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The surface snow density of glaciers and ice sheets is of fundamental importance in
converting volume to mass in both altimetry and surface mass balance studies, yet it
is often poorly constrained. Site-specific surface snow densities are typically derived
from empirical relations based on temperature and wind speed. These parameterizations
commonly calculate the average density of the top meter of snow, thereby systematically
overestimating snow density at the actual surface. Therefore, constraining surface snow
density to the top 0.1 m can improve boundary conditions in high-resolution firn-evolution
modeling. We have compiled an extensive dataset of 200 point measurements of
surface snow density from firn cores and snow pits on the Greenland ice sheet. We
find that surface snow density within 0.1 m of the surface has an average value of
315kg m~3 with a standard deviation of 44 kg m~2, and has an insignificant annual air
temperature dependency. We demonstrate that two widely-used surface snow density
parameterizations dependent on temperature systematically overestimate surface snow
density over the Greenland ice sheet by 17-19%, and that using a constant density of
315kg m~2 may give superior results when applied in surface mass budget modeling.

Keywords: snow surface density, firn, Greenland, parameterization, surface mass budget, model boundary
condition

INTRODUCTION

The mass budget of the Greenland ice sheet has grown increasingly negative during the past
two decades (e.g., Kjeldsen et al., 2015; Van den Broeke et al., 2016). There is a strong impetus
to constrain critical processes in order to reduce uncertainties in mass balance estimates (e.g.,
Shepherd et al., 2012; IPCC, 2013; Khan et al., 2015). In particular, an improved understanding of
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ice-sheet-wide snow and firn properties can reduce uncertainties
in: remotely-sensed or modeled ice sheet mass budget (e.g.,
Van den Broeke et al, 2016), identifying internal layers for
calculating accumulation rates from combined radar and firn
core surveys (Hawley et al., 2006, 2014; de la Pena et al., 2010;
Miége et al.,, 2013; Karlsson et al., 2016; Koenig et al., 2016;
Overly et al., 2016; Lewis et al., 2017), and quantifying meltwater
retention (Harper et al., 2012; Humphrey et al., 2012; Machguth
et al., 2016) and accumulation rates (Lopez-Moreno et al., 2016;
Schaller et al., 2016) from firn cores and snow pits. Improved
estimates of surface snow density, which serves as an important
boundary condition in firn densification modeling, can reduce
uncertainties in mass budget studies (e.g., Sorensen et al., 2011;
Csatho et al., 2014; Hurkmans et al., 2014; Morris and Wingham,
2014; Colgan et al,, 2015) that convert remotely-sensed volume
changes to mass changes based on either depth-density profile
relations or surface snow density parameterizations. Ice sheet
models that assess the surface mass budget, such as SICOPOLIS
(Greve et al.,, 2011) or PISM (Aschwanden et al., 2012), are
also limited by uncertainties in surface snow density. Fausto
et al. (2009) found that the inclusion of firn densification in
SICOPOLIS through a physical description of the retention
capacity yields a 10% increase in the accuracy of the present-day
surface mass budget.

Regional climate models calculate firn densification (e.g.,
Vionnet et al., 2012; Langen et al., 2015; Steger et al., 2017), but
are limited by uncertainties in surface snow density feeding into
their subsurface schemes. Some models use surface snow density
parameterizations based on temperature to implicitly account
for spatiotemporal variability (e.g., Reeh et al.,, 2005; Kuipers
Munneke et al., 2015). Other models use parameterizations that
depend on wind speed (e.g., Gallée et al., 2013) or a combination
of air temperature and wind speed (e.g., Vionnet et al., 2012),
while for instance Langen et al. (2015) used a constant surface
snow density value.

The parameterizations based on temperatures rely on in-situ
firn measurements with a coarse vertical resolution. For instance,
Reeh et al. (2005) used a firn model to infer surface snow density
from the 10-m firn temperature and depth-density profiles, while
Kuipers Munneke et al. (2015) used the average density of the
top meter of snow/firn, which would systematically overestimate
surface snow density in regional climate model studies (Steger
etal., 2017) if interpreted as the surface value. Most firn-evolution
models operate at a centimeter-scale vertical resolution, requiring
a surface snow density boundary condition derived at a
resolution finer that 1 m. Using observational data sampled at
high vertical resolution, one can derive the true surface value
and avoid systematically overestimating surface snow density and
consequently the density of the entire firn column. More accurate
firn density-depth profiles yield improvements for mass budget
studies of the Greenland ice sheet (e.g., Li and Zwally, 2011;
Ligtenberg et al., 2011; Simonsen et al., 2013; Csatho et al., 2014;
Overly et al., 2016; Steger et al., 2017).

The aim of this study is to present a spatially extensive
density dataset for the Greenland ice sheet derived from 200
density-profile measurements, and to investigate the observed
spatiotemporal variability for the top 0.1 m of snow/firn. In an

application of this dataset, we quantify the performance of the
observation-based temperature-dependent surface snow density
parameterizations by Kuipers Munneke et al. (2015) and Reeh
etal. (2005) that are often used as boundary conditions in surface
mass budget studies of the Greenland ice sheet (e.g., Csatho et al,,
2014; Steger et al., 2017).

METHODS

Dataset

Our surface density dataset consists of 200 point observations,
along with the geographic location, annual air temperature
and annual accumulation rate for these locations. The oldest
surface density data were collected by Benson (1962) in
1954 in Northwest Greenland at latitudes between 70° to
77° N (Appendix C). These measurements include annual
accumulation rates and 10m firn temperatures reported by
Mock and Weeks (1965) (Appendix A). Data from both the
percolation and ablation areas of the southern and western ice
sheet sections near 61.3° N (Nordbo Gletscher) and 69.7° N
(Paakitsoq), respectively, were collected by Braithwaite et al.
(1982, 1994). Our dataset also includes data from the Program
for Arctic Regional Climate Assessment (PARCA) (Mosley-
Thompson et al., 2001; Thomas and Investigators, 2001). Further,
the SUrface Mass balance and snow depth on sea ice working
grouP (SUMuP) provided accumulation rates, snow depths and
density values at various sites on the ice sheet (Koenig et al.,
2013; Montgomery et al., 2018), including observations from
a study of Greenland accumulation (Hawley et al.,, 2014) and
firn aquifers (Forster et al., 2013; Koenig et al., 2014; Miege
etal., 2016). We gathered annual air temperatures, accumulation
rates, and density observations from snow pits and firn cores
from the Greenland Climate Network (GC-Net) (Steffen et al.,
1996), the Programme for Monitoring of the Greenland Ice
Sheet (PROMICE) (Van As et al., 2016b), and the Arctic Circle
Traverses (ACTs) (e.g., Machguth et al., 2016). Lastly, we also
included observations by Schaller et al. (2016) from the NEEM
to EGRIP traverse, and from the Lopez-Moreno et al. (2016)
Greenland circumnavigation. Accumulation rates in the database
are not long-term averages, but represent the preceding year’s
snowfall. Figure 1 provides a map of all measurement locations.
All data are available as Supplementary Material. Figure 2a
illustrates that 28% of the observations were taken in the mid-
1950s, only 2% were taken in the 1980s and 1990s, while 70%
were obtained between 1999 and 2016. 94% of the measurements
were gathered at elevations exceeding 1,000 m above sea level
(Figure 2d).

Defining the surface layer as the upper 0.Im of snow
yields that in most cases the surface layer was deposited in
multiple snowfall events, except for areas located at relatively
low elevations in the south and southeast of the ice sheet, where
individual precipitation events typically produce more than 0.1 m
of snow (Burgess et al., 2010). Where possible, the annual air
temperature was calculated as the average over the 365 days prior
to the date for which the surface snow density was determined.
Where air temperature measurements are not available, i.e., for
the older data by Benson (1962) and Braithwaite et al. (1994),
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FIGURE 1 | Locations of all surface snow density measurement locations in
our dataset. Contours lines indicate elevations in meters above sea level.

but firn-core temperatures were, we use 10 m firn temperature
as annual air temperature following e.g., Reeh et al. (2005),
Polashenski et al. (2014), and Kuipers Munneke et al. (2015). This
is a fair approximation since 10 m firn temperatures reflect the
conductive temperature wave propagation in places with little or
no melt (Benson, 1962). Though valid for the earlier observations
in our dataset, recent increases in ice sheet melt area have reduced
the dry snow facies of the ice sheet (McGrath et al., 2013) and
therefore the applicability of this methodology.

Commonly, snow/firn was sampled in snow pits using a fixed
volume cutter at 0.05-0.1 m vertical resolution. These samples
were weighed using a variety of scales. When density data were
derived from a core, the snow was extracted from the core
barrel and typically sub-sampled into 0.1 m sections before being
weighed. Conger and McClung (2009) investigated measurement
errors of several different density cutters and conclude that

measurement accuracy was within 3-12%. They also conclude
that the absolute measurement uncertainty is within 11% of true
density. A discussion of density cutters by Proksch et al. (2016)
reaches a similar uncertainty of 9%. For the data in our database,
sampling uncertainty is not documented in any of the field
campaigns, however it seems reasonable to assume that surface
snow density is known within 10%. Typically, this measurement
uncertainty is smaller than the spatial variability in surface snow
density in the vicinity of the measurement location (e.g., Proksch
etal,, 2015). We argue that the point measurements in our dataset
do not represent fresh snow, as the persistent katabatic winds in
Greenland compact surface snow within days after snowfall (e.g.,
Liston et al., 2007).

Firn Model Initialization

We test a surface snow density parameterization for the
Greenland ice sheet that is dependent on temperature, similar
to commonly used parameterizations by Kuipers Munneke et al.
(2015) and Reeh et al. (2005). We assume a linear dependence
of surface snow density (p) in kg m~> on annual air temperature
(T,) in °C, in what we refer to as parameterization P1:

p:A+B'Ta (1)

We determine the fit coefficients by orthogonal linear regression
to all available T, values in our dataset, and find a best fit
for A = 362.1 and B = 2.78 (Table1) for the top 0.1m of
snow. Kuipers Munneke et al. (2015) determined the coefficients
of Equation (1) using annual surface temperature Ts in °C
simulated by RACMO2.3 and the average density of the
uppermost 1 m of snow/firn, and found what we here refer to as
parameterization P2:

PKM15 = 481 +4.834 - TS (2)

Reeh et al. (2005) derived surface snow density as a function
of the 10-m firn temperature (Tf) from the near-surface part
of their depth-density profiles by determining the load at
5m depth, as calculated by their model, so that it fits the
corresponding load derived from the measured depth-density
profiles (parameterization P3):

pROs = 625 + 18.7 - T+ 0.293 - T7 3)

There is a ca. 40% overlap between our dataset and the data
feeding into the Kuipers Munneke et al. (2015) and Reeh et al.
(2005) parameterizations that stems from them also using the
Benson (1962), Braithwaite et al. (1994), and PARCA (Mosley-
Thompson et al., 2001) datasets.

To highlight the importance of sampling depth ranges in
producing an observationally-based boundary condition for firn
models in Greenland, we also test P1 (Equation 1) using the
average density of the top 0.2 and 0.5m of snow/firn in our
analysis (Table 1). We theorize that, by using density data
obtained as close to the surface as possible, we avoid introducing
a systematic bias due to compaction. Yet by focusing only on the
top layer of snow/firn, we likely introduce more scatter in our
results due to additional variability by single weather events. We
investigate such considerations below.
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FIGURE 2 | Density of the top 0.1 m of snow plotted against site- and campaign-specific parameters: (a) year, (b) latitude, (c) longitude, (d) elevation, (e) annual
mean near-surface air temperature, and (f) accumulation rate.

TABLE 1 | Fit coefficients and statistics for parameterization P1 (Equation 1).

Depth range (m) A B Correlation (R"’) Number of

observations
0-0.1 362.1 2.78 0.12 91
0-0.2 363.0 2.21 0.14 91
0-0.5 358.4 1.30 0.08 91

Surface snow density in our 200-value database ranges between
190 and 420kg m~>, with an average of 315kg m~> and
associated standard deviation of 44kg m~3 (Figure 3,
Table 2). Using the 10% measurement uncertainty range
chosen in the methods section, we determine the average
uncertainty to be £ 32kg m™>. The measurement uncertainty
is smaller than the 44kg m~3 standard deviation, which
demonstrates a significant natural variability in the top
0.1 m of snow most likely due to differences in precipitation
events and influences from weather in general. Yet the
variability in surface snow density could also depend
on location or annual air temperature as investigated
below.

There is no significant temporal trend in surface snow
density (Figure 2a), indicating that the relatively large timespan
over which measurements were collected does not introduce
a bias. Figure2 also illustrates that surface snow density is
not significantly correlated with latitude, longitude, elevation,
nor annual accumulation rate. Remarkably, also annual air
temperature does not prove to be a strong predictor of
surface snow density (Figure2e). Even in a stepwise linear
regression we find that no combination of variables in our
database adequately predicts the surface snow density (results

Number of measurements

200

250 300 350
Surface snow density (kg.m"”)

400

FIGURE 3 | Number of surface snow density measurements over the
Greenland ice sheet. Blue solid and dashed lines indicate the average and
standard deviation of the dataset, respectively.

not presented). We quantify the poor predictive skill of annual
air temperature in all three parameterizations in Table 3,
showing root mean square error (RMSE) values for the top
0.lm of snow to be 42-84kg m~3, with mean biases of
+ 19% (P2) and +17% (P3). For the 0-0.1m depth range,
RMSE values for P2 and P3, are respectively a factor of
2.0 and 1.8 higher than those for our P1 parameterization
(Table 3).
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TABLE 2 | Surface snow density dataset metadata for three depth ranges.

Depth range (m) 0-0.1 0-0.2 0-0.5
Number of observations 200 206 231
Minimum (kg m=3) 191 170 256
Maximum (kg m—3) 420 478 510
Average (kg m—3) 315 324 341
Median (kg m—3) 321 325 336
Standard deviation (kg m~3) 44 41 37

TABLE 3 | Root-mean-square error (RMSE), mean bias and RMSE ratio values for
parameterizations using annual mean air temperature: P1 (this study), P2 (Kuipers
Munneke et al., 2015) and P3 (Reeh et al., 2005).

p parameterization Depth RMSE Mean bias RMSE ratio  RSME ratio
range (m) (kgm=3)  (kgm~3) P2/P1 P3/P1
P1 0-0.1 42 0 2.0 1.8
P1 0-0.2 30 0 2.2 21
P1 0-0.5 24 0 2.2 2.1
P2 0-0.1 84 72 (19%) - -
P2 0-0.2 67 58 (15%) - -
P2 0-0.5 53 42 (11%) - -
P3 0-0.1 76 62 (17%) - -
P3 0-0.2 63 48 (13%) - -
P3 0-0.5 50 32 (8%) - -

Average snow/firn density increases from 315 to 341kg
m~2 as the averaging depth range increases from 0.1 to 0.5m
(Table 2). Simultaneously, the standard deviation decreases
indicative of a reduction in small-scale spatial variability
(Table 2), i.e., differences in snow/firn density profiles are
growing smaller due to compaction and as the relative
influence of single weather events reduces. As a result of
using larger depth ranges yielding larger average densities,
the performance of parameterizations P2 and P3 increases
judging from reducing RMSE values, but they still overestimate
the average density of the top 0.5m of snow/firn by 11%
(P2) and 8% (P3) (Table3). Even taking into account that
T, (Equation 1) typically exceeds Ts (Equation 2) by a few
degrees does not make up for more than 10kg m—> of the P2
overestimate.

Figure 4 illustrates the dependence of surface snow density
on annual air temperature for the top 0.1, 0.2, and 0.5m of
snow/firn, confirming that (1) air temperature is a poor predictor
of surface snow density, (2) variability of surface snow density
decreases with increasing depth range, (3) existing temperature-
based parameterizations tend to overestimate surface snow
density, (4) especially for snow density nearest the surface,
and revealing that (5) the predictive skill of parameterizations
P2 and P3 is poorest for annual temperatures exceeding
—20°C. Consequently, we judge that using a single constant
value to represent surface snow density on the Greenland ice
sheet may be preferred over using a temperature-dependent
parameterization.

DISCUSSION
Depth Range

We use a smaller depth range to better represent surface snow
density than previous studies. Assessing density closer to the
surface is important for producing a more accurate upper
boundary condition to be used in firn evolution models that
would produce too high firn densities along the entire depth
profile. Figure 4, Table 3 confirm that using relatively large depth
ranges in determining a surface snow density parameterization
results in overestimated values by Kuipers Munneke et al. (2015)
and Reeh et al. (2005). Our smallest tested depth range of 0-
0.1 m reveals larger natural variability, but would not introduce
a considerable systematic bias in firn evolution modeling even
if a vertical grid resolution finer than 0.1 m is used. In surface
mass balance modeling, the choice of vertical resolution of the
subsurface directly influences the calculation of key variables,
such as the meltwater retention capacity of the snow/firn column.
The more variable density in the top 0.1 m of snow compared
to the top 0.2 m (factor of 1.4 more variable) or 0.5m (1.8), is
due to the influence of single precipitation events and subsequent
weather forcing. We contend that this increased variability is
preferable over the introduction of a systematic bias in surface
mass balance modeling.

The top of the snowpack compacts rapidly after snowfall (e.g.,
Brun et al., 1997; Liston et al., 2007), as the crystal structure of
freshly deposited snow breaks down within days due to wind and
redistribution of drifting snow (e.g., Kotlyakov, 1961; Kojima,
1967; Pahaut, 1976). Surface snow densification by wind, which
generally only influences the top 0.1 m, becomes insignificant
after a few days (Brun et al., 1997). For most or all observations
in our dataset, we can safely assume that wind compaction has
occurred already. Therefore, our dataset and resulting products
should not be used in models to prescribe or validate fresh
snow densities (e.g., Vionnet et al., 2012), but rather to define
the upper boundary condition (i.e., minimum density) in firn
evolution models that do not calculate micro-scale snow physics
and densification by wind, snow drift and redistribution.

In regions where large snowfall events occur, such as in south
Greenland, density measurements of the top 0.1 m of snow may
reflect the conditions during one snowfall event and subsequent
weather-dependent densification prior to measurement. All
of the snow-density measurements in our database were
taken in spring and summer, meaning that our average and
parameterization may be seasonally biased. Dibb and Fahnestock
(2004) investigated the seasonality of the surface snow density at
Summit in Greenland, and found a seasonal standard deviation
of 30% in density in the top 0.03 m of snow as determined from
22 measurements during a two-year period. However, seasonal
variation in the surface snow density is likely to increase with
elevation (Brun et al., 1997) with standard deviation values lower
than 30% in regions away from the three dome sites in Greenland
where persistent katabatic winds and their influence on snow
compaction do not occur (e.g., Noél et al.,, 2014). In general,
katabatic winds are strongest in winter due to surface radiative
cooling, and at lower elevations (below 2,000 m above sea level)
due to larger surface slopes (e.g., Van As et al., 2013; Noél et al.,
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FIGURE 4 | Orthogonal linear regression fits (solid lines) for temperature-dependent parameterization P1 (Table 1) for (A) depth range 0-0.1 m, (B) depth range
0-0.2m, and (C) depth range 0-0.5m. Circles represent our observational dataset. Parameterizations by Kuipers Munneke et al. (2015) and Reeh et al. (2005) are
plotted as dashed and dotted lines, respectively.

2014), resulting in wind-packing of fresh surface snow within
days.

Temperature Dependence

Higher air temperatures result in higher snow and firn densities
through increased compaction (Zwally and Li, 2002). It is
therefore desirable to ensure that parameterizations of surface
snow density remain appropriate even as the climate changes
(e.g., Reeh et al., 2005; Morris and Wingham, 2014). Studies of
Greenland accumulation rates and firn properties document a
recent densification in the overall firn column and attribute it
to climate warming (e.g., de la Pefia et al.,, 2015; Charalampidis
et al, 2016a; Machguth et al., 2016; Overly et al, 2016). If

we assume that temperature-dependent densification processes
are responsible for the transformation of freshly-fallen snow
to the surface snow densities of our dataset, the inclusion
of temperature as a variable in a parameterization (Equation
1) explicitly accounts for atmospheric warming. In this case,
a parameterization is better capable of representing changing
surface conditions due to climate variability. For instance,
our temperature-dependent parameterization suggests that the
observed 2.7°C warming at Summit over the period 1982-
2011 (McGrath et al,, 2013) had lead to a local surface snow
density increase of 8kg m~>. But even a large temperature
increase of 10°C anywhere in Greenland would only cause a
densification of 28kg m™> in the top 0.l m of snow, which
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is smaller than the 32kg m™> measurement uncertainty and
44 kg m~? standard deviation of the dataset (Table 2). For larger
depth ranges the temperature sensitivity (B-values in P1, see
Table 2) is considerably smaller and thus more insignificant
given the measurement uncertainty and natural variability. The
insignificant densification as a result of warming supports the
notion that temperature is a poor predictor of the variability of
surface snow density in the top 0.1, 0.2, and 0.5 m of snow/firn,
and that using a constant value may be preferable in some
applications.

Modeling Implications and Limitations

The choice of a surface snow density boundary condition
influences calculations of available pore space by models
simulating the surface mass budget of the Greenland ice
sheet. Steger et al. (2017) discussed the limitations and
inaccuracies of their Greenland ice sheet surface mass budget
simulations by regional climate model RACMO2.3, and conclude
that the Kuipers Munneke et al. (2015) parameterization
systematically overestimates surface snow density, impacting
pore space available for refreezing at depth. Langen et al. (2015)
and Charalampidis et al. (2016b) applied a constant surface
snow density value of 330kg m~> in regional climate model
HIRHAMS5, while Langen et al. (2017) applied a parameterization
depending on latitude, longitude and elevation, derived from our
dataset, in a new model version. The latter study found that
the parameterization yields an ice-sheet-wide average of surface
snow density that is 7% lower than using a constant density value
of 330kg m3, signifying a higher meltwater retention capacity
in the snow and firn. Langen et al. (2017) also documented
that the firn density profiles simulated by HIRHAMS5 using their
parameterization satisfactorily resemble measured profiles. Yet
based on our own findings we suspect that using a constant
surface snow density value of 315 4+ 32kg m~> as boundary
condition, a value 5% lower than that used by Langen et al.
(2015), should perform equally well in Greenland-wide surface
mass budget simulations.

Using our dataset for the top 0.1 m of snow, as opposed
to using those for larger depth ranges, comes at the cost of
a higher variability (standard deviation in Table2) due to a
larger influence of meteorology-dependent processes like snow
drift (Brun et al., 1997; Horhold et al, 2011; Koenig et al.,
2016). The larger variability could also stem from snowfall events
depositing more than 0.1 m of snow. Layers below the top 0.1 m
are not much influenced by wind compaction, snow drift and
redistribution, and will primarily be subject to the less efficient
densification through rounding or settling of snow grains from
vapor fluxes in the subsurface layers (e.g., Albert and Shultz,
2002). Surface mass budget models using our constant value of
315 kg m~ for the top 0.1 m of snow may therefore misrepresent
relatively low-density layers below 0.1 m depth deposited during
large snowfall events. Regions where snowfall may exceed 0.1 m
in single events are typically located at lower elevations on the
southern and southeastern parts of the ice sheet (e.g., Burgess
et al., 2010).

Our dataset has sparse coverage in the northern and eastern
sectors of the ice sheet, possibly introducing a spatial bias in

our results. Figure 5 illustrates that the elevation distribution
of our measurement locations broadly reflects the overall area-
elevation distribution of the ice sheet as determined from the
GIMP digital elevation model (Howat et al., 2014). Some lower
elevation ranges (1,000-1,750m above sea level) are relatively
underrepresented in our dataset, while some higher elevation
ranges are comparatively overrepresented. Our parameterization
could benefit from acquiring additional measurements from
elevations between 1,000 and 1,750 m above sea level, i.e., in the
lower percolation area of the ice sheet (Benson, 1962). The lower
percolation area is considered crucial for properly determining
the surface mass budget, as firn properties influencing meltwater
retention capacity vary substantially across the ice sheet (Van As
etal., 2016a; Langen et al., 2017).

CONCLUSIONS

We constructed a dataset of surface snow density for the top
0.1, 0.2, and 0.5m of snow/firn on the Greenland ice sheet
based on 200 in situ measurements collected during the 1953-
2016 timespan. We found that only the annual air temperature
has a weak predictive skill of surface snow density in the
construction of a temperature-dependent parameterization. Our
parameterization yields surface snow densities of 32-72kg m—>
(8-19%) lower than earlier parameterizations do, thus beyond
the 32kg m™> measurement uncertainty range. Yet since the
natural variability in surface snow density is found to be large
with e.g., a 44kg m~3 standard deviation for the top 0.1 m of
snow, the temperature sensitivity of surface snow density is not
found to be significant, indicating that an average surface snow
density of 315 kg m~* could be the preferred choice as a boundary
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FIGURE 5 | Elevation distribution of the surface snow density measurement
locations compared to the area-elevation distribution of the entire Greenland
ice sheet.
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condition for models calculating the surface mass budget of the
Greenland ice sheet.
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