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In urban areas, dense atmospheric observational networks with high-quality data are still

a challenge due to high costs for installation and maintenance over time. Citizen weather

stations (CWS) could be one answer to that issue. Since more and more owners of CWS

share their measurement data publicly, crowdsourcing, i.e., the automated collection of

large amounts of data from an undefined crowd of citizens, opens new pathways for

atmospheric research. However, the most critical issue is found to be the quality of data

from such networks. In this study, a statistically-based quality control (QC) is developed

to identify suspicious air temperature (T ) measurements from crowdsourced data sets.

The newly developed QC exploits the combined knowledge of the dense network of

CWS to statistically identify implausible measurements, independent of external reference

data. The evaluation of the QC is performed using data from Netatmo CWS in Toulouse,

France, and Berlin, Germany, over a 1-year period (July 2016 to June 2017), comparing

the quality-controlled data with data from two networks of reference stations. The new

QC efficiently identifies erroneous data due to solar exposition and siting issues, which

are common error sources of CWS. Estimation of T is improved when averaging data

from a group of stations within a restricted area rather than relying on data of individual

CWS. However, a positive deviation in CWS data compared to reference data is identified,

particularly for daily minimum T. To illustrate the transferability of the newly developed QC

and the applicability of CWS data, a mapping of T is performed over the city of Paris,

France, where spatial density of CWS is especially high.

Keywords: urban climate, crowdsourcing, citizen weather stations, air temperature, data quality, quality control

INTRODUCTION

Dense atmospheric observational networks providing high-quality data are still a challenge today,
especially in urban areas where spatial heterogeneity of surface cover and surface structures lead to
a distinct spatial distribution of air temperature (T) (Oke, 1982). While for some cities high-density
networks such as the Birmingham Urban Climate Laboratory (Chapman et al., 2015) are available,
high costs to deploy andmaintain them over time have limited their number (Chapman et al., 2015;
Muller et al., 2015). As a result, many cities have only a fewmeasurement sites, often only one single
station (e.g., airport), or even none at all.
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The term “crowdsourcing” has been defined by Howe (2006)
as a web-based business model that uses a distributed network
of individuals to obtain data. It was then specified by Muller
et al. (2015) for atmospheric science as obtaining data through
non-traditional and large number of sources, notably public
sensors connected by the internet. The use of crowdsourced data
is yet relatively new in atmospheric research (Bell et al., 2013;
Overeem et al., 2013) compared to other scientific disciplines
such as biology or astrophysics (Dickinson et al., 2010; Cook,
2011). However, the potential of such data has already been
shown, notably for T observations (Chapman et al., 2017; Droste
et al., 2017; Fenner et al., 2017; Meier et al., 2017), pressure
observations (Madaus et al., 2014; Kim et al., 2016; McNicholas
and Mass, 2018) or precipitation measurements (De Vos et al.,
2017) in urban environments, and hence crowdsourcing could be
an approach to overcome the limitations induced by traditional
networks.

The benefit of crowdsourced data in atmospheric research
lies in high spatial resolution and extended coverage in urban
areas, potentially long-term measurements, and low cost that it
provides compared to traditional networks. However, the most
critical issue is found to be the quality of data from such networks
(Bell et al., 2015; Chapman et al., 2017; De Vos et al., 2017;
Meier et al., 2017). As crowdsourced data are directly collected
by citizen weather stations (CWS) owned by individuals of the
crowd, there is no or very little external control to ensure the
quality of the obtained data set and hence data quality assessment
is a crucial step before any analysis can be carried out (Chapman
et al., 2017; Meier et al., 2017). Chapman et al. (2017), e.g.,
studied T in London, United Kingdom, using CWS data by
removing measurements from their data set if the temporal
average deviated more than three times the standard deviation
of the average of all stations. Meier et al. (2017) accurately
addressed the issue of quality assessment of crowdsourced
CWS data, suggesting a detailed approach to identify suspicious
crowdsourced T and filter these from the data set. Their method
relies mostly on data from a quality-controlled reference network
that allows them to exclude the suspicious CWS measurements.
Main error sources were not due to the quality of the sensor itself
but mostly related to the siting of the CWS (Meier et al., 2017),
i.e., (i) the CWS are not always set up outside, and (ii) some
stations are influenced by solar radiation leading to radiative
errors. Recently, Hammerberg et al. (2018) applied a modified
version of this QC approach to quality-control CWS data in
Vienna, Austria, also including a statistically-based QC step that
relies on the distribution of T data. While these QC procedures
(Meier et al., 2017; Hammerberg et al., 2018) specifically address
and identify common error sources in CWS data by using
reference data, the methods can only be applied in other urban
regions where high-quality reference data are available from
multiple stations in different environments. This, of course,
hinders the transferability due to the lack of detailed reference
data in most cities. Therefore, in the current study, a new
statistically-based QC approach is proposed for crowdsourced T
data that is independent of such detailed reference networks.

Crowdsourced T data from Netatmo CWS (https://www.
netatmo.com/) are used in this study, as these stations are

distributed worldwide with a high spatial density especially in
European cities, and the data can easily and freely be accessed
via an API (Meier et al., 2017). The objectives of this study are
to address the quality assessment of this data set by developing a
new QC procedure based on a statistical analysis that (i) does not
need a set of reference data, (ii) is robust and can be applied in
different cities, and (iii) can easily be applied in future studies.
The cities of Berlin, Germany, and Toulouse, France, are in
this way investigated during a 1-year period (July 2016 to June
2017). First, the newly developed QC is evaluated and compared
with the method developed by Meier et al. (2017). Second, a
detailed comparison between T observed by CWS and reference
networks is performed for an assessment of the quality-controlled
crowdsourced data sets. Third, to illustrate the transferability and
a possible application of CWS, a mapping of T is performed over
the city of Paris, France, using quality-controlled CWS data.

MATERIALS AND METHODS

Study Areas and Period
Two cities are investigated in this study for the development of
the QC: Berlin, Germany (52.52◦ N, 13.40◦ E) and Toulouse,
France (43.60◦ N, 1.45◦ E). They were chosen for two reasons:
(i) their climatic and topographic similarities, i.e., weak influence
of mountains or seas, overall relatively flat topography, and a
humid warm temperate climate (Cfb) according to Köppen’s
classification (Kottek et al., 2006), (ii) the availability of CWS
data with a high number of stations, and (iii) the availability of
reference networks (more details in section Reference data sets).
However, the two cities also exhibit morphologic differences, i.e.,
size, population and thus density of their CWS networks. The
main characteristics of the two cities are summarized in Table 1.
The investigated period lasts one year, from 1 July 2016 to 30
June 2017.

Reference Data Sets
Quality-controlled reference measurements were used to
evaluate the performance of the new QC. In Berlin, the reference
data set consists of six stations maintained by the Chair of
Climatology at Technische Universität Berlin (Urban Climate
Observation Network–UCON; Fenner et al., 2014), and four
stations maintained by the German weather service (DWD)
(Figure 1, right and Table A1 in Supplementary Material). Note
that only stations set up in built-up local climate zone (LCZ)
classes were considered, using the LCZ classification in Fenner
et al. (2017). UCON measurements are taken by Campbell
Scientific CS215 T and relative humidity probes (specified
accuracy ± 0.4 K in range 5–40◦C) at 1-min resolution, fixed in
white radiation shields that are actively ventilated during sunlit
periods. These data were calibrated and quality controlled as
described in Meier et al. (2017), and aggregated to hourly mean
values. DWD measurements are taken with Eigenbrodt LTS2000
T probes (specified accuracy± 0.2 K), fixed in actively-ventilated
white radiation shields. Data are provided as quality-checked
products (Kaspar et al., 2013; DWD Climate Data Center, 2017)
at one-hourly resolution.
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In Toulouse, the stations of a network recently set up by
Météo France (Figure 1, left and Table A1 in Supplementary
Material) within the city are used. Again, only stations which
belong to built-up areas are used, following the LCZ classification
in Hidalgo et al. (personal communication). All measurement
sites consist of semi-professional Davis Vantage Pro 2 (tested
in Bell et al., 2015) meteorological stations (accuracy for
T ±0.5 K), equipped with actively-ventilated white radiation

TABLE 1 | Main characteristics of the two investigated cities.

Berlin Toulouse Ref/comment

CLIMATE

Annual Min/Mean/Max

daily temperature (◦C)

6.1/10.0/

13.8

8.2/13.1/

17.9

Measurements at Tegel (Berlin)

and Blagnac (Toulouse)

airports, 1981-2010

Mean annual rainfall

(mm y−1)

550 604 Measurements at Tegel (Berlin)

and Blagnac (Toulouse)

airports, 1981-2010

Köppen’s classification Cfb Cfb (Kottek et al., 2006)

STUDY AREA

Size (km²) 2,596 2,160 Figure 1

NETWORKS

Number of CWS (min/

max)

1455/2118 504/736 Figure 1, number of CWS

varies in time

CWS density (min/max

stations per km²)

0.56/0.81 0.23/0.34 Figure 1, number of CWS

varies in time

Reference stations 10 6 Section Reference Data Sets

The minimum and maximum numbers of CWS correspond to one hour during the

investigation period.

shields. Measurements are available at 5-min intervals and were
aggregated to hourly mean values.

Netatmo Data Acquisition
Air temperature (T) data from CWS sold by the company
“Netatmo” (https://www.netatmo.com/) were used in this study.
An automatic work-flow was set up to fetch T data fromNetatmo
CWS for the investigation period, i.e., from July 1, 2016 until
June 30, 2017. The setup has previously been described in Meier
et al. (2017) and Fenner et al. (2017), in the following a brief
summary is given. Measurements by the CWS are taken by
two modules, an indoor and an outdoor module. The outdoor
module measures relative humidity and T (specified accuracy
± 0.3 K in the range −40 to 65◦C) at 5-min intervals, data
are uploaded automatically to the Netatmo server via private
Wi-Fi connection. If the user agrees, measurement data made
by the outdoor module are shared online and can be obtained
freely via an application programming interface (API) provided
by Netatmo. The “getpublicdata” method of this API was used
to obtain T data for all available CWS in Berlin and Toulouse
(Figure 1) at one-hourly intervals (instantaneous values). The
returned JSON objects were parsed and data written into a
local MySQL database. A consistency check was carried out
and all CWS that returned data with an invalid date/time were
omitted. Measurements were assigned to the next full hour (e.g.,
all measurements between 10:00:01 h and 11:00:00 h assigned to
11:00:00 h) since the CWS do not measure at identical times.
For Toulouse, data in the months July–September 2016 were
acquired using the “getmeasure” method of the API. This method
provides one-hourly average values for each CWS and allows the
acquisition of CWS data in retrospect. One-hourly mean values

FIGURE 1 | Maps of the two study areas, urban area of Toulouse (left) and Berlin (right). Black dots correspond to Netatmo CWS (20 June 2017, 00:00 UTC) and blue

squares to reference stations. Black lines denote borders of city districts. Projection: WGS-84.
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differ from instantaneous values especially during the morning
and afternoon hours, otherwise differences in the data obtained
through the two methods are within measurement accuracy
(Fenner et al., 2017). It should be noted nonetheless that CWS
data are instantaneous hourly values compared to hourly mean
values for the reference networks (see above). For more details
concerning the CWS data acquisition the reader is referred to
Meier et al. (2017). Note that the number of available CWS at each
hour varies in time (Table 1), which is a unique characteristic of
this data set.

DEVELOPMENT OF THE QC

Before introducing the developed QC routine, the used notation
is presented. The data set is represented as a matrix T ∈

(R ∪ NaN)n×m. In this matrix each row (n) contains values from
one station, each column contains values from one time step
(m). Not a number (NaN) is used to represent missing values or
values flagged by a QC step1. If not otherwise stated, unary and
binary functions containing a NaN value yield NaN. Higher order
functions ignore NaN values.

Let f be a function, then f (.) denotes row-wise and f 〈.〉
column-wise application, i.e., parentheses refer to the temporal,
and angle brackets to the spatial domain. Further, a subscript like
f (.)d denotes the application for values in a given time range.
The used ranges are d for days and m for month, i.e., a matrix
containing the daily minima of each station could be created by
min (T)d. If no range is explicitly stated, the range is hourly. As an
example, a vector containing the spatial minimum for each hour
would be stated as min 〈T〉.

The developed QC routine consists of seven levels. The first
four levels are designed to ensure the data quality and are,
therefore, considered part of the main routine (M1–M4). The
benefit of the following three levels (O1–O3) is dependent on the
application. Therefore, those levels are considered optional. The
QC-level of T is specified by an index, e.g., TM1 is a data set where
QC step M1 has been applied. Each level uses the result of the
previous level as input.

Main QC Levels
During levelM1, the data is controlled by using the availablemeta
data. Stations with equal longitude and latitude are set to NaN.
These stations are assumed to have not been properly set up by
the owner, which led to automatic location assignment based on
the IP address of the wireless network (Meier et al., 2017). This is
a unique feature of the Netatmo data set, but the filter could also
be relevant for other CWS data sets.

In level M2 a height corrected data set (TM′
1
) is first calculated.

This is done to account for the natural vertical variation of T due
to the different elevations of the CWS stations. We use globally
available elevation data from the Shuttle Radar Topography
Mission (SRTM), version 4.1 at 0.000833◦ spatial resolution

1In the code implementation these two cases are treated differently. Quality-
controlled values are marked by a flag instead of setting them to NaN. However, the
implementation details are omitted in the text here to allow a better understanding
of the main ideas.

(∼90m at the equator) (Jarvis et al., 2008) and extracted the
nearest neighbor pixel value for each station. Let this elevation
be denoted as z then TM′

1
is calculated as:

TM′
1
= TM1 + 0.0065 (z −mean 〈z〉)

where 0.0065 corresponds to the usual standard atmospheric
lapse rate. It should be noted that this lapse ratemight not be valid
in special meteorological conditions such as strong radiation
inversions during night-time. The lapse-rate adjustment is an
optional setting in filter step M2, which could be omitted.

This height correction has very little effect for the cities studied
due to the overall relatively flat topography, but ensures the
transferability of the method to other regions. As an alternative
to SRTM data, the elevation information provided in the meta
data of each CWS could be used in this step. However, it was
decided to use SRTM data instead to ensure the transferability
of the method to other crowdsourced data sets in the absence of
elevation information, and since Netatmo owners can manually
specify the elevation information, which could be faulty or
mistaken for information regarding height above ground level.
The use of SRTM data instead of the elevation provided via the
API also avoided that wrong or missing elevation values reduced
data availability as in Madaus et al. (2014).

Then, a modified z-score approach for outlier detection and
masking of suspicious data as described in Aggarwal (2013)
and Iglewicz and Hoaglin (1993) is applied. The underlying
assumption of normal distribution should be given since T at
a given place can be seen as a result of a large number of
independent processes (central limit theorem). As recommended
(Iglewicz and Hoaglin, 1993; Aggarwal, 2013; Leys et al., 2013),
we use a robust method to estimate the expected value and
variance of the distribution. Instead of the median absolute
deviation (MAD) as estimator for variance, we use the Qn

estimator established by Rousseeuw and Croux (1993), since it
has been shown to be more efficient. The used implementation of
Qn is from Maechler et al. (2017).

TABLE 2 | QC steps and remaining percentage of valid data at each level.

Level Remaining

data Berlin

(%)

Remaining

data Toulouse

(%)

Short description

M1 99.84 98.26 Flag common locations

M2 89.38 88.91 Flag upper and lower part of the

hourly distribution

M3 82.41 81.65 Flag month if M2 flagged > 20%

of the month

M4 82.21 81.45 Flag month if

R
(

TM3,median
〈

TM3
〉)

m < 0.9

O1 83.74 86.47 Linear interpolation of hourly

values

O2 75.04 76.71 Flag day if < 80% of hourly values

available

O3 58.54 57.41 Flag month if < 80% of daily

values available
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The z-score Z is calculated as:

Z =
TM1

′ −median
〈

TM1
′

〉

Qn

〈

TM1
′

〉

Values that would lead to rejection of the null hypothesis for
α = 0.05 on the upper tail and α = 0.01 at the lower tail
of the distribution are considered faulty and therefore masked.
Formally:

TM2

[

i, j
]

= TM1

[

i, j
]

, if − 2.32 < Z < 1.64

TM2

[

i, j
]

= NaN, otherwise

where i and j correspond to the time step and each of the CWS,
respectively. We treat the upper tail stricter since Meier et al.
(2017) showed that most common error sources in CWS data are
related to indoor locations of stations or radiative errors in non-
shaded areas, increasing T. It should be noted that for areas where
only a small amount of CWS are available (i.e. n < 200) the use
of the t-distribution for calculating the critical values would be
beneficial. In section Sensitivity Tests the robustness of the QC to
different cut-of values of Z is investigated.

In level M3, all data of a station within 1 month is removed
if step M2 flagged more than 20% of the considered month. It is
assumed that if too many values were removed by level M2, the

station is too erroneous to be kept. The time frame of 1 month
could be shortened if shorter time periods are to be investigated
with CWS data.

Finally, in level M4, the Pearson correlation coefficient (R)
between each individual station and the median of CWS is
calculated for each month. If the correlation is lower than 0.9,
the data in month m of the considered station j are set to NaN,
such as:

TM4

[

i, j
]

= TM3

[

i, j
]

, if R
(

TM3 ,median
〈

TM3

〉)

> 0.9

TM4

[

i, j
]

= NaN, otherwise

The indoor stations are targeted here, since it is assumed that
they are less correlated to outdoor stations as their diurnal
cycles are shifted in time or otherwise non-representative of
outdoor environments. The threshold of R included here will
be justified in section Test 1—Indoor Stations. The application
of the median is valid, as long as all stations are subject to
similar meso-scale atmospheric conditions. If regions larger
than a city and its surrounding areas are investigated, e.g.,
a whole continent, a division into sub-regions should be
carried out.

Optional QC Levels
In level O1, missing values for a single time step are interpolated
by the mean of the two closest values of the same station so

FIGURE 2 | Temporal time series of air temperature (T) of all citizen weather stations (CWS, black) before (upper panel ≈ 1825 stations) and after (lower panel ≈ 1137

stations) the quality control (after step O3) for Berlin in January 2017. The spatial median across all CWS is shown in red.
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that the time series can be as continuous as possible. These
missing values are due to either server errors, failed wireless
transmission, or battery failures, leading to missing data, or due

to step M2 of the QC, which removed individual T values from
the data set. To allow a more robust calculation of daily or
monthly statistics, in levels O2 and O3 values are removed if they

FIGURE 3 | Same as Figure 2 but for June 2017 (upper panel ≈ 2056 stations, lower panel ≈ 1100 stations).

FIGURE 4 | Spatio-temporal average and average of temporal standard deviation (in ◦C) of the different air temperature (T) data sets for Berlin and Toulouse per

month. REF, Reference network, RAW, raw citizen weather station (CWS) data, ME17, quality-controlled CWS data according to Meier et al. (2017), QC,

quality-controlled data according to this study (level O3).
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belong to a station with <80% data available per day and month,
respectively, following the work of Meier et al. (2017).

Table 2 shows the resulting percentage of data after each steps
of the QC. At each step, this percentage is similar between the
two cities. Note that the steps O2 and O3 are very restrictive and
decrease data availability much more than QC steps M1–M4.

EVALUATION OF THE QC AND
DISCUSSION

In the following, we will refer to the different data sets as:
TREF for T measured by the reference stations, TRAW for raw
T from CWS, TME17 when the quality control method from
Meier et al. (2017) is applied to CWS data (after level D,
being the highest in those procedures), and TQC when the
method developed in this study is applied (after level O3). To
evaluate the new QC, a qualitative evaluation is firstly carried
out, followed by a comparison with the method developed by
Meier et al. (2017). Then, we propose two specific tests designed
to evaluate the ability of the QC to identify the indoor CWS
as well as the CWS affected by radiative errors. A sensitivity
analysis of the main statistical parameters in level M2 of the QC
is then carried out. The evaluation is finished by quantitative
comparisons between the CWS (TQC) and the reference (TREF)
data sets.

Qualitative Evaluation
Time series of CWS from TQC and TRAW during January and
June 2017 in Berlin are presented in Figures 2, 3, respectively.
Some raw time series show a weak amplitude of diurnal cycles
compared to the average (Figure 2A). They most likely belong
to CWS not properly set up in an outdoor environment but
rather indoors (e.g., room, basement, greenhouse) or to CWS
with a dysfunction. In June, very high T (>40 ◦C) is also
regularly measured by many CWS (Figure 3A) during daytime.
These values are likely due to solar-radiation exposition, directly
heating the station and leading to radiative errors (Nakamura and
Mahrt, 2005). The TQC data set (Figures 2B, 3B) does not contain
any CWS with very low amplitude of diurnal cycles, or stations
measuring very high T. The data set is cleaned up from its outliers
and the ensemble of T time series is more homogeneous, while
preserving a realistic variability due to spatial heterogeneities.

Looking at the spatio-temporal averages and standard
deviations of the different data sets (Figure 4), it appears that
the TQC data sets get closer to the TREF data set, comparing
to TRAW which overestimates both the average and standard
deviation of T. This can be explained by (i) the indoor stations,
that are usually measuring higher T, particularly during the
colder months, and (ii) the stations exposed to solar radiation,
leading to unrealistically high T during daytime. As these stations
are excluded in the TQC data set, the average T as well as the
standard deviation decrease compared to the TRAW data set,

FIGURE 5 | Air temperature (T) at citizen weather stations (CWS, gray lines) and their spatial average (thick black line) during June 27 to 29, 2017 from stations close

(distance < 2000m) to the reference station Swinemuender Strasse in Berlin (thick dashed black line). (a) Applying quality control of Meier et al. (2017), (b) applying

the newly developed quality control, and (c) number of CWS with valid data at each time step.
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even if they remain higher than for the TREF data set. However,
differences between TREF and TRAW could also be attributed to
spatial heterogeneity in T because the urban locations of both
observational network are not identical.

Comparison to the Meier et al. (2017)
Method
The spatio-temporal monthly averages and standard deviations
between TME17 and TQC (Figure 4) are close in Berlin and
Toulouse with a maximum difference of 0.5 K in their average
and 0.3 K in their standard deviation. Compared to TME17,
the TQC averages are closer to the ones calculated from the
TREF data set (0.3 and 0.4 K closer on average for Berlin

TABLE 3 | Percentage and number of months for the different data sets in Berlin

and Toulouse which failed test 1 (c.f. section Test 1—Indoor Stations).

City Berlin Toulouse

p < 0.05 and R < 0.9 in %

(in number of station/month)

p < 0.05 and R < 0.9 in %

(in number of station/month)

TREF 0.0 (0) 0.0 (0)

TRAW 14.6 (2,909) 18.9 (598)

TQC 0.8 (101) 2.0 (40)

R, Pearson correlation coefficient. Each station is considered individually, i.e., each station

could fail in a maximum of 12 months.

TABLE 4 | Percentage and number of months for the different data sets in Berlin

and Toulouse which failed test 2 (c.f. section Test 2—Systematic Radiative Errors).

City Berlin Toulouse

p < 0.05 and R > 0.5 in %

(in number of station/month)

p < 0.05 and R > 0.5 in %

(in number of station/month)

TREF 3.8 (7) 0.0 (0)

TRAW 14.3 (2,907) 6.0 (206)

TQC 5.5 (695) 0.8 (15)

R, Pearson correlation coefficient. Each station is considered individually, i.e., each station

could fail in a maximum of 12 months.

TABLE 5 | Results of the sensitivity tests of the thresholds (upper and lower

values of α) of QC step M2 for Berlin and Toulouse.

Upper part (%) TQC, step O1

(α = 0.075)

TQC, step O1

(α = 0.05 )

TQC, step O1

(α = 0.025)

Test 1 0.4/1.6 0.8/2.0 1.1/2.2

Test 2 4.0/0.4 5.5/0.8 7.2/1.3

Lower part (%) TQC, step O1

(α = 0.015 )

TQC, step O1

(α = 0.01)

TQC, step O1

(α = 0.005)

Test 1 0.8/1.9 0.8/2.0 0.8/2.3

Test 2 5.5/0.7 5.5/0.8 5.6/0.9

Numbers are the percentage of month that failed the tests (Berlin / Toulouse). Each station

is considered individually, i.e., each station could fail in a maximum of 12 months. The

middle column corresponds to results of Table 3 and 4.

and Toulouse, respectively). The same improvement can be
seen for the monthly standard deviation, with an average
improvement of 0.1 K for Berlin and Toulouse. A positive average
difference compared to the reference data set remains each
month in the quality-controlled CWS data sets, also noticed by
Meier et al. (2017).

However, the TQC and TME17 data sets do not resemble
each other entirely. First, the ME17 approach keeps 54% of
TRAW, while the new QC keeps 58% on average for Berlin and
Toulouse (Table 2). Considering the total number of available
raw data, 76.7% of the filter-flags are common in TME17 and TQC.
Among the remaining 23.3%, there are 9.6% that correspond
to T measurements which are now flagged FALSE based on the
new QC. The remaining 13.7% are now flagged TRUE thereby
increasing the availability of data in TQC.

These differences are mainly due to two reasons:

• The quality assessment by Meier et al. (2017) is very restrictive
with the hourly daytime radiation filter [filter step C2 in Meier
et al. (2017)], i.e., during daytime,T higher than three standard
deviations of a set of reference stations are flagged FALSE. As
shown in Figure 5a, the number of available stations strongly
decreases during some specific periods of daytime, making the
number of stations with valid data highly dependent on the
diurnal cycle (Figure 5c). This partly explains the 13.7% of
data hereafter kept in the TQC data set.

• The interpolation step (O1) of the QC increases the number of
data, leading to a more continuous time series.

Tests
To quantitatively investigate the efficiency of the new QC, we
proceed hereafter with two tests, aiming to identify whether
the indoor stations and the stations exposed to shortwave (SW)
radiation were properly masked from the original data set.

Test 1—Indoor Stations
To investigate whether the indoor CWS, or more generally
speaking the stations that were not set up properly, are flagged
by the QC we calculate the Pearson correlation coefficient (R)
between each individual station and the median of the reference
stations for eachmonth, using the hourly data set. Indoor stations
are assumed to be less correlated to the outdoor reference stations
as their diurnal cycles are shifted and altered in time.

Test1 :R
(

TM3 ,median
〈

TMREF

〉)

m

First, this testing procedure is applied to the reference data set.
All-time series of the reference data set show a correlation >0.9
with their median time series. This result justifies the threshold
used in step M4 of the QC (section Development of the QC). In
the following, a CWS will be considered as failing the test for 1
month if the correlation to the median of the reference stations
is < 0.9 with p < 0.05. For each station, a maximum of twelve
tests are performed (i.e., one for eachmonth of the year; subject to
data availability). The percentage of stations failing this test in the
TRAW data set is 14.6% in Berlin and 18.9% in Toulouse (Table 3).
After application of the new QC the percentage of stations failing
this test is 0.8% for Berlin and 2.0% for Toulouse (Table 3). This
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indicates that almost all stations which are not properly set up
are excluded by the newQCmethod. This matches the qualitative
result shown in Figures 2,3 for the city of Berlin.

Test 2—Systematic Radiative Errors
To identify whether the new QC efficiently excluded the stations
showing radiative errors due to solar heating, a method suggested
in Meier et al. (2017) is used. For each month, the correlation
between the difference of a given station to the median of the

reference stations, and the SW radiation is calculated, using
daytime values only, i.e., when SW> 0, (using the UCON station
at the main building of the Technische Universität in Berlin and
the Blagnac airport station in Toulouse). If a significant (p< 0.05)
correlation is higher than 0.5 (threshold defined in Meier et al.,
2017), the temporal evolution of T is considered suspicious with
regard to solar radiation.

Test2 :R
(

TM3 −median
〈

TMREF

〉

, SW
)

m

FIGURE 6 | Relations of air temperature (T) at reference station Swinemuender Strasse in Berlin and the inverse-distance weighted average of quality-controlled T

measured by citizen weather stations (TQC) within a radius of 2000 m: hourly values (a), daily mean (b), daily minimum (c), and daily maximum (d). The

root-mean-square deviation (RMSD), mean deviation (MD) and centered RMSD (cRMSD) (section Appendix A.3 in Supplementary Material) are given in each panel

(units K). The blue line indicates the 1:1 line.
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As for Test 1, the testing procedure is first applied to TREF

to evaluate the test. Every station/month passes this test for
Toulouse (Table 4, 0% of the months lead to correlation higher
than 0.5) but not for Berlin (Table 4). Out of the 7 months failing
the test, five belong to one station (Spandauer Strasse), which
could be due to the micro-scale conditions around this site. Due
to the site’s location in a backyard behind a house and trees
surrounding it, the shading conditions are highly variable along
the annual and diurnal cycles. This may lead to situations when
the radiation screen of the sensor is exposed to solar radiation,
while the photo-voltaic panel to power the ventilation might be

shaded, as it is positioned below the radiation screen. In such
conditions the radiation screen would not be actively ventilated,
which may lead to radiative errors (Nakamura and Mahrt, 2005).
The results on the TQC and TRAW data sets are then investigated.
The percentage of months during which variations of T are
significantly correlated to SW radiation is 5.5% in the TQC data
set, while it is 14.3% for the TRAW data set in Berlin (respectively
0.8 and 6.0% in Toulouse, Table 4).

The results for Toulouse indicate that most of the Netatmo
stations that are exposed to solar radiation have been excluded
from the data set by the new QC.

FIGURE 7 | Same as Figure 6 but for the Marengo (Toulouse) reference station.
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The two tests have shown that the quality-controlled CWS
data may still contain suspicious T values. These two tests could
thus be added to the entire control process if reference data
sets are available (i.e., SW radiation data at one location and a
sufficiently large set of T measurements from reference stations).
In this study, since the aim is to develop a universally applicable
technique, it was decided to not do this. These two tests could
therefore be considered as optional QC steps of the wholemethod
developed in this study and should be applied between steps O1
and O2 (section Development of the QC).

Sensitivity Tests
In the following section, the robustness of the main QC step (M2)
shall be investigated. This step includes two parameters which
determine the size of the removed lower and upper parts of the T
distribution at each time step. These parameters are by default
chosen to correspond to the value leading to rejection of the
null-hypothesis for a z-test with α = 0.01 and α = 0.05 for the
lower and upper part of the distribution, respectively. We test the
sensitivity by making additional simulations on the data sets of
Berlin and Toulouse with these parameters equal to either 50 or
150% of the default values. The two tests as described in section
Tests are used to evaluate the outcome of these sensitivity tests
and the results are presented in Table 5.

The parameter for the lower part of the distribution is very
robust as the rejected percentage of data barely changes when
using± 50% of its default value (maximum 0.3% difference). For
the parameter of the upper part, despite being more sensitive, the
percentages of data that failed tests 1 and 2 remain close to the
ones obtained with the default TQC data set with a maximum of
1.7% difference in Berlin when testing upper α = 0.025. Overall,
it indicates a robustness of the method to the applied parameters.

Comparison With Reference Stations
While Figure 5b shows that T measured by the reference station
is quite similar to the average of the nearby (<2,000m) CWS,

TABLE 6 | Annual average ± standard deviation of scores (MD, RMSD, cRMSD in

K, see Appendix A.3 in Supplementary Material for formula) calculated between

each reference station (Berlin: ten stations, Toulouse: six stations) and the

inverse-distance weighted average of the Netatmo CWS within a radius of

2,000m.

Scores/city Berlin Toulouse

Hourly MD 0.95 ± 0.41 0.49 ± 0.21

RMSD 1.43 ± 0.50 1.35 ± 0.19

cRMSD 1.04 ± 0.37 1.24 ± 0.16

Daily mean MD 0.80 ± 0.41 0.44 ± 0.16

RMSD 1.00 ± 0.40 0.99 ± 0.19

cRMSD 0.56 ± 0.22 0.87 ± 0.20

Daily minimum MD 1.32 ± 0.83 1.23 ± 0.29

RMSD 1.59 ± 0.83 1.77 ± 0.29

cRMSD 0.83 ± 0.33 1.23 ± 0.32

Daily maximum MD 0.60 ± 0.38 −0.22 ± 0.24

RMSD 1.17 ± 0.27 1.23 ± 0.21

cRMSD 0.90 ± 0.33 1.19 ± 0.22

it also shows that individual CWS display larger deviations of
up to 4K. The yet unsolved challenge is to determine whether
these deviations are natural or artificial. Artificial errors could
be due to multiple reasons, e.g., the distance between CWS
stations and building walls, station height or exposure, or close-
by artificial heat sources such as exhausts or air conditioning
outlets. Thus, picking somewhat randomly a pair of CWS
as it is traditionally done to measure the urban heat island
(UHI) (e.g., Wilby, 2003) could lead to a mis-quantification and
neglects the spatial heterogeneity of T in urban regions. De Vos
et al. (2017) showed that for precipitation measurements from
Netatmo stations, averaging multiple stations is needed to better
represent the precipitation in Amsterdam, the Netherlands, in
comparison to a reference gauge-adjusted radar. Chapman et al.
(2017) and Fenner et al. (2017) also pointed out some issues when
considering only one CWS. Hence, we consider that data from
one single station should be evaluated carefully and that a spatial
average of stations should better be exploited.

Figures 6, 7 thus show a comparison between two reference
stations (Berlin: Swinemuender Strasse, Toulouse: Marengo) and
the weighted average of the surrounding CWS within a radius
of 2,000m (weighting is attributed using the inverse distance
method, formula in Appendix A.2 in Supplementary Material).
Figures 6a, 7a show scatter plots using hourly data. On average
for all stations, the CWS present a positive mean deviation (MD,
Appendix A.3 in Supplementary Material) with regard to the
reference station of 0.95 and 0.49K in Berlin and Toulouse,
respectively (Table 6). The resulting root-mean-square deviation
(RMSD) is quite low for both cities (< 1.5 K). Figures 6c,
7c show the results using daily minimum T, highlighting a
stronger positive MD. This also results in a higher RMSD of
1.59 and 1.77K for Berlin and Toulouse, respectively (Table 6).
For daily maximum T, the MD is less consistent between the
two cities, with an average of 0.60K for Berlin and −0.22K for
Toulouse, resulting in relatively low RMSD (1.17 and 1.23K). It
is remarkable that an underestimation in Toulouse is found for
daily maximum T (Figure 7d).

Such positiveMDwere also observed in the study of Chapman
et al. (2017). They showed that the deviation between CWS
and a reference station fluctuates and notably increases with
atmospheric stability. They assumed that this MD could be due
to the fact that their reference data were more likely to be located
in areas of green space. In this study, however, only reference
stations that belong to non-green areas are considered. The
results of Table 6 point out that this MD issue thus cannot only
be explained by the difference in local-scale settings, adding to
results by Fenner et al. (2017) who showed positive deviations
between CWS and reference data for different LCZ classes.
Further, the study of Meier et al. (2017) showed that the MD
in crowdsourced T is unlikely due to instrumentation but to the
siting of the station. Indeed, we assume that most of the CWS are
set up close to building walls (e.g., directly on a window sill or
on a balcony), especially in dense urban areas. On the contrary,
the reference stations are often set up on public furniture (e.g.,
street lamp-posts), which are more distant to walls. Adding the
fact that the Netatmo CWS do not include a proper radiation
shield, we hypothesize that the observed positive MD could be
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due to long-wave radiation emitted by walls. This would then
lead to warming of the nearby air and the aluminum casing of the
Netatmo CWS. This issue of the siting of a CWS was addressed
in the study of Wolters and Brandsma (2012), who excluded
all CWS in their data set that were positioned too close to a
building wall (<1.5m). However, such a removal of stations is
not possible with crowdsourced Netatmo data, since the meta
data provided with the actual data are sparse, and do not include
information about the specific set-up, as in the data set ofWolters

and Brandsma (2012). These missing meta data is yet one of the
biggest challenge when working with crowdsourced atmospheric
data (Chapman et al., 2017).

One of the challenges of this study is to determine if
the crowdsourced data set can actually represent the urban
heterogeneities in surface properties and the resulting T pattern.
As seen in this section, a MD is almost constantly observed
between the CWS and the reference network, particularly
with daily minimum T. For this reason, it is challenging to

FIGURE 8 | Boxplots of centered root-mean-square deviation (cRMSD) using daily minimum T (y axis, see Appendix 2 in Supplementary Material for definition)

calculated between each individual CWS and reference stations according to the distance between them (x axis) for the investigation period July 2016 – June 2017.

Scores are calculated from raw data (TRAW, gray) and after the quality control (TQC, level O3, blue). For more readability, only the 25, 50, and 75 percentiles are

represented by the boxes.
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demonstrate that the CWS network is able to capture the natural
spatial variation caused by local- and meso-scale forcings. In
order to consider this systematic deviation, we analyze the
centered root–mean-square deviation (cRMSD, Taylor, 2001, see
Appendix A.3 in Supplementary Material for formula), which
can be seen as the classical RMSD of unbiased time series or a
combination of the correlation, and the standard deviation of
both the CWS and reference time series.

Figure 8 shows, for each reference station, how the cRMSD
calculated between daily minimum T of each single CWS
and the reference station evolves with distance. In every case
except reference station Albrechtstrasse, cRMSD increases with

distance. Note that this reference station is located close to a canal
in an area of allotment gardens which may strongly influence T,
especially in the evening and at night (Heusinkveld et al., 2014;
Steeneveld et al., 2014).

The calculated cRMSD from the TRAW data set is also shown
in Figure 8. Not only are the cRMSD values much higher without
the QC, but the consistency between close-by CWS and reference
stations is also less visible. This illustrates again the need for
having an effective QC before starting any analysis.

The same spatial comparison was also performed using daily
maximum T (Figure 9), showing that no clear relationship can
be established for cRMSD values and the distance between

FIGURE 9 | Same as Figure 8 but using daily maximum T. TRAW data are in gray and TQC in red.
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individual CWS and reference stations. This can be expected
since spatial T differences within a city are only weakly
pronounced during daytime due to an unstable stratification of
the urban atmosphere, when daily maximum T typically occurs
(e.g., Fenner et al., 2017). The average cRMSD slightly varies
around 1K, independent of the distance to the reference station.
Yet, the cRMSD is also greatly improved after the QC is applied.

APPLICATION

To illustrate the transferability and applicability of the newly
developed QC, we apply it to crowdsourced T data observed
by CWS in Paris and surrounding areas, where dense reference
networks are missing and where the spatial density of Netatmo
CWS is especially high. CWS data for Paris were acquired as
explained in section Netatmo Data Acquisition.

We propose a spatial interpolation of T which could
overcome challenges typically associated with the investigation
and quantification of UHI. This method avoids (i) the spatial
issues that are involved if only a single pair of stations is used
(e.g.,Wilby, 2003) thanks to a spatial continuum, as well as (ii) the
temporal inconsistency of T measurements that are inherent in
mobile transect methods (e.g., mobile measurements, Brandsma
and Wolters, 2012; Leconte et al., 2015).

Figure 10 shows the estimated spatial distribution of T over
Paris on 21 June 2017 at 00:00 UTC. Within the region of
interest 3931 CWS are available and considered valid (at level
O1) at this date and time. The T distribution is shown for a
grid with 500 × 500m spatial resolution. In each grid cell the
mean T of all CWS within a radius of 2,000m, weighted by the
inverse distance method (see Appendix A.2 in Supplementary
Material for formula), is shown. This radius is chosen consistently
with results of section Comparison With Reference Stations and

FIGURE 10 | Spatial distribution (see text for explanations) of air temperature difference (1TQC) in Paris, France based on quality-controlled citizen weather station

data (level O1) in Paris, June 21, 2017 at 00:00 h (UTC). 1TQC is calculated as the difference between each individual grid box and the minimum value of the area.

Dashed lines represent exemplary transects through the study region. Solid lines denote the departmental borders. Projection: Lambert conformal conic.
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increases the number of considered stations when calculating the
mean per grid cell, thus decreasing the weight of each single
one of them. To strengthen this point, a value is only assigned
to each grid cell if at least five CWS provide valid data. Two
transects (horizontal and vertical) are also plotted in Figure 10.
Note that map and transects show the differences between T and
the minimum T of the whole area.

Figure 10 clearly indicates a spatial T pattern with higher
T within the city center of Paris and lower T in the outskirts.
Moreover, an inner-city differentiation of T can be seen,
highlighting the possibility to obtain spatially continuous T
information from CWS data that is seldom achievable with
reference networks due to limited number of stations.

CONCLUSION AND OUTLOOK

In this study we developed a QC procedure to automatically
filter out potentially erroneous data from crowdsourced T
measured by CWS. Even though the QC is statistically
based, it addresses common error sources in crowdsourced T
data as identified by previous works (Chapman et al., 2017;
Meier et al., 2017) and effectively filters out data that are
affected by such errors. Moreover, the QC does not need
reference data from professionally operated weather stations
but uses information from the crowdsourced data set itself.
It is easily transferable to other urban regions. Thus, it
provides a homogeneous data set that can be used for further
analyses.

Small deviations between quality controlled CWS and
reference data were found when considering the spatial average
of CWS in close proximity to a reference station. However, single
stations show considerable larger errors, highlighting the fact
that analyses relying on data from single CWS are to be treated
carefully. A positiveMD remained in the quality-controlled CWS
data set, notably for daily minimum T. This issue is likely related
to the siting of the CWS (i.e., close to walls) compared to the
siting of standard meteorological observations at urban sites and
could be investigated in detail in a future study. Despite the
positive deviation, CWS data provide valuable information of T
by capturing local-scale variations. These evaluations permit to
justify the construction of a T map in the city of Paris using direct
measurements.

Apart from the positive MD mentioned above, it could be
investigated in more detail whether or not CWS data are able to
capture hot or cold spots in urban areas at a finer spatial scale (i.e.,
<1 km) related to the underlying surface properties (e.g., sky view

factor, water surface fraction, vegetation height). High resolution
professional data sets are necessary for this investigation too,
as well as accurate knowledge of the land cover and more
detailed meta data about the CWS (i.e. orientation, height). In
a further study, the applicability of the new QC for atmospheric
humidity, precipitation, and wind speed and direction could be
investigated.
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