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Silicon (Si) is the second most abundant element in the Earth’s crust and is an important

nutrient in the ocean. The global Si cycle plays a critical role in regulating primary

productivity and carbon cycling on the continents and in the oceans. Development of the

analytical tools used to study the sources, sinks, and fluxes of the global Si cycle (e.g.,

elemental and stable isotope ratio data for Ge, Si, Zn, etc.) have recently led to major

advances in our understanding of the mechanisms and processes that constrain the

cycling of Si in the modern environment and in the past. Here, we provide background on

the geochemical tools that are available for studying the Si cycle and highlight our current

understanding of the marine, freshwater and terrestrial systems. We place emphasis on

the geochemistry (e.g., Al/Si, Ge/Si, Zn/Si, δ13C, δ15N, δ18O, δ30Si) of dissolved and

biogenic Si, present case studies, such as the Silicic Acid Leakage Hypothesis, and

discuss challenges associated with the development of these environmental proxies for

the global Si cycle. We also discuss how each system within the global Si cycle might

change over time (i.e., sources, sinks, and processes) and the potential technical and

conceptual limitations that need to be considered for future studies.
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INTRODUCTION

The global silicon (Si) cycle is of great interest due to the
role that silicate weathering has played in maintaining climatic
stability on geological time scales (Siever, 1991; Frings et al.,
2016; Conley et al., 2017) and because Si is an important nutrient
for many organisms in marine and freshwater ecosystems. It
occurs as silicate minerals in association with all rock types
(igneous, metamorphic, sedimentary). Weathering, biological
and geochemical transformations, transport and interactions
with other elements (in particular nutrients and carbon) form the
basis of the global biogeochemical Si cycle (Frings et al., 2016).
The global Si cycle has evolved through geologic time with overall
declines in oceanic dissolved Si due to the uptake and deposition
by organisms (Siever, 1991; Conley et al., 2017). While the
modern Si biogeochemical cycle is influenced by anthropogenic
forcing (Laruelle et al., 2009), the processes of weathering and
burial as biogenic silica (bSiO2) are the dominant processes in
the biogeochemical Si cycle.

The paper aims to review the use of Si stable isotopes and
associated trace elements in order to address the following
questions:

(1) What is the bio-geochemistry of biogenic silica?
(2) What is the current state of knowledge regarding the

influence of biogenic silica on the global Si cycle?
(3) What is the influence of early to late sediment diagenesis on

biogenic silica, and thus its utility as an environmental proxy
for palaeoceanographic interpretation?

Although modeling is not being covered in the review, its
importance cannot be underscored as it has been increasingly
used to understand the mechanisms controlling Si isotope
fractionation (e.g., Qin et al., 2016) and the development of the
Si isotope composition as a tracer of biogeochemical silicon cycle
in modern and past natural systems (e.g., Gao et al., 2016).

Silicon Reservoirs
The chemical weathering of silicate minerals and the eventual
cycling of weathered products (clays, dissolved Si) provide
the starting point of Si bio-geochemistry and its interaction
with other elemental cycles such as carbon. Silicate weathering
represents an important sink of atmospheric CO2 over geological
time scales (Berner et al., 1983; Wollast and Mackenzie, 1989;
Brady and Carroll, 1994) and depends on temperature and
precipitation. Thus, the rate at which weathering occurs will be
enhanced through changes in global temperature (White and
Blum, 1995).

Silicon rarely occurs as the pure element in nature and appears
most often in combination with oxygen to form solid silicate
minerals or amorphous compounds (including biogenic Si), or
in aqueous solutions it occurs as orthosilicic acid (Si(OH)4)
(Iler, 1979). Silicon exists in major pools in dissolved and
solid forms in all reservoirs: extra-terrestrial, continental (e.g.,
soil, vegetation, hydrothermal), freshwater (e.g., rivers, lakes,
groundwater, organisms, sediment), atmospheric (e.g., aerosols),
and oceanic (e.g., water column, organisms, sediment and pore-
waters, oceanic crust, hydrothermal), (Figure 1). The dominant

transformation processes are weathering of silicate rocks and
the formation of secondary minerals and release of dissolved Si,
uptake of dissolved Si by organisms for the biomineralization of
biogenic Si, and the remineralization of Si. Coastal regions are
of special importance here because they support a large fraction
of the global primary production and control the transfer of
dissolved and particulate nutrients from land to the open ocean
(Conley et al., 1993; Rabouille et al., 2001).

Biomineralization, the Structure of
Biogenic Silica, and Its Relevance to the
Global Si Cycle
Many organisms use dissolved Si, including diatoms,
silicoflagellates, radiolarians, sponges, and higher plants, to
produce solid bSiO2 structures. Biogenic silica, also called
biogenic opal, is the second most abundant mineral type formed
by organisms after calcium carbonate (Brümmer, 2003). Biogenic
silica is amorphous and its density, hardness, solubility, viscosity
and composition may vary considerably (Perry et al., 2003).
The silica structures are based upon a random network of SiO4

tetrahedral units connected through covalently linked Si-O-Si
bonds of variable bond angle and bond lengths (Mann and Perry,
1986). All silicifying organisms utilize Si(OH)4; however, each
silicifying organism has a unique biomineralizing pathway.

Details on the process of silicification can be found in the
literature for diatoms (Hildebrand et al., 1997; Martin-Jezequel
et al., 2000; Claquin et al., 2002; Hildebrand, 2008; Thamatrakoln
and Hildebrand, 2008; Brunner et al., 2009; Thamatrakoln and
Kustka, 2009), sponges (Wilkinson and Garrone, 1980; Reincke
and Barthel, 1997; Cha et al., 1999; Maldonado et al., 1999, 2005;
Brümmer, 2003; Uriz et al., 2003; Muller et al., 2007; Schröder
et al., 2007), and higher plants (Takahashi et al., 1990; Ma et al.,
2001, 2006).

Globally, diatoms (unicellular autotrophic algae) dominate
the bSiO2 production with an estimate of 240 ± 40 Tmol yr−1

(Tréguer and De La Rocha, 2013) (Figure 1). The degree of
bSiO2 production (i.e., silicification) of diatom frustules can vary
significantly, even within the same species, and is primarily a
function of ambient dissolved Si (DSi) concentration and cellular
growth rate, whereby the bSiO2 content of a cell decreases during
DSi limitation and/or accelerated growth (Martin-Jezequel et al.,
2000; Claquin et al., 2002; Baines et al., 2010).

Until recently, the relevance of marine siliceous sponges on
the Si cycle has been largely ignored and their role is currently
being re-visited with a biogenic Si production estimated at 3.6 ±
3.7 Tmol yr−1 (Maldonado et al., 2005; Tréguer and De La Rocha,
2013) (Figure 1).

Higher plants produce roughly 84 (60–180) Tmol yr−1 of
biogenic Si (phytoliths) (Figure 1), which is within a similar
order of magnitude as diatom production (Conley, 2002). All
plants that grow on soil contain Si in their tissues, whereby Si
uptake and concentrations vary greatly among species depending
on the different capacities for Si uptake by the roots (Takahashi
et al., 1990; Ma et al., 2001). Active Si uptake has been suggested
for Si-accumulating plants that are characterized by high Si
concentrations (>1% dry weight in the leaves) and a molar Si:Ca
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FIGURE 1 | Schematic of the modern day global Si cycle grouped by reservoir and their associated δ30Si values (in ‰). The figure is divided into three parts. The

upper part indicating the magnitude of the fluxes (in 1012mol yr−1; Tmol yr−1) between each reservoir, the middle part showing their associated δ30Si values, and the

lower part showing reservoir size. The fluxes are numerically and figuratively represented, moving in a clockwise manner (e.g., In the Ocean compartment, there is a

flux of 240 Tmol yr−1 from Surface DSi to Diatoms, after the Diatoms dissolve, there is 135 Tmol yr−1 flux back from the Diatoms to the Surface DSi in the upper

water column). In the case where the flux points downwards (e.g., 9.90 Tmol yr−1 within the sediment reservoir), the flux is effectively removed from the system. *

Value assumed to underestimate flux (see section Diagenetic Silica Precipitation and Reverse Weathering). Estimates for the Si fluxes were obtained from the following

sources: Carey and Fulweiler (2012), Frings et al. (2016), Laruelle et al. (2009), Tréguer and De La Rocha (2013). Estimates for the range of δ30Si values were obtained

from the following sources: Ehlert et al. (2016); Figure 2 from Frings et al. (2016) and references therein; Varela et al. (2016) and Panizzo et al. (2017). All data used to

prepare this figure are available in Table S1.

ratio >1, whereas non-accumulating plants have a passive or
discriminating Si uptake system (Takahashi et al., 1990; Ma et al.,
2001). After uptake, DSi is rapidly transported through the plant
to the different tissues within the transpiration stream. Due to
transpirational water loss, DSi is gradually concentrated, and
phytoliths are formed by precipitation in plant cells when the
concentration increases above 2mM. Thus, phytoliths vary in
size and shape depending on the cell type, plant organ and plant
species they are deposited in Madella et al. (2005).

Global Si Cycle Over Time
The global oceanic Si cycle has evolved through geologic time
primarily due to the uptake of dissolved Si and subsequent
biomineralization by organisms, especially sponges, radiolarians
and diatoms (Siever, 1991). Substantial advances have occurred
in our understanding of the evolution of the geological Si cycle
through the use of the fossil record, silica isotope geochemistry
and the phylogenomics of biosilicification (Conley et al., 2017;

Hendry et al., 2018). The first biological impacts on the Si
cycle are hypothesized to have occurred with the evolution
of cyanobacteria in the Archean with further decreases in the
mid-Proterozoic with evolution of eukaryotes capable of Si
biomineralization. Decreases in oceanic DSi occurred prior to
the start of the Phanerozoic with the evolution of widespread,
large-scale skeletal bio-silicification. Due to the increased usage
of dissolved Si by radiolarians in the lower to early Middle
Ordovician, the loci of sponges shifted from shallow to deep-
water basinal environments (Kidder and Tomescu, 2016). Finally,
it is the appearance and subsequent proliferation of diatoms,
with their superior ability to utilize low concentrations of DSi,
that decreased DSi to the low levels observed in the global
oceans today (Tréguer and De La Rocha, 2013). The impact
of orogeny, e.g., the uplift of the Himalayas with periods of
enhanced continental weathering fluxes in the Cenozoic (Misra
and Froelich, 2012) could have increased DSi input to the
oceans (Cermeño et al., 2015), although there is no evidence of
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large-scale changes in DSi concentrations in the geologic record
(Fontorbe et al., 2016, 2017).

In the recent years, there have been a considerable number of
studies on palaeo-environments of the Archean (4 – 2.5 Ga) and
Proterozoic (2.5 – 0.5 Ga). Most use Si - O isotopes, elemental
ratios (Ge/Si, REEs) or other isotopic systems (Fe, S. . . ) associated
to silica in Banded Iron Formations (e.g., André et al., 2006;
Heck et al., 2011; Delvigne et al., 2012), cherts (e.g., Robert
and Chaussidon, 2006; Chakrabarti et al., 2012) or paleosols
(e.g., Delvigne et al., 2016). These studies all use the knowledge
gained from modern, experimental and/or less ancient palaeo-
records to interpret geochemical records, in order to reconstruct,
for instance, the ocean temperature and oxygen levels, input
of hydrothermal, and intensity of weathering. However, it is
still challenging to provide a clear picture of these ancient
environments because the studies have divergent results. A
multi-proxy approach is therefore required. This is particularly
needed to assess the level of preservation of the samples in
order to take into account diagenesis while interpreting the
geochemical signals into reconstruction of paleo-environments
(Marin-Carbonne et al., 2014).

Modern day anthropogenic factors have a strong influence
on the global Si cycle, for example through increases in CO2,
temperature and changes in hydrological regimes and erosion,
variations in agriculture and land use, eutrophication and
changes in nutrient stoichiometry in coastal regions, and river
damming (e.g., Rickert et al., 2002; Struyf et al., 2004, 2010;
Laruelle et al., 2009; Clymans et al., 2011; Carey and Fulweiler,
2012). Anthropogenic perturbations of the global biogeochemical
Si cycle are due to the gradual aggradation or depletion of the
amorphous SiO2 pool held in continental soils (Barão et al., 2015;
Vandevenne et al., 2015) and aquatic sediments (Frings et al.,
2014b) in response to these changing environmental forcings
(Struyf and Conley, 2012) and river damming (Conley et al.,
1993). Our emerging understanding is that DSi inputs from
the continents have potentially altered the magnitude and δ30Si
composition of DSi supplied to the open ocean mostly because of
changes occurring on the continent as well as changes of the silica
sink on continental margins (Bernard et al., 2010; Frings et al.,
2016). This includes short time scales such as anthropogenic
impacts (not only on Si, but also on other nutrients e.g., N, P,
Fe) and possibly to an extent large enough to impact whole-
ocean isotopic signatures on the timescale of Quaternary glacial
cycles. Thus, the sensitivity of biogeochemical Si cycling to
anthropogenic pressure, especially in coastal regions, will likely
be highlighted in the future (Laruelle et al., 2009; Bernard et al.,
2010) and the continental Si cycle should not be neglected when
interpreting pre-Quaternary long-term δ30SibSiO2 records from
marine sediment records (Egan et al., 2013; Fontorbe et al., 2016).

STABLE SILICON ISOTOPE RATIOS TO
STUDY THE GLOBAL SI CYCLE

Silicon has three naturally occurring stable isotope with the
following mean abundances: 28Si: 92.23%, 29Si: 4.67%, and 30Si:

3.10%. The Si isotope composition is expressed in delta notation
(δnSi) and can be calculated according to the following formula:

δnSix(‰) = ([(nSi/28Si)x−(
nSi/28Si)standard)]

/[(nSi/28Si)standard])×1000 (1)

where n can represent 29Si or 30Si, x refers to either bSiO2 or DSi
and standard is the atomic ratio of the heavy and light Si isotopes
of the quartz standard (NBS28).

Several processes have been shown to fractionate Si isotopes,
which explain why this tool can be used to trace the Si
biogeochemical cycle. The extent of isotopic fractionation is
defined by the isotopic fractionation factor (α) that can be
expressed by Hoefs (2009):

-for kinetic isotopic exchange (irreversible reaction)

α = k28Si/k30Si

Where k refers to the rate constants for the reaction of light and
heavy isotopes.

-for equilibrium

α = (30Si : 28Si)A/(30Si : 28Si)B

Where A and B are two chemical substances, typically the
substrate (A) and the product (B) of the reaction.

For practical and analytical reasons, Si isotope ratios and Si
isotope fractionation are reported in delta notation with the
permil (‰) scale. A useful way to think about Si isotope values
is as fractionation of Si isotopes, or the difference between the
δ30Si values of DSi and bSiO2 as described by ε in Equation (2)
and calculated (Criss, 1999) as:

ε ∼= 1000•(αbSiO2−DSi − 1) (2)

where αbSiO2−DSi is the isotopic fractionation factor between
the product (bSiO2) and the substrate (DSi). Note the lack of
redox speciation and organic complexation for silicon limits
fractionation effects to predominately inorganic kinetic exchange
factors, contrary to many other elements (Wiederhold, 2015).

The following is a description of the systems, processes and
transformations that control the global silica cycle, and the
known constraints on the δ30Si (see Figure 1).

Weathering
Weathering is a major process that fractionates Si isotopes in the
critical zone.When primary minerals (−0.90< δ30Si<+1.40‰,
Figure 1) are weathered, light Si isotopes are preferentially
incorporated into secondary minerals (−2.95 < δ30Si < +2.5‰)
releasing a DSi pool that generally has an enriched isotope
composition (−1 < δ30Si < +2‰) (cf. reviews of Opfergelt
and Delmelle, 2012; Frings et al., 2016), Figure 1, Supplementary
Table 1 and references therein). Adsorption of silicic acid onto
Fe oxy-hydroxides (Delstanche et al., 2009) and Al hydroxides
(Oelze et al., 2014) has also been demonstrated to preferentially
immobilize the lighter Si isotopes. As discussed in section Rivers,
all these processes are particularly complex on seasonal to
geological timescales (Ziegler et al., 2005) and explain most of the
higher δ30SiDSi of continental waters.
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Vegetation
Significant fractionation has been observed during the uptake
of Si by plant roots (Opfergelt et al., 2006a,b; Ding et al.,
2008a,b; Sun et al., 2008) and exogenous material on the
surface of vegetation (Engström et al., 2008), although the
transporters behind both forms of uptake remain largely
unknown. The δ30Si composition of these plants (Figure 1), and
in particular of phytoliths is in the first instance regulated by
the physical environment around the plant including the soluble
Si concentration of the medium (Opfergelt et al., 2006b), the
weathering of the soil substrate (Opfergelt et al., 2008) and soil
organic matter (Ding et al., 2008a). Beyond this, there is clear
evidence that significant isotopic fractionation can occur between
plants with increased fractionation in heavy Si accumulators
(Ding et al., 2005, 2008a,b; Opfergelt et al., 2006a,b). Rayleigh
fractionation during the transportation of Si within plants also
causes heavier isotopes to be concentrated within the xylem
whilst lighter isotopes are preferentially deposited in phytoliths
lower down the plant (Ding et al., 2005, 2008a,b; Opfergelt et al.,
2006a,b; Hodson et al., 2008). Phytoliths have higher dissolution
rates than other silicate materials (e.g., tephra, clay, feldspars,
quartz), and provide a major source of DSi in some soil/terrestrial
environments (Derry et al., 2005; Struyf et al., 2009; Cornelis
et al., 2010; Opfergelt et al., 2010).

Freshwater
Rivers
Over the past two decades, several studies of δ30Si in DSi in
freshwaters have been published, but we are still only beginning
to understand the controls and variability of δ30Si in freshwaters.
Since the first data of DSi in freshwaters by De La Rocha (De
La Rocha et al., 2000), δ30Si has been analyzed from a number
of rivers (and lakes) across the world including the Congo River
and tributaries (Cardinal et al., 2010; Hughes et al., 2011), the
Tana River (Hughes et al., 2012), the Yellow and Yangtze Rivers
(Ding et al., 2004, 2011), the Kalix River in Sweden (Engström
et al., 2010), Swiss alpine rivers (Georg et al., 2006), and most
recently from the Nile River (Cockerton et al., 2013), the Amazon
river and tributaries (Hughes et al., 2013), areas of central Siberia
(Pokrovsky et al., 2013; Panizzo et al., 2017) and the Ganges
(Fontorbe et al., 2013; Frings et al., 2015). The range in δ30Si from
freshwaters, thus far analyzed, now stands at −0.17 to +4.66‰
(Figure 1).

In big-picture terms, (almost) every measurement ever made
of river water DSi has been heavier than the parent material.
When river water DSi concentrations are normalized to a
conservative element (typically Na, which is common in silicate
rocks), then it becomes clear that Si is removed from solution,
either into secondary clay minerals or some form of bSiO2, and
that this removal is associated with a discrimination against the
heavier isotopes of Si. This is consistent with our understanding
derived from the microscale (e.g., Steinhoefel et al., 2011;
Schuessler and von Blanckenburg, 2014) to the soil-column scale
(e.g., Opfergelt et al., 2012; Pogge von Strandmann et al., 2012).
These all show that the new secondary mineral phases have
less of the heavier isotopes relative to river waters. The same
discrimination is also well established for plants (Ding et al., 2005,

2008a; Opfergelt et al., 2006a,b), freshwater diatoms (Alleman
et al., 2005; Panizzo et al., 2016) and sponges, which preferentially
utilize 28Si over 30Si (and 29Si), thus leading to an increase in δ30Si
in the host water.

Broadly, δ30Si values in river waters reflect the weathering
regime, which is ultimately a mass-balance constraint. We can
conceptualize two end-member weathering regimes: “kinetically
limited” and “supply limited” (almost equivalent to the
geomorphological terms “transport limited” and “weathering
limited”; see e.g., Stallard and Edmond, 1983). Kinetic limitation
refers to a situation where the weathering flux (solute, DSi) is
operating at maximum capacity for the conditions; increasing the
factors that control the weathering rate (essentially temperature
or water supply) will increase the rate of DSi export, because there
is an excess of fresh material to be weathered. This could be e.g.,
the high Himalaya, the Andes, or (sub) glacial catchments (Georg
et al., 2007; Fontorbe et al., 2013; Opfergelt et al., 2013) where
physical erosion greatly outpaces chemical weathering. At very
high erosion rates (low weathering intensity or congruency) river
δ30Si is low: there is no time, and no thermodynamic driving
force, for clays to form, soils to develop or biology to have a
meaningful influence on the δ30Si measured in a stream.

The other end-member (supply limited) is where essentially
all material leaves the catchment as a dissolved flux; the rate
of solute generation is limited by how quickly material is
supplied. Increasing the factors that control the weathering rate
(temperature or water supply) will not increase Si export, because
there is nothing left to be weathered. In this case the conversion
of parent material (bedrock) to river solute is (near-) complete,
then there can be no observable fractionation: the river takes on
the composition of the bedrock, regardless of how much bSiO2

cycling is taking place in the catchment (and assuming steady-
state, and no loss of bSiO2). This is the case in e.g., the lowland,
blackwater tributaries of the Amazon (Hughes et al., 2013) and
the Congo (Cardinal et al., 2010), where the interpretation is that
the swampy, organic-matter-rich environments are conducive to
the dissolution of previously formed clays.

Along a gradient of weathering intensity (0 to 1, where 0 is all
material exported by physical erosion, and 1where all denudation
occurs as dissolved fluxes), the offset between source material
(bedrock) and river δ30Si should be zero at both ends and peak
somewhere in the middle (Bouchez et al., 2013). The same is true
for Li isotopes (Henchiri et al., 2016); in general, the isotopic
separation along a weathering regime gradient is much clearer for
Li (δ7Li) than δ30Si (see e.g., Dellinger et al., 2015; Frings et al.,
2016). Superimposed on the above is the role of vegetation (see
section Vegetation).

All the work published on the major catchment/riverine
systems (e.g., Cockerton et al., 2013) highlight the complexity
of lake/drainage basin systems, and clearly illustrate that
both Si concentrations and δ30Si are closely controlled by
a mixture of weathering/erosion processes [regulated by the
wider climate system (De La Rocha et al., 2000; Opfergelt
and Delmelle, 2012)], aquatic productivity and catchment soil,
vegetation. Studies of the Congo Basin, for example, have shown
that δ30SiDSi is mainly regulated by the intensity of silicate
weathering/secondary mineral formation across the drainage
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basin with spatial variations further driven by the type of
weathering regime and the extent to which clays are dissolved by
organic matter (Cardinal et al., 2010). These abiotic processes are
then superimposed by seasonal biological processes, in particular
by diatom biomineralization in the dry season, which exports
significant amounts of Si out of the water column (Hughes
et al., 2011). Other examples also account for the downstream
increase in Nile River δ30Si to the progressive uptake of DSi
by diatoms and other Si-accumulating organisms (Cockerton
et al., 2013). Indeed, Cockerton et al. (2013) showed significant
seasonal variations in δ30Si from freshwaters, with higher δ30Si
in the dry season (+1.54 to +4.66‰) than the wet season
(+0.48 to +3.45‰) due to reduced mobilization of dissolved
Si from the catchment relative to its aquatic demand. These
examples demonstrate the superimposed (often seasonal) control
that freshwater bSiO2 plays in regulating δ30Si signatures, where
abiotic processes (chemical weathering and secondary mineral
formation) otherwise dominate.

Additional examples also show the potential importance of
vegetation in altering the Si concentration and/or δ30Si and
regulating the flux of Si both into/out of river waters (Alleman
et al., 2005; Ding et al., 2011; Hughes et al., 2011; Cockerton et al.,
2013; Pokrovsky et al., 2013). For example, along the Yangtze
River uptake of DSi by grasses in wetlands and rice in paddy fields
drives a progressive increase in δ30SiDSi due to better phytolith
preservation in areas of high phytolith production and/or low
phytolith dissolution (Ding et al., 2004). In contrast the net
impact of vegetation on δ30SiDSi seems to be minimal in the
Okavango Delta, Congo and Amazon Basin due to the rapid
dissolution/recycling of phytoliths (Cardinal et al., 2010; Hughes
et al., 2013; Frings et al., 2014b).

Work on smaller aquatic systems has also shown significant
temporal variations in δ30SiDSi. In a boreal river in North Sweden
seasonal changes in δ30SiDSi of 0.8‰ were attributed to: (1)
the release of plant derived bSiO2/phytoliths (low δ30Si) during
snow melt; (2) changing inputs from headwaters; and (3) diatom
biomineralization (Engström et al., 2010). Similarly, seasonal
changes in δ30SiDSi of up to 0.6‰ were observed in a series of
rivers in Switzerland (Georg et al., 2006), whilst variations in a
series of Icelandic rivers have been linked to differential erosion
rates and secondary minerals formation (Opfergelt et al., 2013).

Other studies have shown a significant anthropogenic impact
on δ30SiDSi, often in response to land use changes and dam
construction (Sun et al., 2011; Hughes et al., 2012; Delvaux
et al., 2013). As a case study, along the River Nile, intensive
water management through the irrigation/retention of waters
behind dams exerts a significant control on δ30SiDSi (Cockerton
et al., 2013). In the Tana River (Kenya), downstream increases
(decreases) in δ30SiDSi (DSi) are attributed to both greater
water retention time and the higher diatom DSi utilization
in dams and reservoirs (Hughes et al., 2012), which leads to
heavier (+0.54‰) downstream DSi compositions and a 41%
decrease in concentrations. Similarly, outside of diatom growth
season periods, the δ30SiDSi signature of Scheldt River (Belgium)
tributaries (a human disturbed watershed) are negatively
correlated to the percentage of forest cover (r2 = 0.95, p-value
< 0.01) and positively correlated to the percentage of arable land

cover (r2 = 0.70, p-value < 0.08) in the basin, suggesting that
land use is a major control here on δ30SiDSi signatures (Delvaux
et al., 2013). All of these examples document how temporal
(namely seasonal) and spatial changes in riverine δ30SiDSi in both
small and large drainage basins, can have great impact upon the
delivery of DSi and δ30SiDSi to the oceans over time (Frings et al.,
2016).

Challenges in Interpreting River Geochemistry
As outlined above, the cycling of DSi in river water is not a
straightforward process. In general, we have a good conceptual
understanding of the qualitative nature of the processes and
the associated fractionations, but quantifying the fractionation
at each step in the processes is often challenging. This is not a
problem that is unique to Si isotope systematics (see Eiler et al.,
2014).

The key steps in the generation of river water DSi include:
(1) dissolution of the primary mineral, (2) incorporation of
some fraction of this as a secondary phase, (3) bio-cycling and
soil-column processes. Each of these steps is associated with
multiple fractionations: We are beginning to understand that
the (overall) Si isotope fractionation associated with any given
process is extremely variable. Note that an analogy can be made
with the ongoing work on biological Si fractionation (Sutton
et al., 2013; Hendry et al., 2015). This range in observable
isotope fractionation occurs because each phase transformation
is typically several steps, each with their own fractionation.
For example, the weathering of a primary silicate mineral to
a secondary clay (e.g., plagioclase to kaolinite) will potentially
involve breaking of bonds in mineral surface, diffusion across
a leached layer and/or thin mineral-fluid boundary layer, de-
solvation/coordination into and from solution, transfer to the
precipitation site, and the forming of new bonds in the new
mineral. Each step can involve isotope fractionation, plus
various mass-balance constraints that regulate how much this
fractionation can be expressed. They also involve fractionations
of two fundamentally different manners: kinetic and equilibrium,
which arise fromNewtonian dynamics and bond-strength effects,
respectively. Importantly, these fractionation events tend to cause
opposing fractionation of the Si isotopes and complicate the
interpretations of the resulting δ30Si values.

Laboratory experiments confirm that the combined
fractionations associated with important processes (Si adsorption
or precipitation) are both rate and temperature dependent
(Geilert et al., 2014; Oelze et al., 2014, 2015; Roerdink et al.,
2015), conclusions that are corroborated by well-designed field
experiments (Geilert et al., 2015). In general, it is clear that
there is no such thing as a single fractionation factor for a
given process. This makes it hard to quantitatively interpret
e.g., river DSi at a large scale, especially without a robust
independent estimate of “fSi,” the fraction of Si remaining in
solution. Catchment mass-balance models (e.g., Bouchez et al.,
2013)) can help, but require that river sediment is collected and
measured simultaneously and assume catchment steady-state.
Predicting the magnitude, and even direction, of changes in the
δ30Si values of river water during glacial-interglacial transitions
is confounded by multiple parameters that are only qualitatively
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understood. It is not clear, for example, if these transitions would
result in a congruent weathering regime.

Lakes
Lacustrine systems represent a key component of the continental
Si cycle, although only a handful of results have been published to
date (Figure 1). Whilst riverine inputs cause initial lake profiles
to be primarily a function of upstream catchment processes
(weathering of rock and productivity inputs), subsequent in-
lake DSi biomineralization can significantly modify DSi/δ30SiDSi
before waters continue through the outflow and eventually into
the marine system (Alleman et al., 2005; Opfergelt et al., 2011).
As with the oceans, siliceous productivity in lakes is primarily
a function of light and nutrient availability. Accordingly,
spatial/temporal patterns of DSi/δ30SiDSi can often be linked to
factors including mixing/stratification regimes, which regulate
the supply of nutrient rich deep waters to the photic zone and the
retention of organisms in surface waters (Alleman et al., 2005).

The net efficiency of the biological pump in transferring
Si from the water column into the sediment record is often
higher in lakes than marine systems, due to lower dissolution
rates that are in turn influenced by faster rates of sinking and
sediment accumulation. However, in instances where dissolution
is significant, for example in response to elevated pH or salinity,
the impacts are clearly observed with elevated DSi concentrations
and lower δ30Si (Opfergelt et al., 2011). Importantly, the
contemporary studies carried out to date all highlight the
potential for δ30Si to be used to study temporal changes in
Si cycling, for example through the use of sediment cores.
Whilst several organisms (diatoms, radiolaria, sponges) have
been explored for this purpose in marine environments, work
on freshwater systems has so far focused on diatoms with few
data for other organisms (e.g., sponges Hughes et al., 2011).
Calibrations have replicated marine studies in demonstrating
a fractionation factor of ca. −1.1‰ that is independent of
temperature and species (Alleman et al., 2005). Furthermore,
contemporary data of δ30Sidiatom from open sediment traps
placed down the Lake Baikal water profile found a near constant
δ30Sidiatom composition, suggesting the full preservation of
the signal through the water column (Panizzo et al., 2016).
More importantly, their comparison with δ30Sidiatom in surface
sediments, where high diatom valve dissolution occurs, argued
for the absence of a Si isotope fractionation associated with
diatom dissolution (Panizzo et al., 2016).

Challenges in Interpreting Lake Geochemistry and

Palaeolimnological Records
As outlined above, there have been a handful of studies to date
that have examined the application of δ30SiDSi in limnological
settings (Alleman et al., 2005; Opfergelt et al., 2011; Panizzo et al.,
2016, 2017). Lakes, in addition to the soil-vegetation system, play
an important role in buffering continental DSi export to the
oceans. Previous assumptions were that this buffering capacity
of the continental Si cycle was in steady-state; however, this has
now been challenged (Frings et al., 2014a). Frings et al. (2014a)
highlight the effectiveness of lacustrine environments in retaining
DSi in sediments via the bSiO2 pump, which on a global scale

can translate to a net export of between 21 and 27% of river DSi
export. This equates to an estimation of 1.53 Tmol yr−1 (Frings
et al., 2014a) (Figure 1). These data highlight the challenges in
underpinning global estimates of lake biogeochemical cycling
(particularly for large lakes and reservoirs) to better constrain the
evolution of the global biogeochemical cycling of Si.

Marine
Silicon plays an important role in the marine realm as a
vital macronutrient for silicifying organisms such as diatoms,
radiolarians, siliceous sponges and silicoflagellates. Due to their
short lifetimes and the dynamic, boom-bust nature of their
populations, diatoms are dominantly responsible for the cycling
of Si within the ocean, due to the large fluxes associated with
their uptake and export of Si (Figure 1), although other siliceous
organisms may contribute to sedimentary standing stocks of Si in
some regions (Maldonado et al., 2011). Diatoms are thought to
be responsible for up to ∼40% of oceanic primary productivity
(Nelson et al., 1995), and are especially efficient at exporting
carbon from the surface ocean (Buesseler, 1998), giving them an
important role in the oceanic biological pump of carbon. The
marine cycles of Si and C are thus linked, albeit not in any simple
manner, due to the differential cycling of Si; the release of Si
from diatom frustules is slower relative to the remineralization
of C from diatom cells (Bidle and Azam, 1999; Ragueneau et al.,
2000; Bidle et al., 2002; Smetacek et al., 2012). The largest Si
fluxes within the global ocean are the result of diatom uptake in
and export from the surface ocean (Tréguer and De La Rocha,
2013) (Figure 1), most of which takes place in the upwelling
regions of the high-latitude open ocean (Honjo et al., 2008)
as well as in coastal upwelling regions. Diatoms preferentially
take up the lighter isotopes of Si during silicification (De La
Rocha et al., 1997; Milligan, 2004; Sutton et al., 2013), resulting
in a higher δ30SiDSi signature in surface ocean DSi (Figure 1).
Seawater δ30SiDSi variations are thus primarily created by the
fractionation by diatom uptake in the euphotic zone of the ocean,
where these photosynthesizers grow. This surface fractionation,
combined with the oceanic circulation, is the major control on
the global oceanic distribution of δ30SiDSi, which has highlighted
some key features of the nature of marine Si cycling in recent
years. However, other processes such as hydrothermal activity,
and early sedimentary diagenesis are poorly quantified, and thus
their impact on the interpretation of Si isotope and trace element
signals in sedimentary bSiO2 remains unknown

Global Water Column Distribution
Since active fractionation of δ30Si by diatoms occurs within the
euphotic zone of the ocean, the most extreme δ30SiDSi values are
found within the uppermost 100m of the water column, with
values reaching above +3‰ both in highly nutrient-depleted
oligotrophic gyres (with DSi concentrations <1µM; Reynolds
et al., 2006; Grasse et al., 2013) as well as in the slightly more Si-
rich high-latitude upwelling regions (with DSi concentrations of
2–13µM; Varela et al., 2004; Fripiat et al., 2011; de Souza et al.,
2012a). These values are amongst the most highly fractionated
δ30Si values reported in the literature (Reynolds, 2011), and
at any given location within the ocean, the surface ocean
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represents the highest δ30SiDSi value found in the water column
(e.g., Cardinal et al., 2005; Cavagna et al., 2011; Ehlert et al.,
2012). Below the maximum in the surface ocean, depth profiles
of δ30SiDSi typically show a monotonic decrease with depth,
mirroring the increase in DSi concentration. The steepness of
this isotopic gradient varies with oceanographic setting, with
sharp δ30SiDSi decreases observed in upwelling regions where
DSi concentrations increase quickly with depth (e.g., Cardinal
et al., 2005; Ehlert et al., 2012). Elsewhere in the open ocean,
where the silicicline is depressed and DSi concentrations increase
only slowly through the uppermost 1,000m of the water column,
δ30SiDSi values remain elevated to intermediate depths, and can
reach up to +1.8‰ at depths of ∼800m (de Souza et al.,
2012a). These elevated values, which result from fractionation
of δ30Si within the euphotic zone, provide robust evidence
that the bSiO2-poor nature of the upper ocean is due to the
spreading of DSi-depleted water masses that derive from the
Southern Ocean, as initially suggested by Sarmiento et al. (2004).
These water masses, Sub-Antarctic Mode Water (SAMW) and
Antarctic Intermediate Water (AAIW), form from high-latitude
surface water masses from which DSi has been stripped by the
uptake of heavily silicified Southern Ocean diatoms. This DSi
depletion is associated with an isotope fractionation, imparting
SAMW and AAIW a high δ30SiDSi signature (de Souza et al.,
2012a), a process that has been dubbed “Southern Ocean isotope
distillation” by Brzezinski and Jones (Brzezinski and Jones, 2015).
The high δ30SiDSi signature of SAMW and AAIW is exported
to the upper ocean at a near-global scale (De La Rocha et al.,
1998; de Souza et al., 2012a,b; Brzezinski and Jones, 2015; Singh
et al., 2015). The upper-ocean δ30SiDSi distribution thus reflects
the importance of Southern Ocean water-mass subduction in
resupplying DSi, together with other major nutrients, to the
nutrient-poor low-latitude upper ocean. The major exception to
this strong Southern Ocean influence is the DSi-rich upper ocean
of the North Pacific Ocean (Reynolds et al., 2006), which obtains
its DSi inventory via upwelling in the subarctic Pacific and also
influences the upper-ocean δ30SiDSi distribution of the equatorial
Pacific (Beucher et al., 2008, 2011; de Souza et al., 2012a).

By far the most coherent large-scale δ30SiDSi variability in the
global ocean is observed in the deep and abyssal ocean, below
about 2,000m. Here, DSi concentrations vary by a factor of
∼20, from a little over 10µM in the DSi-poor waters formed
in the North Atlantic Ocean, to over 180µM in the old, DSi-
rich waters of the North Pacific Ocean (Garcia et al., 2014).
The strongest DSi gradient is observed within the deep waters
of the Atlantic Ocean, where DSi-poor North Atlantic Deep
Water (NADW) overlies DSi-rich abyssal waters of Southern
Ocean origin (Antarctic Bottom Water, AABW). This DSi
gradient is associated with a coherent δ30SiDSi gradient between
isotopically light AABW (+1.2‰) and isotopically heavy NADW
with values up to +1.8‰ (de Souza et al., 2012b; Brzezinski
and Jones, 2015). It has been argued that the elevated δ30SiDSi
value of NADW is the result of the cross-equatorial transport
of a heavy δ30SiDSi signature by SAMW and AAIW, which
flow northward in the Atlantic Ocean to close the upper
limb of the meridional overturning circulation (Ehlert et al.,
2012; de Souza et al., 2015), illustrating the degree to which

Southern Ocean Si utilization and the associated “distillation”
of isotopes affects the δ30SiDSi distribution at the global scale
even in the deep ocean. Indeed, this Southern Ocean influence
would appear to extend as far north as the Arctic Ocean:
recent work has shown that Arctic deep waters Ocean bear
the most elevated δ30SiDSi values in the global ocean, with
values averaging +1.9‰ (Varela et al., 2016). Since the Arctic
Ocean receives most of its inflow from intermediate waters of
the northern Atlantic Ocean, which are influenced by AAIW,
the low-DSi, high-δ30SiDSi end-member characteristics of the
deep Arctic Ocean may ultimately derive from Southern Ocean
isotope “distillation,” although the role of more local processes
such as Si cycling within the Arctic Ocean as well as Si
input from riverine discharge need to be investigated in more
detail.

Apart from the Atlantic and Arctic Oceans, the deep water
δ30SiDSi distribution showsmarkedly little variability, with Indian
and Pacific Ocean deep waters exhibiting δ30SiDSi values of
around +1.2‰ to +1.3‰ (Beucher et al., 2008, 2011; de
Souza et al., 2012a; Grasse et al., 2013; Singh et al., 2015),
i.e., essentially invariant considering the degree of analytical
consistency between laboratories (Reynolds et al., 2007; Grasse
et al., 2017). Although there are some hints of heterogeneity in the
North Pacific, e.g., in the Cascadia Basin proximal to the North
American continent (Beucher et al., 2008), when compared to
the ∼0.5‰ meridional gradient observed in the Atlantic Ocean,
δ30SiDSi variability in the Indian and Pacific Oceans is neither
particularly significant nor systematic. A possible explanation for
this homogeneity comes from a modeling study of the controls
on the deep ocean δ30SiDSi distribution (de Souza et al., 2014),
which found that deep water δ30SiDSi values outside the Atlantic
and Arctic Oceans are very strongly governed by the export
of isotopically light DSi-rich abyssal water from the Southern
Ocean.

Hydrothermal Vents
There are two types of hydrothermal vents that influence the
marine Si cycle: (A) on-ridge hot (near critical point) black
smoker fluids and, (B) warm (>45◦C) and cool (<20◦C) Ridge
Flank Hydrothermal Fluids (RFHF). They are inherently similar
in terms of the Si transfer to the ocean because (a) reactions
at high and low temperature leach Si from the oceanic crust,
resulting in high (17± 3mmol/kg for hot) andmoderate (∼0.5±
0.2 mmol/kg for warm and cool) DSi hydrothermal fluids and (b)
cooling of the hot fluids or warming of the cool and warm fluids
removes DSi through precipitation of smectite-like clays before
their venting from the seabed (Wheat and McManus, 2005). At
a global scale, high temperature hydrothermal DSi fluxes can
be constrained at a maximal of 0.14 ± 0.02 Tmol yr−1 using
a Si input of 17 ± 3 mmol/kg (the average concentration in
hydrothermal vents at an exit temperature of 300◦C) with a water
flux at 8× 1012 kg yr−1 (Coogan and Dosso, 2012). However, the
influence of hydrothermal inputs on the global marine Si cycle
remain uncertain due to the paucity of δ30Si data available. To
date, the only published data are two data points (−0.4‰ and
−0.2‰) for hydrothermal vents on the East Pacific Rise (De La
Rocha et al., 2000).
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Sedimentary Processes
Upon deposition on the seabed, recycling of SiO2 during early
diagenesis in marine sediments involves: (a) initial dissolution
of bSiO2 and/or detrital siliceous phases and consequent DSi
build-up in marine pore waters (b) flux of dissolved Si out of the
sediments and (c) bSiO2 reconstitution and/or precipitation of
SiO2-rich diagenetic solid phases. The three recycling processes
take place simultaneously and ultimately control DSi fluxes and
diagenetic SiO2 deposition and storage in marine sediments
(Dixit et al., 2001; Aller, 2014) (Figure 1). When early diagenetic
siliceous precipitates are rich in seawater-derived cations (e.g.,
K, Mg) the precipitation process is called “reverse weathering”
and the cation-rich precipitates “reverse weathering products”
(Mackenzie and Garrels, 1966; Michalopoulos and Aller, 1995).

Pore water and biogenic silica preservation
The δ30Si of pore waters from marine sediments is an indicator
of diagenetic turnover of Si and its impact on the preservation
of environmental signals in bSiO2 (Ehlert et al., 2016). In
fine-grained terrigenous sediments of the Amazon delta these
authigenic Al-Si phases form at a rate as high as 280 µmol Si
cm−2 yr−1 (Michalopoulos and Aller, 2004). In shelf sediments
the rate is thought to be substantially lower at around 56
µmol Si cm−2 yr−1, which, however, means that approximately
24% of the total dissolving bSiO2 re-precipitates in the upper
few centimeters of the sediment (Ehlert et al., 2016). Several
experimental studies have shown that such Si precipitation is
associated with strong enrichment of light Si isotopes up to
−4.5‰ in the product although they were not focused on
sediment—pore water diagenesis (e.g., Geilert et al., 2014; Oelze
et al., 2014, 2015; Roerdink et al., 2015).

To date, there have been only a few studies that investigated
the effect of diagenesis on preservation of the primary
environmental signal in bSiO2 and they found potentially
differing results. Demarest et al. (2009) reported a preferential
release of light Si isotopes during partial dissolution of bSiO2

in batch reactors, whereas leaching experiments with sediments
showed no fractionation (Wetzel et al., 2014; Tatzel et al.,
2015). In young hemi-pelagic sediments, the early diagenetic
formation of new Al-Si phases is focused in the topmost layer
of the sediment column (ca. 0–10 cm sediment depth). Ehlert
et al. (2016) found pore waters from the Peruvian shelf with
high δ30Si (average 1.46 ± 0.22‰) with the highest values
occurring close to the sediment–water interface. These values
were enriched compared to bSiO2 in the cores (average 0.85
± 0.28‰) and overlying bottom water (<1.5‰), which is
consistent with the formation of authigenic Al-Si phases from
the dissolving bSiO2. The fractionation factor between the
precipitates and the pore waters was estimated at −2.0‰.
However, the isotope composition of the bSiO2 seemed to
remain constant within the reactive surface layer where most
of the dissolution and precipitation occurred, which makes
isotopic fractionation during dissolution unlikely. From leaching
experiments on older Pleistocene and Pliocene sediments, Tatzel
et al. (2015) report that the formation of authigenic Al-Si phases
should be 2‰ lighter than the pore waters they formed from, in
agreement with previous experimental results (Delstanche et al.,
2009; Geilert et al., 2014; Oelze et al., 2014, 2015). However, the

authors observed an increase of the Si isotope composition of
the preserved SiO2 during phase transformation from opal-A to
opal-CT. The reason for this was an isotope exchange between
SiO2 and pore water, and the Si isotope increase was higher with
an increase in the amount of detrital material in the sediment.

Diagenetic silica precipitation and reverse weathering
It has been proposed that reverse weathering reactions in
marine sediments are significant oceanic sinks for K, Mg, and
alkalinity (Mackenzie and Garrels, 1966; Rude and Aller, 1994;
Michalopoulos and Aller, 1995, 2004; Sun et al., 2016). The
precipitation process can also involve the uptake of minor
elements (Li, Ge, F) into new authigenic siliceous phases, which
can act as primary sinks and thus balance the oceanic mass and
isotopic budget. The incorporation of redox-sensitive elements
(e.g., Fe) depends on the availability and early diagenetic cycling
of the relevant element in dissolved form.

Currently, the flux of reverse weathering on the global
Si cycle is estimated at −0.63 ± 0.6 Tmol yr−1 (Frings
et al., 2016) or 1.5 ± 0.5 (Tréguer and De La Rocha,
2013) (Figure 1, Table S1), however, it is assumed that
this flux is under-estimated. It has been proposed that
reactive bSiO2 that has undergone reconstitution/dissolution/re-
precipitation transformations remains partially unaccounted for
(Michalopoulos and Aller, 2004; Presti andMichalopoulos, 2008)
using the traditional operational leach method of DeMaster
(1981). However, measurements of cosmogenic 32Si incorporated
in reactive SiO2 products indicate that even the modified alkaline
leach methods used to date in high sediment accumulation rates
underestimate the amount of reconstituted bSiO2 and authigenic
silicates stored in deltaic sediments (Rahman et al., 2016). Thus
the conservative estimates for the net storage of altered bSiO2

and authigenic silicates in deltaic sediments range from 2–3x in
the Mississippi (Presti and Michalopoulos, 2008) to 5–10x in the
Amazon (Michalopoulos and Aller, 2004). Based on 32Si, actual
storage in the Amazon delta may be 2–3x greater (i.e., 3–4.5 Tmol
yr−1) than the best recent conservative estimates (Rahman et al.,
2016).

In general, the impact of dissolution, diagenesis and reverse
weathering on the stable isotope analysis of bSiO2 are poorly
understood. Whilst it is possible to assess the degree of
recrystallization of bSiO2 through geological time (De La Rocha,
2003), there are some early stage dissolution and diagenetic
processes that can occur in the water column and shallow
sediments that may be more challenging to detect. However,
studies seem to indicate that with high bSiO2 concentrations in
the sediments, the original δ30Si of the bSiO2 is more likely to be
preserved because exchange with pore water and the formation
of authigenic Al-Si phases is limited.

Additional Challenges in Interpreting Marine Data
In addition to environmental alteration (see sections Pore
Water and Biogenic Silica Preservation and Diagenetic
Silica Precipitation and Reverse Weathering) and any
analytical challenges associated with the separation and
cleaning (see section Multi-proxy Geochemical Approaches in
Palaeoceanography) of bSiO2 from sediment cores, ensuring the
effective removal of any contaminant phases (Morley et al., 2004;
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Egan et al., 2012), there are a number of different biological and
ecological assumptions that are required for the interpretation of
both Si and oxygen isotopes (δ18O) in diatom bSiO2.

Firstly, many downcore studies assume a constant δ30Si
fractionation factor of −1.1 ± 0.4‰, which was based on the
initial culture studies carried out by De La Rocha et al. (1997).
However, more recent studies show that this fractionation factor
may be more variable, and potentially species-specific, based on
both field studies (e.g., Varela et al., 2004; Beucher et al., 2007;
Ehlert et al., 2012; Fripiat et al., 2012) and culture experiments
(Sutton et al., 2013).

Secondly, the mathematical models of DSi utilization also
assume a starting value of δ30SiDSi for the upwelling water,
which supplies the essential nutrients to diatoms in the
surface layer. To a certain extent, this can be estimated
using simple box models (e.g., Beucher et al., 2007), and/or
deep-water archives [see section Palaeoceanographic (and
Palaeolimnological) Applications below Horn et al., 2011;
Egan et al., 2013]. There is a potential that changes in
water mass circulation, or end-member composition, could
impact the distribution of silicon isotope ratios in the oceans
(Hendry and Robinson, 2012) (see section Global Water
Column Distribution). Furthermore, changes in inputs and—
potentially—biological productivity and diatom bSiO2 burial
could change the whole ocean Si isotope budget over periods of
time longer than the residence time of Si in the ocean, 10–15
thousand years (Frings et al., 2016; Hawkings et al., 2017).

PALAEOCEANOGRAPHIC (AND
PALAEOLIMNOLOGICAL) APPLICATIONS

The stable isotopic composition of biogenic bSiO2, together
with the concentration and stable isotope composition of
trace elements within the bSiO2, provide a useful source of
palaeoceanographic data. The remains of silicifiers, isolated
from marine sediments, are effective archives of marine Si
cycling at different depths within the water column, yielding
key information about DSi supply and utilization by marine
algae. Si cycling by algae is important to quantify if we are
to understand the processes that are critical to the cycling of
carbon in the Earth’s climate system, such as changes in organic
carbon production and export, oceanic circulation and chemical
weathering (Frings et al., 2016). Biogenic SiO2 has the potential
to provide records of marine Si cycling throughout the Cenozoic
in the case of diatoms, and further back into the Meso- and
Palaeozoic in the case of radiolarians and sponges, as it is well-
preserved and widespread in sediments, and can be readily
assessed for diagenesis through XRD analysis (e.g., De La Rocha,
2003). In addition, bSiO2 archives are useful in climatically
important locations where the more traditional, carbonate-
based palaeoceanographic archives (principally foraminifera) are
poorly preserved, such as the Quaternary Southern Ocean.

In the following sections, we will provide a summary of the
bSiO2-based palaeoceanographic tools available, including trace
element geochemistry (section Trace Element Geochemistry of
Diatoms and Sponges) andmajor element stable isotope methods
(section Major Element Stable Isotope Ratios in Diatoms,

Sponges and Radiolarians). These sections emphasize the value of
multi-archive and –proxy approaches to better constrain changes
in silicon (bio)geochemistry and examples of such applications
are provided within the context of palaeoceanography in section
Multi-proxy Geochemical Approaches in Palaeoceanography
(e.g., Silicic Acid Leakage Hypothesis). Although we will focus on
the more widely studied silicifying organisms (diatoms, sponges
and radiolarians), there is a wealth of other silicifying organisms
in the oceans that are yet to be explored for their potential as
oceanographic archives.

Trace Element Geochemistry of Diatoms
and Sponges
Biogenic silica incorporates low quantities of trace elements into
the structure. Although often in parts per million—or less—the
concentrations of these elements (often normalized to Si) can
reveal information about the environmental conditions during
growth. Many of these elements show strong correlations with
DSi in seawater and exhibit “refractory nutrient-like” profiles.

Aluminum
Aluminum is one of the most abundant, but highly variable, trace
elements in bSiO2 ranging from 0.0001 to 0.1 g/g (e.g., Hendry
et al., 2011). Although Al uptake occurs by adsorption and is
present in associated clay phases (van Bennekom and van der
Gaast, 1976; Moran and Moore, 1988), Al is also incorporated
into living diatom bSiO2 that is still protected by an organic
matrix (Gehlen et al., 2002). X-ray absorption spectra at the Al-K
edge show that Al occurs in 4-fold co-ordination, with tetrahedra
inserted inside the bSiO2 framework, although samples of diatom
bSiO2 taken from natural marine waters show both 4- and 6-
fold co-ordination, possibly as a result of clay contamination
(Gehlen et al., 2002). Whilst there appear to be some climatic
signals in Al/Si in diatom bSiO2 (e.g., Hendry et al., 2011), Al/Si
appears to be highly susceptible to rapid alteration during early
sedimentation processes, most likely sourced from clay material
(Ren et al., 2013) increasing an order of magnitude or more
between water column or sediment trap samples and sediment
core tops in both laboratory and field studies (Koning et al., 2002,
2007; Loucaides et al., 2010; Hendry et al., 2011). In addition
to Al concentration analysis, diatom bSiO2

26Al and 10Be have
also been explored as archives of marine cosmogenic nuclide
concentrations (Lal et al., 2006). Less is known about the Al
content of other silicifiers, although limited data indicate that
the Al/Si of fresh sponge bSiO2 is lower than that of diatoms
(<0.0002 g/g; Hendry and Andersen, 2013).

Germanium
In the ocean, dissolved inorganic germanium (Ge) cycles in a
manner similar to that of DSi, with Ge uptake and regeneration
from diatom frustules being the main control on its oceanic
distribution (Froelich and Andreae, 1981; Froelich et al., 1989;
Mortlock and Froelich, 1996; Sutton et al., 2010). Although Ge
mimics Si, differences in their geochemical behavior can occur
reflecting differences in the oceanic inputs and losses and subtle
differences in the biogeochemical cycling of these two elements
within the ocean. Because of differences in molecular weight
and subtle differences in chemistries, the uptake, incorporation
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and regeneration of Ge from diatom bSiO2 is also non-ideal.
These differences are especially apparent at low DSi and Ge
concentrations where there is apparent discrimination of Ge
during Si uptake via bSiO2 formation (Sutton et al., 2010), which
lead to significant non-zero Ge intercept and slightly non-linear
behavior of the global Ge-Si relationship ([Ge] = 0.76±0.00[Si]
+ 0.08±0.17, r2 = 1.00, n= 248, Ge in pmol L−1 and Si in µmol
L−1). The fractionation of Ge during uptake with Si is readily
apparent in deep sea sponges which have a lower affinity for Si
uptake (Froelich and Barthel, 1997; Reincke and Barthel, 1997;
Maher et al., 2006).

The two main sources of Ge and Si to the ocean are mineral
weathering and hydrothermal fluids (Mortlock and Froelich,
1987; Mortlock et al., 1993; Kurtz et al., 2002). Weathering
produces low Ge:Si ratios (Ge/Si) input ratios as reflected in the
Ge/Si for rivers (0.3–1.2 µmol/mol), while hydrothermal fluids
have higher Ge/Si input ratios (8–14 µmol/mol) (Mortlock and
Froelich, 1987; Mortlock et al., 1993; Kurtz et al., 2002). The
two main sinks for Ge removal from the ocean are through
incorporation into bSiO2 and Ge lost via in non-opal phases
(Murnane et al., 1989; Hammond et al., 2000, 2004; King et al.,
2000; McManus et al., 2003). Currently, there is debate about the
magnitude and loss via the ‘missing Ge sink’ (Hammond et al.,
2000, 2004; King et al., 2000; McManus et al., 2003; Baronas
et al., 2016; Rouxel and Luais, 2017). Recently Baronas et al.
(2016) have suggested that Ge loss from the ocean appears to be
dependent on pore-water oxidation–reduction reactions and the
formation authigenic aluminosilicate (see section Sedimentary
Processes) minerals within marine sediments. Note, a recent
study looking at the links between Ge isotopes and silicon in
Hawaiian hydrothermal vents has shown the potential of this
new isotopic system to trace the fate of hydrothermal elements
released into the ocean (Escoube et al., 2015).

While inorganic Ge can be lost from solution through
incorporation into biogenic silica and association with authigenic
mineral formation, there is a large unreactive organic Ge
pool within the dissolved phase; monomethyl- and dimethyl-
germanium. The formation of these two species is relatively
unknown, but it is speculated to be continentally derived and
lost under anoxic conditions (Lewis et al., 1985, 1988, 1989).
The residence time for these methylated forms of Ge are on the
order of 100,000+ years, which is considerably longer than that
of inorganic Ge.

In addition, inorganic Ge can form stable complexes
with organic molecules (e.g., humic acids) containing di-
and polyfunctional carboxylic acids, polyalcohols and ortho-
diphenols functional groups. Complexation of Ge by humic acids
in freshwater regimes needs to be considered with interpreting
variations in the Ge/Si ratio for the global ocean through time
with respect to terrestrial inputs (Pokrovski and Schott, 1998).
The organic Ge complexation has also been suggested to explain
the low Ge/Si ratio in phytoliths due to different pathways of Ge
relative to Si in the plant: Ge is not discriminated against at the
root–soil solution interface but it is organically trapped in roots,
in contrast to Si (Delvigne et al., 2009).

The Ge/Si imprinted into diatom frustules has proven useful
for palaeo-reconstructions but it gives no information regarding

the sizes of the Si and Ge oceanic pools. The overall Ge/Si for the
diatom bSiO2 from the Southern Ocean is relatively constant and
appears to reflect seawater Ge/Si (Shemesh et al., 1988; Froelich
et al., 1989); however, the late Pleistocene diatom Ge/Si record
shows clear, systematic variations between interglacial (Ge/Si =
0.70–0.78 µmol/mol) and glacial periods (Ge/Si = 0.45–0.60
µmol/mol) (Froelich et al., 1989; Mortlock et al., 1991; Bareille
et al., 1998) suggesting that size of either the Si or the Ge pool
has varied (Murnane et al., 1989; Froelich et al., 1992; Hammond
et al., 2000, 2004; King et al., 2000;McManus et al., 2003). To date,
little progress has beenmade to follow up on this earlier work and
our understanding on what drives the large variations has little
advanced since the work of King et al. (2000), Hammond et al.
(2004), and McManus et al. (2003) (see Rouxel and Luais, 2017
for more detail).

Zinc
Zinc is incorporated into diatom bSiO2 in approximately 1–20
ppm levels. Culture studies show that the Zn/Si content of diatom
bSiO2 relate to the concentration of free Zn2+ ions in the ambient
seawater (Ellwood and Hunter, 1999). However, more recent
observations of Zn speciation in the Southern Ocean question
this link, because the variability in free Zn2+ ion concentrations
are not captured by diatom bSiO2 Zn/Si (Baars and Croot,
2011). Field studies support a link between diatom bSiO2 Zn/Si
and productivity and diatom bSiO2 burial rates, although the
mechanism behind this relationship is less clear and could relate
to nutrient uptake vs. supply, growth rate or salinity (Hendry
and Rickaby, 2008; Andersen et al., 2011). The Zn/Si ratio of
diatom bSiO2 from sediment cores, which appears to be less
susceptible to initial alteration of the bSiO2 as compared to Al/Si
(Hendry and Rickaby, 2008), has been used in a small number
of studies as a proxy for changes in Zn supply to surface waters
in the open ocean and coastal Southern Ocean regions (Ellwood
and Hunter, 2000; Hendry and Rickaby, 2008). Recent studies
indicate that a large proportion of Zn uptake by diatoms is into
the organic material in the cell rather than the bSiO2, challenging
its use as a palaeoceanographic proxy (Twining et al., 2003).
Thorough cleaning protocols are required to ensure only the Zn
incorporated into the silica structure is analyzed (Hendry and
Rickaby, 2008; Andersen et al., 2011).

Zinc isotopes (denoted by δ66Zn) in diatom bSiO2 ranges from
0.7 to 1.5‰ and appears to relate to changes in seawater δ66Zn
composition because of biological drawdown of isotopically light
Zn by phytoplankton. If this is the case, then δ66Zn in diatom
bSiO2 from sediment cores has the potential to be used as an
archive of Zn biogeochemical cycling in the past (Andersen et al.,
2011). However, Zn isotopic fractionation during incorporation
into diatoms appears to be determined by whether the diatom
is utilizing a high or low-affinity Zn transport mechanism,
in addition to ambient free Zn2+ concentrations, and is also
heavily influenced by surface adsorption and organic matter
incorporation (John et al., 2007; Zhao et al., 2014).

One study has shown that Zn/Si in sponges relates to the
flux of particulate organic carbon (POC) to sediments (Ellwood
et al., 2004), leading to its potential use as an export production
proxy (Ellwood et al., 2005). Sponge δ66Zn systematics appear
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to differ between major groups of silicifying sponges: δ66Zn
reflects seawater zinc isotopic values in Hexactinellids, whereas
Demosponge δ66Zn,most likely reflects a combination of internal
isotopic fractionation and fractionation of isotopes in dietary
organic matter (Hendry and Andersen, 2013).

Major Element Stable Isotope Ratios in
Diatoms, Sponges and Radiolarians
Given that bSiO2 is high-purity SiO2, the most straightforward
targets for geochemical analysis are stable Si and oxygen isotope
ratios (denoted by δ30Si and δ18O, respectively). However,
other major elements, including C and N that are encased
within the bSiO2, have also been analyzed. Here, we review
recent developments in the use of major isotope systems
in bSiO2 produced by diatoms, sponges and radiolarians as
palaeoceanographic proxies.

Carbon
Increasingly, studies of carbon isotopes are turning to the analysis
of specific organisms rather than bulk organic matter so that
changes in the carbon cycle can be better investigated without
the complication of a mixed source. For example, δ13C analysis
can be undertaken on the cellular (occluded) organic matter
in diatoms, which is well protected from degradation by the
frustule. During photosynthesis, organic carbonmatter is formed
from both HCO−

3 and CO2(aq) and incorporated into diatoms
(Tortell and Morel, 2002). The main control on δ13Cdiatom is
the balance between supply and demand for Dissolved Inorganic
Carbon (DIC), driven by variations in biological productivity or
carbon cellular concentrations. Organisms, including diatoms,
preferentially use 12C over 13C, so as photosynthetic demand
for DIC rises, increasing amounts of 12C are removed from
the DIC pool, leading to progressively higher δ13Cdiatom (Laws
et al., 1995). Other factors that could influence δ13Cdiatom

include changes in the δ13CDIC of inputs to the water column,
particularly in the lacustrine environment where the sources
of the carbon supplied will be more variable (Barker et al.,
2013), dissolution of diatoms, which releases carbon into the
ambient water, and changes in CO2(aq) concentration (Laws et al.,
1995; Rau et al., 1996, 1997). Therefore, if factors such as inter-
species vital effects can be controlled for (Des Combes et al.,
2008), or if samples of a single species are analyzed (Swann
and Snelling, 2015), then changes in δ13Cdiatom can be used to
reconstruct environmental changes. In marine sediments, this is
usually primary productivity (e.g., Shemesh et al., 1995; Panizzo
et al., 2014; Swann and Snelling, 2015) and/or changes in CO2

(Heureux and Rickaby, 2015; Stoll et al., 2017). In the case of
lake sediments, δ13Cdiatom is used to reconstruct changes in the
balance between the source and amount of carbon supply and the
productivity within the lake ecosystem (e.g., Barker et al., 2013).

Nitrogen
The measurement of variations in diatom-bound stable isotopes
of nitrogen (expressed as δ15N) is a powerful tool to reconstruct
past nitrogen (N) utilization from palaeo-archives (e.g., Sigman
et al., 1999; Robinson et al., 2004). To date,∼10 studies have used
diatom-bound δ15N obtained from sediment cores to reconstruct

palaeo N cycling, with a strong focus on the Southern Ocean
(e.g., Crosta and Shemesh, 2002; Robinson et al., 2004, 2005;
Robinson and Sigman, 2008; Horn et al., 2011). Shemesh et al.
(1993) was the first to develop a method that used the organic
matter contained within the hydrated SiO2 matrix of the diatom,
making it possible to measure diatom-bound N stable isotopes
(15N and 14N). However, during the last decade the chemical
preparation has systematically improved (e.g., Sigman et al.,
1999; Robinson et al., 2004). During nitrate uptake, diatoms
preferentially incorporate the lighter isotope (14N) into the
organic matter (e.g., Altabet et al., 1991; Montoya andMcCarthy,
1995), which affects the isotope composition of both the diatom
and the residual nitrate. An enzymatic pathway catalyzes this
process, where nitrate is reduced to nitrite by nitrate reductase
(e.g., Needoba et al., 2003), which can lead to high fractionation
factors of up to 14.0‰ in cultured polar diatoms (Horn et al.,
2011). Generally, the fractionation of diatom-bound δ15N shows
a broad range (1–14‰), with high δ15N variations among diatom
species (1.9–11.2‰) with weak relationship between δ15N and
cellular size and/or surface area (Horn et al., 2011). Unlike bulk
sedimentary δ15N, which is routinely measured to reconstruct
N cycling (N utilization and N-loss process), preparation of
diatom-bound δ15N is more time consuming and cost intensive
(Robinson et al., 2012), but does not appear to be isotopically
altered by early bacterial diagenesis (e.g., Freudenthal et al.,
2001).

Oxygen
The oxygen isotope (δ18O) values of calcareous marine
microfossils, notably foraminifera, have been used extensively
to constrain changes in ocean dynamics (such as global ice
volume) over the past 70Ma of Earth history (e.g., Zachos,
2001; Lisiecki and Raymo, 2005). Antarctic ice volume has likely
played a significant role in Cenozoic deep water formation,
oceanic circulation, and global-scale climate variations; however,
poor preservation of calcareous fossils in high-latitude marine
sediments has limited attempts to expand the geographical
resolution of the benthic marine carbonate oxygen isotope record
(Sarmiento and Toggweiler, 1984; Elderfield and Rickaby, 2000;
Lisiecki and Raymo, 2005; Raymo et al., 2006). Unlike carbonate
minerals, bSiO2 is generally well preserved in high-latitude
marine sediments; therefore, the δ18O values of diatom bSiO2

from these regions have the potential to vastly expand our
understanding of coupled ice-ocean dynamics (e.g., DeMaster,
2003; Swann and Leng, 2009).

Little is known about spicule δ18O systematics, although there
appear to be complex biological vital effects in freshwater sponges
(Matteuzzo et al., 2013). A study of a marine carnivorous sponge
δ18O showed large fractionation effects and highly heterogeneous
isotopic behavior within one individual (Hendry et al., 2015).
One downcore study indicates that there are systematic offsets
between spicule and diatom bSiO2 δ18O (Snelling et al., 2014).

Silicon
Many (at least 25) glacial-interglacial records, from marine
sediment cores, of δ30Si of silicifying organisms (i.e.,
diatoms, sponges, radiolarians) display a similar trend:
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FIGURE 2 | Least-squares regression lines fit though sedimentary δ30SibSiO2
records from 25 ka to present, standardized to mean δ30Si of the record:

almost all records show an increase from the glacial to the Holocene, with an

average trend of ca. 0.045‰ ka-1, suggestive of a common mechanism. Data

are from Beucher et al. (2007), Brzezinski et al. (2002), De La Rocha et al.

(1998), Doering et al. (2016), Ehlert et al. (2013), Ellwood et al. (2010), Hendry

et al. (2010), Hendry et al. (2014), Hendry et al. (2012), Horn et al. (2011), Kim

et al. (2017), Maier et al. (2013), Panizzo et al. (2014), Pichevin et al. (2012),

Pichevin et al. (2009), Sutton (2011), and Xiong et al. (2015).

lower glacial δ30Si, higher interglacial δ30Si (see Figure 2).
While this general pattern has been noted before, most of
the records have been interpreted in isolation in terms of
nutrient palaeo-utilization (or Si concentrations, for spicule
records), and conclusions are related to local-regional nutrient
supply (ocean circulation). Trace metal ratios (see section
Trace Element Geochemistry of Diatoms and Sponges)
may provide an additional constraint but interpretation is
difficult since the marine budgets of both the elements (i.e.,
the trace element, together with the Si cycle) are poorly
constrained.

Diatoms
Silicon isotope ratios in diatom bSiO2 have been used widely
as a proxy for marine DSi utilization in surface waters due to
the preferential fractionation of the lighter isotope of Si during
diatom silicification (see section Marine for more detail). The
proxy works on the premise that as diatoms grow in a “parcel”
of seawater and progressively use up the available DSi, both the
remaining DSi and the bSiO2 produced at any instant become
progressively isotopically heavier (see section Marine for detail).
The fractionation can be modeled, assuming either closed or
open distillation of Si isotopes, allowing the back-calculation of
past utilization from downcore diatom δ30Si archives (De La
Rocha et al., 1997, 1998; Varela et al., 2004). The calculation
assumes a known and constant fractionation factor, denoted by

epsilon (see section Stable Silicon Isotope Ratios to Study the
Global Si Cycle).

Similar tomarine work (Varela et al., 2004; Closset et al., 2015),
lake sediment traps have shown the δ30Si signature of diatoms
(δ30Sidiatom) to be resilient to dissolution and preserved through
the water column into the sediment record (Panizzo et al.,
2016). Accordingly, δ30Sidiatom from lacustrine sediment cores
can be used to reconstruct past changes in biogeochemical cycling
at the catchment/drainage basin scale. Whilst only a limited
number of palaeolimnological studies have been undertaken, all
demonstrate the potential for δ30Sidiatom to constrain long-term
changes in the Si cycling in relation to catchment processes
and/or physical limnological. For example, a record from Arctic
Siberia covering the last 31 ka demonstrates that rates of DSi
utilization are governed by catchment weathering and ice-cover
duration together and mixing in the water column (Swann et al.,
2010). Elsewhere, records from East Africa demonstrate the
importance of monsoonal rainfall and their associated impact
on vegetation in regulating the Si cycle. In the upper White
Nile basin results reveal that higher monsoonal rainfall and
associated increases in forest cover and chemical weathering
increased the flux of DSi from land to rivers during the late-
glacial/mid-Holocene, conditions that reversed after 5.5 ka with
the emergence of dryer conditions and open vegetation/crops
(Cockerton et al., 2015). Further east in Kenya measurements
of δ30Sidiatom in a lake demonstrate that high levels of glacial
diatom productivity were supported by increased fluxes of
Si from the sparse catchment (Street-Perrott et al., 2008).
Subsequent reductions in aquatic productivity then coincide with
the development of grasslands and other Holocene vegetation,
in response to increase monsoonal rainfall, which reduced Si
transportation to the lake (Street-Perrott et al., 2008).

The potential of δ30Si is particularly evident in regions where
climate change and anthropogenic lake catchment alteration
(e.g., nutrient loading) are prompting limnological responses
(e.g., increased duration of lake stratification and warmer surface
water temperatures), which impact within lake biogeochemical
cycling (Panizzo et al., 2017). For example, the approach has
been demonstrated as a means to identify biogeochemical
responses to climate change (Street-Perrott et al., 2008; Swann
et al., 2010) and its value over more recent timescales is
also stressed here as a means to address current pressures.
Comprehensive contemporary limnological monitoring is also
emphasized (Opfergelt et al., 2011) to enable quantitative
estimations of seasonal DSi and bSiO2 cycling (via open or
closed system modeling), by providing key constraints on deep-
surface water δ30SiDSi exchange, Si residency times and Si
uptake (Panizzo et al., 2016, 2017). These data also serve to
validate conventional palaeolimnological approaches, which can
be applied to constrain continental bSiO2 export from lake and
reservoirs, particularly under a projected future of enhanced
anthropogenic and climatic pressures on these systems.

Siliceous sponges
Unlike diatoms, there is evidence that siliceous sponges have
a variable fractionation of Si isotopes with respect to seawater.
A compilation of modern sponge spicules, and core top
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spicules, reveals that there is a statistically significant non-
linear relationship between sponge δ30Si, or the difference
between seawater and spicule δ30Si (denoted by 130Si), and
ambient DSi concentrations during sponge growth (Hendry
et al., 2010; Wille et al., 2010; Hendry and Robinson,
2012). This empirical calibration means that there is a great
potential for spicule δ30Si in sediment cores to be used as
a proxy for bottom water DSi concentrations in the past,
providing key information about the supply of waters that
feed diatom productivity (Hendry et al., 2010; Hendry and
Robinson, 2012). The relationship is robust between laboratories
(Hendry et al., 2011), and whilst the mechanism behind this
relationship remains unclear, the observations are consistent
with a strong growth-rate dependence on DSi uptake in
sponges (Wille et al., 2010; Hendry and Robinson, 2012). The
relationship between DSi and sponge δ30Si appears to hold
for different filter-feeding sponges from different taxonomic
groupings and ocean basins, growing in significantly different
temperature, salinity and pH conditions (Hendry and Robinson,
2012). Furthermore, spicules from core top sediments also
fall on the same calibration line, indicating minimal impact
of early diagenetic processes (Hendry and Robinson, 2012).
However, unusual biomineralization processes and potentially
the internalization and isolation of the aquiferous system in
highly-derived carnivorous sponges result in δ30Si values that
deviate significantly from the global compilation (Hendry et al.,
2015). Further investigation into different biomineralization
pathways—and their impacts on isotopic fractionation—would
be beneficial. Studies of isotopic fractionation by sponges grown
in culture will add a great deal to our understanding of spicule
geochemistry and biomineralization mechanisms.

Radiolaria
There have been fewer studies into the stable isotope composition
of radiolarians compared to diatoms and sponges, and their
use as palaeoceanographic archives is very much in its
infancy. Radiolarian Si and oxygen isotope fractionation
factors are challenging to constrain from culture studies
because they are difficult to grow under laboratory conditions
and field studies are limited by knowledge regarding the
migration, strong biogeographic distributions and relatively
sparse numbers (Suzuki and Aita, 2011). However, there have
been a small number of studies that have attempted to constrain
a fractionation factor for Si isotopes in radiolarians, which have
estimated a similar fractionation range as for modern diatoms
(ca. −0.5 to −2.1‰; Hendry et al., 2014; Abelmann et al., 2015).
As such, there is potential for radiolarian δ30Si to be used, in
combination with modeling efforts, to constrain mid-depth to
surface DSi systematics. In short, more sediment records of
δ30Si in sponges and radiolarians are needed to estimate nutrient
concentrations and distribution with reorganizations in ocean
circulation.

Multi-proxy Geochemical Approaches in
Palaeoceanography
The Southern Ocean plays a key role in climate variability,
via heat transport and atmospheric greenhouse gas changes,

over glacial-interglacial timescales through both physical and
biogeochemical mechanisms. One such mechanism to explain at
least part of the atmospheric CO2 changes observed in ice core
records is the Silicic Acid Leakage Hypothesis SALH (Brzezinski
et al., 2002; Matsumoto et al., 2002). The SALH proposes that
enhanced dust deposition in the Southern Ocean during glacial
periods causes physiological changes in diatoms, such that they
take up less DSi relative to other nutrients (i.e., N, P), resulting
in the export of DSi enriched waters via AAIW (Ellwood et al.,
2010; Rousseau et al., 2016). Supply of relatively DSi-rich Mode
Waters at lower latitude would enhance the growth of diatoms
over carbonate producers, altering ocean alkalinity leading to
a reduction in atmospheric CO2 (Matsumoto and Sarmiento,
2008).

Geochemical archives locked up in bSiO2 can be used to
test the SALH. A recent example, used both oxygen and Si
isotopes in diatoms and radiolarians, from glacial-aged sediments
from the Southern Ocean, to provide reconstructions of seasonal
nutrient cycling. Data show strong variability in the mixed layer
depth in the seasonal sea-ice zone, which allowed for sufficient
nutrient exchange between surface and deeper waters, thereby
fueling carbon drawdown in an otherwise highly stratified glacial
Southern Ocean (Abelmann et al., 2015). Diatom δ30Si and
organic-bound δ15N archives from the Southern Ocean have also
been coupled with a spicule δ30Si record of bottom water DSi
concentrations to investigate DSi utilization across the last glacial
termination. By modeling the diatom Si-uptake, assuming the
spicules reflect the supply of DSi, these archives demonstrate
periods of intense upwelling and a greater utilization of the DSi
supply in response to changes in iron availability during the
deglaciation period (Horn et al., 2011).

In addition to using the relative bSiO2 accumulation rates
between the Southern Ocean and lower latitudes as a test
for Si export (e.g., Bradtmiller et al., 2009; Meckler et al.,
2013), it is possible to use combined geochemical proxy records
to test the SALH (Rousseau et al., 2016). Biogenic SiO2

archives point toward abrupt shifts in productivity and DSi
utilization at glacial terminations, rather than changes on glacial-
interglacial timescales (e.g., using coupled spicule, hand-picked
radiolarian and diatoms from archives in the Sargasso Sea;
Hendry and Brzezinski, 2014). Such observations, and other
geochemical records, have led to the formulation of a new
Silicic Acid Ventilation Hypothesis, which posits that sluggish
glacial Southern Ocean overturning primed southern sourced
Mode Waters to cause major changes in nutrient distribution
during periods of abrupt climate change in low latitude regions
influenced by intense ventilation (Hendry and Brzezinski, 2014;
Hendry et al., 2016).

Challenges for Palaeo-Record
Interpretation
Cleaning of bSiO2

The cleaning of bSiO2 remains an important challenge in
δ30SibSiO2, δ

18ObSiO2, δ
13Cdiatom, and δ15Ndiatom reconstructions.

Contamination, via the presence of residual tephras or clays
can compromise the precision of reconstructions, with the
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introduction of significant isotopic offsets (Morley et al., 2005;
Lamb et al., 2007; Brewer et al., 2008). This is often more
pronounced for diatoms (and radiolarians; Abelmann et al.,
2015) due to the ability for contaminant valve adherence
and occlusion, over sponge spicules that can be picked. Clay
δ30Si compositions are estimated between −2.95‰ and +2.5
(Douthitt, 1982; Georg et al., 2009; Opfergelt and Delmelle,
2012), which can significantly lower reported δ30Sidiatom values
[published values range between −0.07 and +3.05‰; (De La
Rocha et al., 2000; Cardinal et al., 2007; Sun et al., 2013; Panizzo
et al., 2014, 2016)] and outside of analytical uncertainty, while
high sample presence of different phases of bSiO2 can have a
similar effect (e.g., δ30Sisponge signatures vary between−5.72 and
+0.87‰ Douthitt, 1982; De La Rocha, 2003; Wille et al., 2010;
Hendry and Robinson, 2012). As a result, purity is routinely
demonstrated visually (via scanning electron microscopy) and
via quantitative assessments of sample geochemistry (e.g., Al2O3)
(Brewer et al., 2008; Chapligin et al., 2012). These serve, in
the first instance, to demonstrate the efficiency of cleaning
(SiO2:Al2O3 >1) and robustness of reconstructions. When
not possible, these data permit contamination mass-balance
calculations and a compositional offset correction of reported
data (Brewer et al., 2008; Mackay et al., 2011, 2013; Wilson
et al., 2014). There have been a number of methodological
advancements following the earliest published bSiO2 cleaning
protocols (Labeyrie and Juillet, 1982; Shemesh et al., 1988,
1995; Morley et al., 2004), which demonstrate that in order to
address the challenges in bSiO2 cleaning, methods should be
tailored depending on the characteristics of individual samples
and frequent visual inspection should be carried out throughout.

Constant Silicon Isotope Fractionation Factor
Application of the δ30Si proxy for DSi utilization, assumes a
constant fractionation factor (see section Stable Silicon Isotope
Ratios to Study the Global Si Cycle). This has been challenged
with evidence of species-dependent δ30Si fractionation variability
between DSi and bSiO2 phases (Sutton et al., 2013). The work
of Sutton et al. (2013) suggests that interpretation of marine
sediment-based reconstructions, should include an evaluation
of species composition for more accurate interpretations of
δ30Si downcore variability. While these data shed light on
potential species effects, each diatom strain in the Sutton et al.
(2013) study was grown under its specific optimal environmental
conditions in order to minimize the influence of external
environmental factors (e.g., irradiance and/or temperature). The
influence of environment on δ30Si composition in diatoms has
yet to be shown under laboratory controlled conditions. Data
from in-situ/natural settings, have not documented a species
effect (e.g., Cardinal et al., 2007; Fripiat et al., 2012; Closset
et al., 2015) although if anything this clearly demonstrates
the need to better understand the variability of δ30Si in
diatoms.

Similarly, it is essential to take any different ecological
preferences of the diatoms present in the sediment core into
consideration. There may be significant differences in when and
where particular dominant species are growing, or if there is
a pronounced preservation bias toward more heavily silicified

species. For example, late season diatoms may bloom in already
modified surface waters and large, deep-dwelling diatoms may
opportunistically utilize DSi supplies that are hundreds of meters
deep that has a different δ30SiDSi compared to near surface
waters (Hendry and Brzezinski, 2014; Xiong et al., 2015). Another
example is in Sea-Ice Zone of the Southern Ocean, where diatoms
living within the sea-ice bear heavier δ30Si than diatoms in the
surrounding waters due to a closed system where silicic acid can
be limited (Fripiat et al., 2007; Panizzo et al., 2014).

Application of δ
18O as a Palaeoceanographic Proxy

Despite an extensive effort by many researchers over the
past five decades (e.g., Mopper and Garlick, 1971; Labeyrie,
1979; Labeyrie and Juillet, 1982; Chung-Ho and Hsueh-Wen,
1985; Leclerc and Labeyrie, 1987; Matheney and Knauth,
1989; Shemesh et al., 1992; Swann and Leng, 2009; Pike
et al., 2013; Crespin et al., 2014; Abelmann et al., 2015),
uncertainty associated with the bSiO2-water oxygen isotope
fractionation has limited the application of bSiO2 δ18O values
as a palaeoceanographic proxy. The disparate bSiO2-water
fractionation factors have been attributed to two primary
causes: (1) methodological biased and/or incomplete removal
of hydroxyl oxygen, and (2) potential alteration of δ18O
values during bSiO2 formation/diagenetic alteration of δ18O
values on geologic timescales. The analytical bias has been
addressed thorough an inter-laboratory comparison that showed
no significant difference in δ18O values across a range of
dehydration and analytical techniques (Chapligin et al., 2011);
therefore, the only remaining source of uncertainty is in the
bSiO2-water fractionation relationship recorded by the diatom
bSiO2.

Diatoms from laboratory cultures and marine sediment
traps seem to have a reproducible bSiO2-water fractionation
relationship (Matheney and Knauth, 1989; Brandriss et al.,
1998; Schmidt et al., 2001; Dodd et al., 2017) that is different
from the bSiO2-water fractionation relationship recorded by
sedimentary diatoms and quartz-water equilibrium (e.g., Leclerc
and Labeyrie, 1987; Matheney and Knauth, 1989; Schmidt et al.,
2001). Even within sedimentary marine diatom bSiO2 archives,
there does not appear to be a single bSiO2-water fractionation
relationship. Leclerc and Labeyrie (1987) published a bSiO2-
water fractionation for marine diatoms from core-top sediments
and surface waters (δ18Owater and T); however, within their
dataset, δ18O values of diatom bSiO2 from high-latitude cores
overestimated surface water temperatures by several ◦C. Shemesh
et al. (1992) proposed the high-latitude diatoms represented
a fundamentally different bSiO2-water fractionation factor;
however, a recent re-examination of bSiO2-water fractionation
factors over the entire range of formation temperatures (0–
850◦C) suggest that marine diatoms may record the same
bSiO2-water fractionation relationship has high-temperature
opal/quartz (Sharp et al., 2016).

A uniform bSiO2-water fractionation factor implies that
living diatoms most likely precipitate bSiO2 out of isotopic
equilibrium (e.g., Brandriss et al., 1998; Dodd et al., 2017);
however, sedimentary (aka mature) diatom bSiO2 most likely
approaches quartz-water equilibrium (Sharp et al., 2016). It is,
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therefore, likely that the δ18O values of diatom bSiO2 record
a combination of diagenetic (e.g., sedimentary pore water)
conditions. Further work is needed to establish the timing,
degree, and mechanism of diagenetic changes to diatom δ18O
values; however, experimental studies suggest a combination of
dehydroxylation and precipitation of abiogenic SiO2 (e.g., Dodd
et al., 2017).

CONCLUSIONS AND PERSPECTIVES

The bio-geochemical analyses used to study the global
biogeochemical cycling of Si (e.g., stable isotopes and associated
trace elements), are emerging as useful tools to examine the
influence that silicifying organisms have on the different
reservoirs of Si (e.g., atmospheric, terrestrial, freshwater, and
marine). Over the past 20 years, the ongoing development of
specific low temperature bio-geochemical tools (e.g., δ30Si in
silicifying organisms) has provided useful information for the
reconstruction of past Si cycling and hints at the influence
that environmental change can have on the global Si cycle.
In addition, these tools provide knowledge on the role that
silicifying organisms have on other major biogeochemical cycles
(e.g., N and C). As outlined in this review, the main requirements
for the future development of the bio-geochemical tools used to
evaluate the global Si cycle are to:

1. Continue to produce high quality data (e.g., sample
preparation, chemical procedure, mass spectrometric analysis,
data analysis, the development of robust models, and the need
for more data-model comparisons).

2. Use multiple bio-geochemical tools simultaneously, i.e.,
a single isotope system is not perfect and should be
coupled with other bio-geochemical proxies (e.g., Ge/Si) and
parameters (e.g., salinity, temperature).

3. Better understand what controls the fractionation factors of
the various bio-geochemical tools used to study the role
of siliceous organisms (e.g., sponges, diatoms, radiolaria,
picophytoplankton) and globally important processes (e.g.,
reverse weathering, dissolution) on the global fluxes of Si.

4. Provide information on complex (though key) systems, e.g.,
estuaries and coastal environments, continental seas (e.g.,
the Arctic Ocean), sediment diagenesis (anoxic vs. bio-
active), hydrothermal activity, soil systems, and particle–
water interactions.

The global Si cycle starts with the chemical weathering of silicate
minerals, is transformed and re-distributed into lakes, rivers,
terrestrial and freshwater organisms, soils, aerosols, seawater
marine organisms, and sediment, and eventually becomes a
mineral once again. During these various transformations,
Si interacts with numerous other major (e.g., C, N) and
minor (e.g., Al, Ge, Zn) elements and, in turn, influences
their biogeochemical cycles. Investigation of the movement,
transformation, and fractionation of the stable isotopes and
associated elements involved in the bio-geochemical cycling

of Si provides knowledge not only to help constrain the
distribution and behavior of the global Si fluxes and their
potential variability over time, but also provides knowledge on
the mechanisms of Si biomineralization. This information is
essential for understanding the short- and long-term variation
in the range of these data, which are used to evaluate the
utility of these bio-geochemical tools for palaeoceanographic
interpretation.
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