be supposed. In order to better determine
the effect of the overpressure distribution, we introduce several
new functions to complement the cubic function (20) used in
section 3.1:

p∗ = 1−
1

rL

√

x2 + y2, (Linear) (24)

p∗ = 0.75

[

1−
1

r2L

(

√

x2 + y2
)2
]

, (Quadratic) (25)

and

p∗ = 0.6

[

1−
1

r5L

(

√

x2 + y2
)5
]

. (Quintic) (26)

These functions are chosen to be one at the lake center and
zero at and outside the boundary rL, and scaled to have the
same integrated overpressure as the cubic function (Figure 7).
We repeat the (constant ice thickness) experiments shown in
Figure 2 with the new pressure distributions. There is some
dependence of rU/rL on the pressure distribution (Figure 8),
with rU/rL varying by about 0.005 across the different profiles
for H = 1, 000 m and 100 kPa maximum overpressure.
The quintic profile, which has the highest overpressure near
the lake boundary (Figure 7), results in the highest rU/rL,
while the cubic profile, the most concentrated toward the lake
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FIGURE 6 | Ratio rU/rL of uplift radius to lake radius for spatially variable ice

thickness above the lake [using the cubic profile (20) with maximum

overpressure 100 kPa]. Thickness profiles are as given by (23).

FIGURE 7 | Functions p∗(
√

x2 + y2) used to scale pressure above overburden

in section 3.4. The cubic function is our standard distribution in all other

sections.

center, results in the lowest rU/rL. Conversely, the maximum
nondimensional uplift rate ∂twmax is greatest for the cubic profile
and smallest for the quintic profile, although the differences are
small (1∂twmax < 2.5 × 10−3 for H = 1, 000 and 100 kPa
maximum overpressure, and an order of magnitude smaller for
thicker ice).

3.5. The Elastic Obstacle Problem
Had we instead taken the elastic limit (η → ∞) in (5)–(7) and
repeated the derivation of the plate bending model, we would
have arrived at an equation of the same form as (15), except
solving for the uplift w instead of the uplift rate ∂tw and with
D = Eh3/9 instead of ηh3/6. Solving the analogous obstacle

FIGURE 8 | Ratio rU/rL of uplift radius to lake radius for maximum lake

overpressure up to 1 bar, with 1,000 m ice thickness. Pressure distributions

across the lake are as shown in Figure 7.

problem shows that the uplift w depends inversely on the elastic
modulus E, and that the solution for rU/rL depends on h and p
in exactly the same way as in the viscous case. It follows that the
full viscoelastic obstacle problem needs to be solved for only one
radius.

4. DISCUSSION

We have seen that the solution to the ice flexure problem for
subglacial lakes, which includes the relative area of uplift and the
associated uplift (rate), depends on only a few parameters. The
geometry of the lake and the overlying ice should be well known,
and the material parameters (viscosity and/or Young’s modulus)
can be tuned to match observed lake growth and drainage.
However, the water pressure in a subglacial lake is another
vitally important variable whose range and spatial distribution
are difficult to observe or constrain.

For the lower range of pressures used in this study (. 1
bar), the uplift area may be only a few percent larger than the
lake area. Depending on the size of the lake, this may be less
than the average mesh spacing of the hydrological model, and
therefore require mesh refinement to resolve. Also, when rU/rL
is relatively small (as will be the case early in the development
of a lake) the uplift rate outside the lake is small relative to its
maximum inside. For example, the cubic overpressure profile
gives rU/rL = 1.04 when H = 1, 000 m and water pressure is
1 bar above overburden (Figure 2). Examining the shape of the
uplift rate solution (Figure 9; cf. the fourth-order exact solution
to the laccolith problem in Turcotte and Schubert, 2002), we see
considerable flattening near rU , so that the solution at the edge
of the lake is < 0.3% of the maximum value at the center. For
typical uplift rates on the order of meters per year near the lake
center (Gray et al., 2005; Fricker et al., 2010, 2014), the uplift rate
between rL and rU will be on the scale of only millimeters per
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FIGURE 9 | Nondimensional solutions of (17) for uplift rate, illustrating the

decline in relative magnitude of the solution for ∂tw toward the boundary and

the difference between the results for a fixed boundary at the lake edge

(rU = rL) vs. solving the obstacle problem for rU > rL. Note that at

nondimensional radius 1 (the edge of the lake) ∂tw for the iterative solution is

< 0.3% of its maximum value at the lake center. Solutions are for H = 1, 000

m using the cubic profile (20) with maximum overpressure 100 kPa. Inset

shows detail around the lake edge.

year. However, while the uplift rate in this area is small, solving
the iterative obstacle problem for rU > rL instead of assuming
that uplift occurs only over the lake (rU = rL) significantly affects
the solution for ∂tw. At each time step, the modeled uplift rate
across the lake is higher when uplift outside the lake is considered
(Figure 9).

Returning to the entire hydrological system, we now explain
the applicability of the flexure calculation to a future fully
coupled ice sheet-hydrological model. The solution of (17) for
∂tw provides the uplift rate over and surrounding a lake at a
given time, which should affect water thickness throughout the
domain in a way that tends toward reducing pw in this area,
relieving possibly nonphysical pressure buildups in hydrological
models without ice sheet flexure. Hydrological models that allow
the sheet thickness to evolve (e.g., Werder et al., 2013) contain
an opening rate o due to ice sliding over obstacles and a closing
rate c due to viscous creep, and the flexural uplift rate ∂tw
should behave similarly. We can add this rate to the water sheet
continuity equation (e.g., Flowers, 2015) to obtain:

∇ · Eq+ o− c+ ∂tw = m (27)

where the discharge Eq is a function of the sheet thickness and the
hydraulic gradient, and m is a source term. Given the low uplift
rate between rL and rU , as discussed above, we expect changes in
the water thickness and therefore the alteration of water pressure
in this region to be negligible during the calculation of ∂tw
at one time step. However, we expect that ∂tw and pw will be
interdependent over multiple adaptive time steps, allowing the
area of the lake to gradually increase. Further exploration of these

ideas will have to await development of a fully coupled model
across a catchment.

In order to couple an ice flexure model with a hydrological
model, several challenges need to be overcome. First, the
hydrological model must be able to form and identify lakes.
Second, areas containing lakes must be (re)meshed in a manner
that enables solution of the obstacle problem. While we have
worked here with relatively simple shapes, we suggest a similar
single-parameter scaling for more realistic shapes as a reasonable
and computationally tractable initial approach. Third, the uplift
rate calculated by the flexuremodelmust be incorporated into the
hydrological model equations. In the case of rapid and significant
pressure changes (e.g., Greenland supraglacial lake drainage
to the bed), the uplift calculation may require simultaneous
and/or iterative solution of both sets of equations, with uplift
(rate) immediately impacting the pressure calculated by the
hydrological model and vice versa. However, in the viscous-
dominated Antarctic case with longer timescales it is likely that
the uplift will just contribute another rate (in addition to cavity
opening and closing rates) in the equation for time evolution of
water sheet thickness (e.g., Werder et al., 2013).

5. CONCLUSION

We have developed a viscous model of plate bending suitable
for ice-sheet flexure caused by basal water pressure in excess of
overburden. Applying this model to solve the obstacle problem
associated with possible uplift outside a subglacial lake, we
find that ice thickness and subglacial water pressure determine
the relative size of the uplift area, while the viscous material
properties of ice scale the magnitude of the uplift rate within
this area. Although we use only circular and elliptical lakes in
this study, we find that the ratio of uplift area to lake area
scales with lake size, and that lake shape has a significant effect.
The distribution of overpressure across a lake also affects the
solution of the obstacle problem, with greater weighting toward
the boundary producing higher ratios of uplift area to lake area,
but greater weighting toward the lake center producing higher
maximum uplift rates. Ice thickness profiles that are moderately
thinner over the lake also result in higher ratios of uplift area to
lake area, although the effect is relatively small.

Because water pressure in subglacial lakes is not well
constrained (due to lack of observations and limited
incorporation of ice flexure effects in current hydrological
models), the importance of solving the obstacle problem for
coupled models of subglacial lakes remains unknown at this
time. Where direct observations of subglacial water pressure are
not available, we suggest that coupled modeling of low-pressure
scenarios where uplift outside the lake can (temporarily) be
neglected could provide preliminary estimates of the relationship
between water pressure and uplift. We do, however, expect that
ice flexure will affect lake filling and draining (and thus ice flow),
and therefore the development of a realistic coupled model
incorporating the insights gained in this study is a necessary and
important goal.
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