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INTRODUCTION

The 7.6 billion people living on our planet face a number of pressing issues that include
climate change, food and energy security, natural resource management, human health,
clean water management, sustainable use of the oceans, building resilient infrastructure, and
responsible production and consumption (UNSDGs, 2015). Many of these issues involve a better
understanding of ancient, modern, and future process interactions at and below the Earth’s
surface. Particulate transport processes and fluxes are the key physical measures, and sedimentary
successions form the critical archives, which permit investigations into the response of the planet’s
interconnected systems to climate change, and the triggers, magnitudes, and frequency of natural
hazards. Advances in quantification and forecasting of particulate and pollutant transport across
the land, the continental shelf, and in the deep-ocean are urgently required to improve societal
resilience to these planetary changes and hazards. Given the lack of long-term (>100s of years)
instrumental records and uncertainties in future Earth system behavior, analysis of both recent and
ancient sedimentary archives is required to tackle these challenges. A number of questions arise
when faced with attempting such reconstructions from depositional sequences. For instance, can
we confidently attribute processes to the resultant sedimentary deposits? How can we establish
a precise chronology for past events? How did past events respond to environmental controls?
How complete are sedimentary sequences? What post-depositional processes may complicate their
interpretation?

To address these questions we require a deep understanding of sedimentology, stratigraphy,
and diagenesis. These disciplines will continue to play a key role in tackling present and future
global challenges, yet many knowledge gaps still exist. Fundamental questions remain unresolved
concerning the fluid dynamics of particulate suspensions, the interpretation of the stratigraphic
record with regard to a changing Earth surface, and the range of processes and products
that occur during and following deposition and burial. Furthermore, improved understanding
of the generation, transport, and deposition of siliciclastic, carbonate, volcaniclastic, organic,
and anthropogenic sediments across Earth’s surface, and the response of sediment-routing
systems to non-stationary changes, are crucial to resolve changes in particulate fluxes from
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continents to oceans over a range of timescales. Here, we aim
to emphasize some of the major research areas where the
sedimentology, stratigraphy, and diagenesis community must
become a focal point for the interdisciplinary study required to
advance our understanding of complex behaviors of the Earth
system, and the surfaces of other planetary bodies (Figure 1).
Given the breadth of depositional environments, processes, and
archives available, we cannot cover all the challenges where
sedimentologists, stratigraphers, basin analysts, and sedimentary
geochemists can contribute; hence, the themes and examples
identified herein cannot be comprehensive, and inevitably reflect
the perspectives of the authors.

Technological advances make these exciting times for
geoscientists studying Earth surface processes, their depositional
products, and the interactions with the biosphere, hydrosphere,
atmosphere, and lithosphere; from monitoring contemporary
sediment transport processes to interpretation of sedimentary
archives that record ancient environmental changes. We set
out three research grand challenges: (1) Sedimentology and
society; (2) Life and sediment interactions; (3) Sedimentary
system responses to external forcings. Finally, we conclude our
summaries of these cutting-edge research topics with a rallying
call for the sedimentology, stratigraphy, and diagenesis research
communities to (re)establish our position as integral to future
interdisciplinary research.

The open access journal Frontiers in Earth Science:
Sedimentology, Stratigraphy, and Diagenesis (SSD) is a new
vehicle to enable our discipline to continue to grow, and
reinvigorate these research areas as core geoscience disciplines.
We intend that these themes will form the basis for special
sessions at conferences, and to accrue open access thematic sets
in the journal, which will reflect the central position of SSD
research in the geosciences, and across interdisciplinary research
programmes. We are open to receiving manuscripts from across
the full breadth of Sedimentology, Stratigraphy, and Diagenesis
research community.

SEDIMENTOLOGY AND SOCIETY

Understanding the societal impacts of, and improving resilience
in response to, Earth surface processes requires advancing
and applying process sedimentology research in a wide range
of environments. An essential step in this aspiration is
much closer collaboration with other disciplines, such as
engineering, biological sciences, climate and ocean sciences,
and social sciences. Indeed, ongoing anthropogenic activities,
and associated accelerated changes in global climate and Earth
system processes (Steffen et al., 2015), present numerous natural
hazards that may be non-stationary over a range of timescales.
One particular hazard is related to significant changes in the
flux of sediment from continent to oceans, and the mixtures
of particulates (e.g., microplastics, pharmaceuticals, pesticides)
available for transport (e.g., Syvitski et al., 2005; Syvitski and
Kettner, 2011; Zalasiewicz et al., 2016). Forecasting likelihood,
and responses to a range of natural hazards and pollutants,
is of particular relevance to developing countries. Small Island

Developing States are vulnerable due to their isolated locations,
reliance upon local clean drinking water, unpolluted fisheries
(Pelling and Uitto, 2001; Terry and Goff, 2012) and limited
connection via seafloor cables to global communications that
enable future economic development (Carter et al., 2014).
Here, we consider the potential impact of sedimentological
research, with potential for direct and immediate socio-economic
benefits, in: (i) the forecast and impact of geohazards; (ii) the
extraction, dispersal, and concentration of pollutants; and (iii)
understanding of long-term carbon transfer and storage.

Geohazards
A wide range of geohazards directly and indirectly impact global
communities. Many hazards require improved understanding of
pre-requisite conditions, particulate erosion, and often complex
but interlinked-transport processes (Gill and Malamud, 2016).
The dispersal of particulates that are harmful to health can
occur over many temporal and spatial scales. A major challenge
in extending the historic archives of extreme natural hazards
is confidently identifying the depositional signature that can
be linked to a specific type of triggering-event. Does every
major earthquake trigger a submarine landslide or a turbidity
current (Sumner et al., 2013; Moernaut et al., 2014)? Does every
convective storm cause a river to flood (e.g., Murphy et al., 2018)?
Not necessarily. There are complicated combinations of factors
that condition natural systems to respond catastrophically.
Furthermore, better understanding of erosional processes,
including flow-substrate interactions (see section Life and
Sediment Interactions), and identification of hiatal periods when
there is neither sedimentation nor erosion, is crucial to using
the stratigraphic record to improve forecasting of hazardous
events.

Sedimentary archives provide the main proxy to estimate
recurrence rates of hazardous events—such as earthquakes,
tsunamis, flooding, etc.—over time-scales that exceed historic
records (Moernaut et al., 2014; Schillereff et al., 2014). However,
to understand the full behavior of natural systems, and in
particular non-stationary responses where the statistical mean
and variance change with time (e.g., climate trends, seismic
cycles), there is an urgent need to quantify probabilities of
risks associated with geohazards over millennial and even longer
scales. Hence, analysis of stratigraphic successions plays a key
role in extending hazard catalogs, but at present there are many
uncertainties as to whether we can reliably discern different types
of events from deposits (and hence need to better understand
the sedimentological processes that lead to their deposition),
about the completeness of the stratigraphic record (erosion
and hiatus), and about the effectiveness of different triggers
given variable sediment supply rates in the past. Pancost (2017)
summarizes the potential of ancient climatic changes recorded in
stratigraphic successions to: (i) critically test climate models on
which future projections are based; (ii) investigate the responses
and impacts of changing climates on Earth system processes and
ecosystem dynamics; and (iii) identify important processes that
are not (adequately) incorporated into climate models. Without
mitigation strategies, there will be profound societal impacts
of changes associated with a changing climate. The forecast
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FIGURE 1 | Illustration of the range of sedimentological, stratigraphic, and diagenetic research themes highlighted by this article, Sedimentology and Society, Life and

Sedimentology, and Sedimentary System Response to External Forcing. EPS, extracellular polymeric substances; Qs, sediment supply.

and mitigation of these changes is complicated, and requires
interdisciplinary approaches, but will require detailed knowledge
of sedimentary processes and interpretation of stratigraphic
records.

For example, to forecast coastal realignment under projected
accelerated sea-level rise and to improve resilience of coastal
communities (fauna and humans) and critical seafloor
infrastructure (e.g., offshore renewable interconnectors, oil,
and gas decommissioning, telecommunications cables), requires
understanding the dynamic interaction of changing topography
with hydrodynamics and sediment availability (e.g., Chamberlain
et al., 2018). The stratigraphic record of process responses to
past changes in sea-level, whether the Holocene (e.g., Mellett
et al., 2012), the last interglacial (e.g., Mauz et al., 2013; Hibbert
et al., 2016) or in deeper time (e.g., Cattaneo and Steel, 2003),
provides a means to support mitigation strategies for future
sea-level rises. This is critical when only a few decimeters of
sea-level rise can inundate large areas of coastal lowlands,
particularly at river deltas which host seven times the global
mean population density (Ericson et al., 2006). Therefore, a
major challenge is to adequately resolve the rates and effects
of past sea-level change on a decimeter-scale when analyzing
sedimentary archives. A key advance will be to successfully
link information from carbonate and siliciclastic records
with geophysical models, and to integrate these tools in
terms of sea-level cycles in order to support the modeling of

geomorphological and sedimentary responses to future sea-level
change.

Some geohazard assessments are closely tied to diagenetic
understanding, both in uplifted sedimentary successions
(telogenesis), such as carbonate dissolution and sinkholes, and
processes soon after deposition. Early stage diagenetic changes
(eogenesis), which include biological interactions (see section
Life and Sediment Interactions), can affect the mechanical, and
chemical properties of continental slope sediments, and as such
influence the location and scale of hazards such as submarine
landslides (e.g., Urlaub et al., 2018).

Pollutant Dispersal
The volume of pollutants dispersed through sediment-routing
systems from fluvial, through shallow-marine segments and
ultimately to deep-marine environments will continue to
accelerate (e.g., Macdonald and Bewers, 1996; Zalasiewicz et al.,
2016). Pollutants may consist of man-made materials, such
as microplastics, pesticides, pharmaceuticals, or include the
redistribution of detrital minerals and processed fragments from
mining tailings or seabed dredging activity (e.g., Ellis and Ellis,
1994; Gwiazda et al., 2015; Ramirez-Llodra et al., 2015). The
deep ocean is a sink for microplastics (e.g., Courtene-Jones et al.,
2017) with direct impact on benthic ecosystems, and deeper
burial through biological activity (Näkki et al., 2017). Changes
in pollutant fluxes and mixes in the oceans urgently need to be
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quantified, and founded on a process basis to sustain and protect
resources directly linked to human food and health. Monitoring
and modeling contaminant transport, as well as unraveling
physical process interactions that lead to, or set off, compound or
cascading hazard events, requires improved understanding of key
physiographic regimes, such as between rivers to coasts (Gill and
Malamud, 2016). Sedimentologists and sediment geochemists
need to be central to research on forecast and evaluation
of pollutant transport processes and concentrations, pollutant
interactions with the biosphere (see section Life and Sediment
Interactions), and geochemical processes between pollutants and
siliciclastic and carbonate sediment.

Recent technological developments provide new
opportunities to directly observe particulate transport processes,
quantify geohazard impacts, and monitor the dispersal of
pollutants and transport of organic carbon at unprecedented
spatial and temporal resolutions (e.g., Vrana et al., 2005;
Azpiroz-Zabala et al., 2017). Despite significant recent advances
in instrumentation, large uncertainties remain concerning
the link between monitored transport processes and the
resultant deposits, and how to robustly quantify key variables
such as particle concentrations (Stevenson et al., 2018),
substrate/flow/deposit interactions and entrainment. These are
key issues that require focused and integrated research involving
sedimentologists and stratigraphers.

Carbon Transfer and Storage
Improved understanding of carbon budgets/sinks through time
(Galy et al., 2007; Owens et al., 2018), the prediction of
natural carbon storage, and the design and implementation of
carbon sequestration projects (e.g., Dewers et al., 2018), are
intimately linked to advances in sedimentology, stratigraphy, and
diagenesis. The flux of carbon along sediment routing systems
with changing climate will have positive and negative feedbacks
that are difficult to forecast. Studying the cycling of carbon
within the context of sediment-routing systems (e.g., transfer
between terrestrial and marine reservoirs; Leithold et al., 2016)
and at a range of timescales is critical for a comprehensive
understanding of arguably the most important element of the
twenty-first century.

Carbon sequestration (or “negative emissions”) will likely
be a required component of broader climate-change mitigation
to reduce the excess atmospheric CO2 in the Anthropocene
Earth system (e.g., Rockström et al., 2016). Hydrocarbon
extraction/management is ongoing and, even with aggressive
decarbonisation of the energy mix, carbon storage will become
increasingly important in the decades to come. The same
skills used by sedimentologists, stratigraphers, and sedimentary
geochemists for improved prediction and reduced risks in
management of hydrocarbon reservoirs, and water aquifers, will
be needed if introduction of carbon in the form of a fluid into
the subsurface is successful (e.g., Cavanagh et al., 2010). In
particular, the skills of sedimentary geochemists will be essential
in understanding kinetics and products as new fluid mixes
enter former hydrocarbon reservoirs (e.g., Armitage et al., 2010;
Tambach et al., 2015), and will inform decision-making into the
feasibility and longevity of CO2 sequestration projects.

LIFE AND SEDIMENT INTERACTIONS

The influence of life on sediments spans production
processes through transport and deposition to post-
depositional modifications. Improved understanding of
biosphere interactions with sediments, and the precipitation
of biologically-influenced chemical sediments, will help to
constrain the flux and character of abiotic and biotic grains in all
environments.

Interactions between life and sediment can impact Earth-
surface topography, including resulting sediment production,
erosion, transport, and deposition, and is a field of active
and interdisciplinary research (e.g., Collins, 2004; Dietrich
and Perron, 2006; Roering et al., 2010; Ulloa et al., 2015;
Schaller et al., 2018). Constraining the influence of flora
and fauna on the production and delivery of sediment from
different bedrock and regolith, along sediment-routing systems,
and into the deep ocean through geological time requires
novel and interdisciplinary research, and close collaboration
with paleobiologists, geochemists, geomorphologists, and
landscape-evolution modelers. This research topic segues
with the need for quantification of sediment flux (section
Sedimentary System Response to External Forcings) to
deepen our understanding of detailed sediment-production
processes, and will enable more quantitative interpretation
of paleoenvironmental changes from sedimentary archives.
Furthermore, constraining interactions between biological
and sedimentological processes into deep geological time
will need to accommodate understanding of evolutionary
change.

The marine biosphere is also a major control on subaqueous

sedimentary and biochemical processes. Benthic and microbial
organisms are abundant in cohesive sediments a meter or so

below the seabed (Parkes et al., 2000;Murray et al., 2002), and can
significantly modify the geomechanical properties of substrate.

At cold seeps, bacteria can mediate the formation of authigenic
carbonate crusts that host environmentally sensitive and isolated
benthic communities that would otherwise not be found in
the cold deep sea (e.g., Stakes et al., 1999; Aloisi et al., 2002;
Jones et al., 2014). Sedimentological and diagenetic analysis of
such authentic carbonates helps to understand how they formed,
the rate of development, and to identify safe sites for seafloor
infrastructure. In siliciclastic settings, bioturbation typically
results in compaction and substrate strengthening; however it
can also result in the weakening of substrates (Murray et al.,
2002). Any geomechanical modification may promote or inhibit
erosion, and thus affect the composition of overriding flows. How
the rate and depth of substrate modification has changed through
time will require collaboration with paleobiologists. Since a
marked increase in the intensity and diversity of bioturbation
in deep-sea substrates (the Great Ordovician Biodiversification
event; Màngano et al., 2016), the diversity of deep-sea trace fossils
has fluctuated. For example, some ichnotaxa have markedly
increased their environmental range for some time periods (e.g.,
Cummings and Hodgson, 2011), and the burrowing depths of
macrofauna is far greater than previously constrained (Cobain
et al., 2018). Furthermore, changes in sediment mineralogy
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occur though ingestion and excretion by burrowing animals
has been demonstrated experimentally (e.g., Needham et al.,
2005), and biofilm formation from microfauna and burrowing
macrofauna can pre-condition subsequent diagenetic processes
and products (Dowey et al., 2012; Wooldridge et al., 2017). This
demonstrates that life can have a profound post-depositional
impact on sedimentary successions. Future advances to improve
understanding of biological impacts on erosion, deposition,
and eogenetic processes through geological time will require
the integration of marine geology and biological datasets
with ancient records across a wide range of environmental
settings.

Extracellular polymeric substances (EPSs) are natural
polymers secreted by microorganisms produced from cell
lysis and adsorbed organic matter to form mixtures of
complex high-molecular-weight (e.g., Sheng et al., 2010).
Their composition and characteristics affect the formation of
microbial aggregates (Lin et al., 2014), and other enigmatic
(commonly lacustrine) carbonates, which is a major area
of ongoing research (e.g., Bosence et al., 2015). In addition
to bacterial precipitation and EPS, the impact of viruses
on carbonate precipitation may have been under evaluated
and needs reassessment (e.g., Lisle and Robbins, 2016; Perri
et al., 2018). A recent advance in physical-chemical-biological
interactions is the recognition that EPSs, and other cohesive
fine-grained material, are major controls on sedimentary
processes. Cohesive sediments and sticky substances, including
EPS, impact the erodibility of substrate, and sediment transport
and deposition processes (e.g., Malarkey et al., 2015; Lai et al.,
2018; Lichtman et al., 2018). An associated advance is the
understanding that many sedimentary processes involve mixed
grain-size and grain-type flows (polydisperse), and challenge
established bedform-phase diagrams that assume very narrow
(monodisperse) grain-size distributions, leading to reanalysis of
many sedimentary structures, and process interpretations (Baas
et al., 2016).

SEDIMENTARY SYSTEM RESPONSE TO
EXTERNAL FORCINGS

Sedimentologists are leading the re-appraisal of sediment-
routing systems, with an emphasis on source-to-sink
configurations and functioning across a range of modern
to deep timescales (>105–106 year; e.g., Romans et al., 2016;
Allen, 2017). A holistic perspective of sediment production,
transport, and deposition is inherently integrative and fosters
an interdisciplinary approach necessary to address important
questions in the Earth Sciences. Advances in understanding
the links between erosion-dominated catchments, through
the fragmented depositional record of transfer zones, to the
depositional record archived in sedimentary basins (Figure 1),
have been supported by technological advances, such as single-
grain based geochronology (e.g., Lawton, 2014), cosmogenic
radionuclide dating (e.g., Mason and Romans, 2018), low-
temperature thermochronologic estimates of long-term erosion
rates (e.g., Carrapa, 2010), geophysical imaging of stratal

geometries and sedimentary volumes (e.g., Covault et al., 2011),
numerical modeling (e.g., Hawie et al., 2017), and unmanned
aerial vehicle (UAV) and LiDAR technology (e.g., Buckley et al.,
2010).

These technological advances in constraining timing and
rates has led to quantification of sediment fluxes from source
(catchments) to sink (sedimentary basins), which allows for
examination of Earth surface change in response to external
forcings. An emphasis on more complete sediment budgets,
based on volume, and mass determination, instead of point-
location sedimentation rates mitigates well-known issues related
to stratigraphic incompleteness (Sadler, 1981; Sadler and
Jerolmack, 2014). Moreover, the increased number of integrated
onshore-to-offshore records have facilitated a more complete
understanding of source-to-sink configurations (e.g., Clift, 2006;
Sømme et al., 2009; Covault et al., 2011; Guillocheau et al., 2012;
Richardson et al., 2017).

A recent focus among the Earth Science community has been
on constraining the interactions and feedbacks between tectonic
and climate processes at a range of spatial and temporal scales
(e.g., Castelltort and Van Den Driessche, 2003; Armitage et al.,
2011, 2013; Godard et al., 2013; Braun et al., 2015; Schlunegger
and Castelltort, 2016). These studies complement traditional
sequence-stratigraphic approaches that have emphasized
accommodation signals by highlighting, and in some cases
quantifying, the magnitude and variability of sediment delivery
to a sedimentary basin. However, the quantification of responses
to external forcings and environmental signal propagation
at historic, millennial, and million-year timescales of the
magnitude and timing of sedimentary system is in its infancy.
For example, understanding if a climate signal is buffered
or, in some cases, “shredded” (Jerolmack and Paola, 2010)
en route to the stratigraphic record is critical if we are to
use those archives to reconstruct past global warming events.
To resolve these processes and controlling factors in the
integrated sedimentary basin record requires the use of proxy
records. The quantity and quality of proxy datasets are rapidly
growing, including uplift and exhumation events in the
sediment-source from high and low-temperature geochronology
and numerical modeling, sediment-transport independent
paleoclimate archives such as coral archives, pollen, and
biomarkers. Sedimentary deposits proximal to major ice sheets
have been shown to be valuable archives of the dynamics
of these globally important features (Jaeger and Koppes,
2016). Other sedimentary archives with that may form more
complete of environmental change remain underexploited,
such as contourite drifts (e.g., Bahr et al., 2014), overbank
deposits to submarine channel systems (e.g., Hansen et al., 2015;
Hodgson et al., 2016), and submarine fans (e.g., Picot et al.,
2016).

Improved constraints on the duration, and rates, of
sedimentation in all archives necessitates integration with
other Earth Science disciplines. A potentially rich area of
collaboration is the integration of source-to-sink analysis
with astrochronology. Identifying cycles within sedimentary
successions, and tuning these to the astronomical target curves,
has allowed calibration of most of the Cenozoic time scale
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(Hilgen et al., 2006), and permits the estimation and duration of
sedimentary successions and rates of sediment accumulations.
Earth’s orbital parameters govern climatic patterns through
seasonality and solar intensity. The recognition and impact
of Milankovitch cycles have been reported in a wide range of
environments from loess (Maher, 2016), evaporitic (Anderson,
1982), shallow lagoonal and reefal carbonates (De Vleeschouwer
et al., 2015), deltaic (Marshall et al., 2017), turbiditic (Payros
and Martínez-Braceras, 2014), and deep marine (Hinnov and
Hilgen, 2012) records. However, advancements still need to be
made in order to link with source-to-sink datasets. For example,
understanding the link between the onset and termination
of climatic events (“nodes”) remain challenges due to issues
of sensitivity and non-linearity of the proxy’s response to the
climate forcing.

Another important approach in this theme is the
application and integration of landscape evolution models
and stratigraphic/depositional models (e.g., Forzoni et al., 2014)
to formulate working hypotheses of sedimentary system response
to climate and tectonics that can be tested in the stratigraphic
record. In addition to sedimentary signal propagation and
response, the concepts of sedimentary system “sensitivity”
(analogous to climate sensitivity) will become increasingly
important. At shorter timescales, this research area is closely
aligned to quantitative geomorphology and landscape-evolution
modeling. If we want to advance source-to-sink studies,
and understand how sedimentary successions record past
changes in environmental conditions, we need to document
geomorphic processes, and “read” stratigraphic archives to
quantify paleoenvironmental change. One focus has been to
derive scaling relationships between the onshore catchments
and the offshore depositional sink (e.g., Sømme et al., 2009;
Bhattacharya et al., 2016), which can be used to guide likely
source-area characteristics from the depositional record in a
semi-quantitative manner.

Lastly, at the sedimentary basin-scale, sedimentary archives
chronicle the erosional history of their sediment sources and
mechanisms of basin formation, offering invaluable information
about tectonic histories and continent- or orogen-scale sediment
dispersal patterns. New areas of research exploring interactions
between tectonics and sedimentation and refined analytical
methods for linking sources to their sinks will continue to lead
advances in basin studies. This is reflected in the central role
of stratigraphers when constraining large-scale and long-term
crustal deformation patterns (Fosdick et al., 2015).

CONCLUSIONS, AND A RALLYING CALL

These are exciting times for sedimentologists, stratigraphers, and
sediment geochemists! There is an unprecedented breadth of
techniques and tools available. For example, novel age-dating
approaches that allow better links between landscape evolution
and the stratigraphic record; there is widespread availability of
huge topographic, bathymetric, and seismic reflection datasets;
new technology permits the monitoring of geophysical flows
at high fidelity, which are supported by advances in numerical

and analog modeling capabilities. The opportunities to monitor
modern systems in detail, and to extract more information from
ancient archives, have never been greater, or more pertinent
in order to better understand and predict future risks facing
society.

SSD research is central to many societally-relevant problems
in addition to fundamental questions in the Earth Sciences. We
need to communicate the importance of SSD research in the
context of all the grand challenges in the Earth Sciences that, in
one way or another, use sediments and the stratigraphic record.
To lead these advances as an interdisciplinary community,
we need to actively engage, or reengage, with engineering,
biosciences, climate sciences, environmental economists, and
more. An ongoing challenge will be to demonstrate the
continued need to invest in SSD research ideas, technology,
and training of early career personnel to develop the next
generation of SSD-facing geoscientists. There might be (major)
uncertainties in understanding of particulate transport and
deposition, in stratigraphic shapes and patterns, in the exact
products of flows of different fluid-sediment mixes in a
range of media, but our knowledge will lead to more
accurate evaluation of data, of models, of output. SSD is a
cornerstone of geochemical, paleontological, and paleoclimatic
research, and is central to interpreting the stratigraphic record
of past environmental change, and to better forecast how
sedimentary systems may respond to our changing climatic
conditions and sea-level state. Research excellence in SSD, in
description and interpretation, must be integral to associated
disciplines.

The SSD section of Frontiers in Earth Sciencewill publish high-
quality papers on all aspects of theoretical and applied research
that use field, remote sensing, geophysical, and analog and
modeling approaches. Our ultimate goal is to accelerate progress
in interdisciplinary research where sedimentary, stratigraphic
and diagenetic research is a central component. We welcome
high quality publications across the breadth of SSD research.
This includes data-rich case studies when clearly placed in the
context of the wider research landscape. Our ambition is that
this new journal will help to reaffirm the critical need for
excellent SSD research to underpin geochemical, paleoclimatic,
paleontological, and geoengineering studies, and to lead advances
needed for many of the grand challenges facing Earth Science
research.
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