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In the field of groundwater hydrology and more generally geophysics, solving inverse

problems in a complex, geologically realistic, and discrete model space often requires the

usage of Monte Carlo methods. In a previous paper we introduced PoPEx, a sampling

strategy, able to handle such constraints efficiently. Unfortunately, the predictions suffered

from a slight bias. In the present work, we propose a series of major modifications

of PoPEx. The computational cost of the algorithm is reduced and the underlying

uncertainty quantification is improved. Advanced machine learning techniques are

combined with an adaptive importance sampling strategy to define a highly efficient

and ergodic method that produces unbiased and rapidly convergent predictions. The

proposed algorithm may be used for solving a broad range of inverse problems in many

different fields. It only requires to obtain a forward problem solver, an inverse problem

description and a conditional simulation tool that samples from the prior distribution.

Furthermore, its parallel implementation scales perfectly. This means that the required

computational time can be decreased almost arbitrarily, such that it is only limited by

the available computing resources. The performance of the method is demonstrated

using the inversion of a synthetic tracer test problem in an alluvial aquifer. The prior

geological knowledge is modeled using multiple-point statistics. The problem consists

of the identification of 2 · 104 parameters corresponding to 4 geological facies values. It

is used to show empirically the convergence of the PoPEx method.

Keywords: adaptive importance sampling,machine learning, uncertainty quantification, bayesian inversion,monte

carlo, multiple-point statistics, parallelization

1. INTRODUCTION

Inverse problems play a key role in almost all the geosciences. Indeed, this is often the only
approach allowing to identify hidden structures of the interior of the earth and to estimate the
physical properties of the buried rocks from indirect physical measurements at the surface or in
a few boreholes. In groundwater hydrology, the aim is generally to infer the position of highly
permeable or impermeable rocks and estimate their porosities and permeabilities from punctual
measurements of state variables (e.g., hydraulic heads, tracer concentrations, water temperature,
etc.). As for any geophysical problem, inversemethods are of utmost importance and a fundamental
step in most quantitative hydrogeological studies (de Marsily et al., 2000; Carrera et al., 2005; Zhou
et al., 2014) as well as many environmental modeling problems (Moles et al., 2003; Wainwright and
Mulligan, 2005).
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However, despite its huge significance and despite more
than 50 years of research on this topic in geophysics and
hydrology, current methods are still unable to solve certain
types of problems efficiently. For instance, an open problem
is to solve probabilistic inverse problems that involve discrete
structures such as channels, lenses, karst conduits, or faults
which cannot be represented by standard multi-Gaussian fields
(Gómez-Hernández and Wen, 1998; Journel and Zhang, 2006).
The identification and representation of such geological features
is indispensable because it heavily controls fluid flow in the
underground (Feyen and Caers, 2006). Using a wrong and
smoothed representation of such discrete features is known to
bias significantly the groundwater forecasts and corresponding
uncertainty analysis (Gómez-Hernández and Wen, 1998; Kerrou
et al., 2008).

To overcome this difficulty, different approaches have been
developed and were recently reviewed by Linde et al. (2015). One
general strategy is to construct first a probabilistic prior able to
represent stochastic but geologically realistic structures and to
embed it in the inverse method. Often, this geological prior can
take only discrete values representing the rock types or some
specific geological features.

Inverse methods relying heavily on continuity assumptions
or simple statistical distributions (typically multi-Gaussian) are
not capable to manage this type of problems. On the opposite,
sampling algorithms can account for such complex setup (Oliver
et al., 1997; Robert and Casella, 2004; Fu and Gómez-Hernández,
2008; Mariethoz et al., 2010a; Hansen et al., 2012; Laloy et al.,
2016; Rubinstein and Kroese, 2016). These methods represent
the solution of the inverse problem as a set of models (or
samples) describing the posterior distribution. From this set of
samples, one may approximate any quantity of interest such as
mean values, maximum likelihood values, uncertainty bounds,
or probabilities of characteristic events. Unfortunately, for most
of these approaches, the computational effort is extremely
demanding (Fu and Gómez-Hernández, 2008; Romary, 2010;
Linde et al., 2015) and the challenge is to design an efficient
sampling scheme able to deal with categorical information in the
prior distribution.

In a previous paper (Jäggli et al., 2017), we proposed the
Posterior Population Expansion (PoPEx) algorithm to expand
iteratively an existing set of geological models. PoPEx was
specifically designed for handling discrete parameter values, even
if it can be applied to the continuous case as well. The discrete
parameter fields can be generated with any geostatistical method.

In our previous paper and in this one, we use a multiple-
point statistics technique for expressing the prior distribution
because this allows the user of PoPEx to formulate its prior
geological knowledge in the area where he is carrying out
the inversion. This knowledge is expressed by providing a
training image (TI). Multiple-point statistics (MPS) simulation
techniques (Strebelle, 2002; Arpat and Caers, 2007; Honarkhah
and Caers, 2010; Mariethoz et al., 2010b; Straubhaar et al., 2013)
can learn the spatial patterns from the TI and can produce
stochastic simulations that resemble the TI. The simulations
can be conditioned by local values if they are known (hard
data). The advantage of that approach is that it is flexible.

The same code can generate all kind of geological structures
(channels, lobes, braided systems, fractures, etc.) and therefore
it can be applied to a very wide range of inverse problems and
applications.

Like most sampling techniques, PoPEx produces iteratively
new parameter fields (the samples) using a geostatistical
technique (see for example the book of Chilès and Delfiner,
2009), then runs the forward problem (in our case a groundwater
flow and transport simulation, but it could be any forward
operator), evaluates the misfit and likelihood for that solution,
and accumulates novel knowledge. At each iteration, the
geostatistical simulation algorithm is controlled by PoPEx:
the general mechanism is to condition the simulation of the
parameter fields with a set of punctual values (hard data) selected
preferentially from previous models having a high likelihood.

This method proved to be very efficient on a synthetic example
(Jäggli et al., 2017): a comparison with two existing Markov chain
Monte Carlo (McMC) methods showed that the method was
able to considerably decrease the computational cost. But this
study also allowed us to identify that the initial version of PoPEx
produced slightly biased predictions.

In this paper, we revisit completely the core of the PoPEx
algorithm. The overall goal is to improve the usability, accuracy
and computational time. The most important contribution is
to introduce a new strategy allowing to produce unbiased
predictions. The bias happens because the generation of a new
realization is influenced by all the previous models in the chain.
This sampling strategy favors some realizations over others.
When computing predictions, however, these correlations must
be taken into account. In other words, we propose to consider
the method as an adaptive importance sampling (AIS) (Naylor
and Smith, 1988; Oh and Berger, 1992; Murphy, 2012) and
suggest a simple technique to produce unbiased predictions. The
additional computational cost is negligible and does not increase
the overall running time. From this perspective, the method
can be interpreted as an unsupervised machine learning scheme
that aims to learn an optimal probability density which can be
used in the AIS scheme. The class of inverse problems that
can be addressed is very broad and goes beyond applications in
the field of geostatistics. The only requirements are a forward
problem solver, an inverse problem description (including the
likelihood function), and a conditional simulation tool (e.g., any
geostatistical method) that generates models according to the
prior distribution.

On top of that, we show how the algorithm, together with
all modifications, can be parallelized. We show that it scales
perfectly in the considered example. Hence, the computational
time is directly reduced by the number of parallel chains, without
compromising the outcomes. This is a powerful result, because
the main hindrance against the use of sampling strategies is the
computational costs. With the proposed methodology, models
can be produced in parallel. The only limitations concerns
the number of available CPU’s, or more precisely, the number
of forward problem evaluations that can be run in parallel.
Today, most research and engineering groups have access
to high performance computer facilities, and therefore these
requirements are not too restrictive.
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The paper is organized as follows. Section 2 provides the
required background related to the inverse problem and the
general concepts of the method before explaining the details of
the modified algorithm. A case study together with a convergence
analysis is presented in section 3. Finally, in section 4, the
advantages and limitations of the methodology are discussed and
summarized.

2. METHODOLOGY

In this section, we first review the general definition of the
inverse problem following the notations and approach from
Tarantola (2005). Then we introduce the most important
techniques constituting the base of PoPEx (Jäggli et al., 2017).
As a consequence, the first part of this section mainly presents
material that has been proposed and discussed elsewhere. It is
toward the end of section 2.2 and in section 2.3 that we present
the novel methods that constitute the core of this paper.

2.1. Inverse Problem
The general inverse theory presented by Mosegaard and
Tarantola (2002) and Tarantola (2005) contains the commonly
used Bayesian formulation as special case. Furthermore, it lives
without the (problematic) notion of conditional probabilities
(e.g., Borel’s paradox) and alternatively uses the concept of
states of information. In the following, we slightly enrich their
explanations with a few comments specifically dedicated to the
hydrogeological framework.

Solving an inverse problem is usually related to honoring a
sparse set of observations dobs = {dobs1 , . . . , dobsm } called data. The
nature of these observations can differ widely and may depend
on the overall framework. When studying subsurface properties,
they often represent measurements of state variables such as
hydraulic heads, production data or contaminant concentration.
Due to imperfect measuring devices, these quantities usually
include uncertainties. It is common to use a finite set of
parameters m = {m1, . . . ,mn} to fully describe the physical
system under study. Any possible collection of such values will
henceforth be called a model or equivalently a realization. In
this regard, a model can cover a vast number of physical and
conceptual quantities, as, for instance, boundary conditions,
hydraulic conductivity maps, or specific storage values. The
collection of all possible models is called model space and is
denoted by M. In the hydrogeological framework, a common
approach is to subdivide an aquifer into a finite number of
volume elements (simulation grid) and characterize the hydraulic
conductivity in each grid cell. In this case, the underlying model
m includes one parameter mi per grid element, that defines the
physical property in this small sub-domain. The choice of a set
of representative dimensions is equivalent to the definition of
a parametrization of M. Note that for a given system, such a
coordinate system is not unique. “Permeability,” for example,
can be replaced by “resistivity,” “speed” with “slowness” or
“frequency” with “period.”

In practice it is possible to observe parameters that can also be
included inm. Boreholes, for example, often provide cores, from
which petrophysical values can be deduced with high precision.

If the model space is designed to describe the same quantities, we
simply remove the corresponding degrees of freedom from any
possible model m, and reduce the number of dimensions in the
model spaceM.

In many fields, well-founded physical theories have been
established in order to describe processes and interactions. They
can be used to describe relations between the models and the
observations. From a naïve point of view, it means that for
a given model m the error-free values of the corresponding
data set d can be predicted. This theoretical link between a
model and the observable parameters is called the forward
problem and described by d = g(m). The function g =

{g1, . . . , gm} denotes the forward operator. Tarantola (2005)
formulated the probabilistic solution of an inverse problem as
a non-negative measure function that combines two different
states of information. Typically, these states of information are
captured by the prior and the likelihood function. The prior
distribution ρ(m) describes any available information on the
model parameters, that is independent of the data set. The
likelihood function, L(m), usually embeds the forward operator
and is a probabilistic measure of how well a given model is able
to explain the observations. The solution, called the posterior

distribution, of an inverse problem is the conjunction of the
prior and the likelihood operator such as

σ (m) = c ρ(m)L(m), (1)

where c is a normalization constant. In the Bayesian framework,
the posterior measure is considered to be the product of
(conditional) probability distributions. The latter approach is
contained in Equation (1) and applies under some regularity
conditions. For this reasons, the formulation by Tarantola (2005)
is more general.

2.2. Posterior Population Expansion
(PoPEx)
It is worthwhile to recall several important concepts, that
originally have been introduced by Jäggli et al. (2017).
Afterwards, some small improvements will be suggested. These
modifications just slightly influence the evolution of the sampling
scheme, so that we decided not to rename the method and
still call it Posterior Population Expansion (PoPEx). The general
approach of the PoPEx algorithm is to generate a large number
of models m1, . . . ,mN that represent the posterior probability
density in Equation 1. From this approximation it is possible
to compute posterior probabilities of events. The sampling
procedure, however, requests to compute σ (mk) for every k =
1, . . . ,N, what can be highly intensive in terms of computational
costs. For this reason, the main idea of the PoPEx method is to
make the sampling as efficient as possible. Each generation of a
new model mk is therefore guided by all the previous samples
m1, . . . ,mk−1. For doing so, information maps (denoted by Pk

and D(Pk||Q), see below) are computed iteratively and ensure
that the sampling of mk is strongly guided by ‘good’ models
with high posterior values. The transfer of information from
m1, . . . ,mk−1 to mk runs through a set of value restrictions
imposed on the new model (denoted by HDk, see below).
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2.2.1. Set of Models Mk

The underlying algorithm is able to examine many different
types of uncertainties and parameter identification problems.
It is possible, for example, to consider parameters concerning
boundary and/or initial conditions, spatial heterogeneities,
recharge time series, etc. The model set m is then simply
subdivided into different parts m = {m1,m2, . . . }, where each
mi = {mi1 , . . . ,mir } represents one specific parameter type. The
only requirement is that samples representing that uncertainty
can be generated from a conditional simulation tool.

In order to keep the following descriptions as simple as
possible, we will only consider one type of model parameters
and write m = {m1} = {m1, . . . ,mn}. This set will be used to
describe spatial heterogeneities of hydraulic permeabilities and
is generated by a pixel based MPS technique (Strebelle, 2002;
Mariethoz et al., 2010b; Straubhaar et al., 2011). Such methods
require a spatial subdivision of the computational domain into
a finite number of n ∈ N elements (pixels). The union of all
pixels is called the simulation grid. MPS generate realizations
of a random variable by reproducing multiple-point statistics
from a training image. Each realization can be associated to a
model m = {m1, . . . ,mn} by putting the MPS value from pixel
j into the parameter mj. In the example above, a variable mj

could then be linked to the constant permeability (or resistivity)
in the j-th volume element of the computational domain. The
term “linked” is used because it is not uncommon for the model
parameters mj to not contain permeability (or resistivity) values
directly but only conceptual representatives of such. For the
present work, it is assumed that the prior probability density
ρ is precisely the distribution of the MPS random variable.
Therefore, using the MPS machine to produce independent and
unconditioned models is equivalent to drawing realizations from
ρ. It is important to note that conditioning simulators work
sequentially. This means that they start by randomly selecting
a permutation ς over the set of indices {1, . . . , n} that defines
the order in which the components of a new model are treated.
Whenever mς(j) is about to get informed, conditional simulation
tools only consider previously simulated components and draw
mς(j) according to the probability

P( · |mς(1), . . . ,mς(j−1)).

In other words, at this point of the simulation,mς(j) is considered
to be independent of any uninformed component inm.

Sampling amodel space for solving an inverse problem,means
to iteratively produce a finite number of N realizations

m1→ m2 → · · · → mN ,

that characterize (in some way) the posterior distribution.
During this procedure, the likelihood function must be evaluated
for every model in the chain. It is not uncommon that
this computation is very demanding and represents the most
important source of computational cost. After each iteration k =
1, . . . ,N, the models can be assembled within the collection

M
k = {m1, . . . ,mk}, (2)

while the normalized likelihood values

L̃(mj) =
L(mj)

∑k
r=1 L(mr)

, j = 1, . . . , k,

are joined in L̃k = {L̃(m1), . . . , L̃(mk)}. The tilde notation
indicates that a normalization has been applied, a convention that
will be used throughout this paper. There are two different kinds
of normalization that will be used. In the latter equation, the
total weight was computed by summing all likelihood values from
the previous iterations. This action must be renewed, whenever
a new model mk+1 is sampled. Secondly, we will define spatial
maps. The normalization is then performed through all locational
values, and the resulting map can be interpreted as a spatial
probability density (c.f. Equation 5).

2.2.2. Probability Maps Q and Pk

The possible value range for each model parameter mi depends
on the TI. After defining a set of s− 1 threshold levels this range
may be separated into s different categories, called facies values

or simply facies and denoted by {f1, . . . , fs}. When working with
discrete models, these categories usually define a one-to-one
relation to the set of all possible values in the TI. From the
facies values, it is possible to establish a collection of pixel-based
indicator functions. If m is a given model and each pixel j ∈
{1, . . . , n} is represented by its center location xj, these functions
are defined as

1fi (m; xj) =

{
1 ifmj belongs to category fi
0 otherwise.

(3)

Any linear combination of the quantities in Equation (3) can
be interpreted as a map with constant value in each pixel. The
concept of these indicator functions is very important throughout
the present paper. If the precise pixel location xj is not relevant,
we will henceforth omit its explicit notation. The indicator
functions help to compute moments of the random vector that
is associated to the MPS tool. Let qi represent the pixel-wise
probability of the model values to fall into category fi. If E(·)
denotes the usual expectation operator, they read

qi = E
(
1fi (m)

)
, i = 1, . . . , s.

The set Q = {q1, . . . , qs} then collects all the prior probability
maps for the facies categories. If the MPS machine is trained
to produce stationary and unconditioned simulations, then the
maps qi are constant over the computational domain and equal
the corresponding facies proportion in the training image. On the
other hand, a set Mk = {m1, . . . ,mk} can be used to define a
second collection Pk = {pk1, . . . , p

k
s } such that

pki =

k∑

j=1

1fi (mj)L̃(mj). (4)

The superscript k in the notation pki indicates the number of
realizations that has been used in its computation. It is important
to perceive the consequences of weighting the summands by the
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normalized likelihood values L̃(mj). Ifmj0 is a model with a large
likelihood value (with respect to the other ones), this means that
some facies patterns inmj0 may be very important. Therefore, the
probability maps in Equation (4) are formed by weighting “good”
facies patterns more heavily than “bad” ones. Consequently, these
maps may be able to provide information that can be used to
generate “good” models. But at this point it is unclear where this
information can be found and how it could be used. The answer
to this question lies in the relation between Q and Pk. The central
idea of the PoPEx sampling is to consider and learn from all
modelsm1, . . . ,mk, before generatingmk+1. This procedure can
be split into two parts, that will be explained in the following.

2.2.3. Kullback-Leibler Divergence D(Pk||Q)
Kullback and Leibler (1951) introduced a measure called
Kullback-Leibler divergence (KLD) to compare two probability
distributions. It computes how a candidate probability diverges
from an expected one. This is precisely what is needed tomeasure
the information content of Pk with respect to Q. In other words,
the Kullback-Leibler divergence can be used to identify pixel
locations, where the facies probabilities in Pk are “extreme” with
respect to Q. It is given by

D(Pk||Q) =

s∑

i=1

pki log

(
pki
qi

)
. (5)

Whenever qi > 0 for all i = 1, . . . , s, this equation is well defined.
But let’s assume that there is i ∈ {1, . . . , s} and a pixel xj with
qi(xj) = 0. This means that it is impossible for the MPS tool to
produce a modelmwhere the valuemj falls into the i-th category.

From Equation (4) it follows that pki (xj) must vanish as well. In

short, qi(xj) = 0 implies pki (xj) = 0, and the corresponding terms
in Equation (5) can be ignored. A brief comment on the prior
maps qi may help to enhance the meaning of Equation (5). If
there is a large set of independent models {m1, . . . ,mN} that is
distributed according to ρ, the law of large numbers (LLN) [c.f.
Durrett (2010)] suggests to use approximations

qi ≈
1

N

N∑

j=1

1fi (mj). (6)

From this perspective, the relation between pki and qi is easier
to detect. Both definitions use the same indicator functions,
but are weighted differently. D(Pk||K) provides a pixel based
information map, that indicates how surprising the facies
patterns become, whenever they are weighted by the likelihood
values. As mentioned earlier, it is possible to normalize the
Kullback-Leibler divergence map spatially. The rescaled map
is denoted by D̃(Pk||Q) and can be interpreted as a discrete
probability density defined over the pixel locations.

2.2.4. Hard Conditioning Data HDk

We mentioned earlier, that each model must be generated by
a “conditional simulation tool.” This means that it must be
possible to condition (impose) some of the values in m. Doing
so allows fields that honor local data, commonly known as

FIGURE 1 | Overview of the parallelized PoPEx procedure.

hard conditioning (HD) (Mariethoz and Caers, 2014), to be
generated. The enforced value v together with the pixel location
x forms one conditioning object, denoted by (x, v). A reliable set
of hard conditioning data may enhance the chance to generate a
new model mk+1 that provides a large likelihood value L(mk+1).
Considering the previous explanations, it seems natural to
sample a set {x1, . . . , xnk} of hard conditioning locations (where
conditioning should apply) from the normalized Kullback-
Leibler information D̃(Pk||K). For every selected position xi, we
can then sample a model index j ∈ {1, . . . , k} according to
L̃k and extract the conditioning value (which value should be
imposed) from mj(xi). This produces a set of hard conditioning

data HDk = {(x1, v1) , . . . , (xnk , vnk )}.
So far, nothing original has been proposed. The modifications

that we suggest now, concern the number of elements in HDk.
Jäggli et al. (2017) started with a set of unconditioned models,
before fixing the number of conditioning points to a user defined
parameter and leaving it unchanged. However, the statistical
significance and robustness of the algorithm could certainly
be increased by adding some “randomness” into this selection
procedure. We suggest to change randomly the number of
conditioning points in each iteration. For this, we suggest to fix
an upper bound nmax, and draw the number of conditioning
points from an uniform distribution over the set {0, 1, . . . , nmax}.
The amount of hard conditioning data nk thus may change in
each iteration k. It is therefore possible to occasionally generate
unconditioned realizations.

2.2.5. Parallelization of the Algorithm
Every loop of the PoPEx algorithm consists in four main steps:
derive a set of hard conditioning points, generate a new model,
compute its likelihood value and update the Kullback-Leibler
divergence map. One strategy to parallelize this procedure is to
encapsulate the first three steps in a subprocess separated from
the last one. Then, a master process launches such subprocesses
in parallel on other CPU’s. Each subprocess is simply fed by
the current available KLD map and performs the enclosed steps
independently. After the result of a subprocess is communicated
back to the master process, this latter updates the KLD map and
launches another subprocess. A brief overview of this workflow
is presented in Figure 1.
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The pseudocodes of the parallelized PoPEx algorithm and the
corresponding subprocesses are given in the algorithms 1 and 2,
respectively. The variable “manager” appearing within the main
algorithm is a FIFO (“first in first out”) queue of maximal length
npar that maintains the communication toward the subprocesses.
FIFO stands for queues where new elements are appended at
the tail (line 9) and removed from its head (line 11). In this
regard, the lines 5-10 of algorithm 1 are designed to launch npar
parallel subprocesses (line 8) and retain corresponding handles
(line 9). The lines 11-15 on the other hand, check the status
of the first subprocess (line 12) and react accordingly. If it
has terminated, their outputs are received (line 13) and the
corresponding variables are updated (line 14). If it is still running
however, the handle is sent to the back of the queue (line 17).
The main motivation for appending the running subprocesses
at the end is to rapidly detect and remove other jobs that have
been completed. But as a consequence, reproducibility of the
algorithm is not guaranteed. If reproducibility is crucial, we could
simply change line 17 such that the processes are re-appended at
the head of the queue and ensure that the first npar workers are
launched before lines 11-18 may apply.

Algorithm 1 PoPEx

1: Input: nmax, npar, N and Q
2: k← 0 and P0← Q
3: manager← empty queue # FIFO queue
4: while k < N do

5: nm = length(manager)
6: if nm < npar and k+ nm < N then

7: p← new subprocess
8: p.start(Subprocess(Mk, L̃k,D(Pk||Q), nmax))
9: manager.append(p)
10: end if

11: p←manager.pop()
12: if p.ready() then
13: (mk+1, L(mk+1)) = p.get()
14: updateMk, L̃k and D(Pk||Q)
15: k← k+ 1
16: else

17: manager.append(p)
18: end if

19: end while

Algorithm 2 Subprocess

1: Input:Mk, L̃k, D(Pk||Q) and nmax

2: Output: mk+1 and L(mk+1)
3: sample nk ∼ U(0, nmax)
4: HDk ← hd(nk,M

k, L̃k,D(Pk||Q))
5: mk+1 ← model(HDk)
6: L(mk+1)← likelihood(mk+1)

Calling “hd(nk,M
k, L̃k,D(Pk||Q))” within a subprocess

(algorithm 2, line 4), uses the above strategy to compute a
set of nk hard conditioning couples. On the other hand, the

methods “model(HDk)” (line 5) and “likelihood(m)” (line 6) are
application dependent functions that generate a new model from
a given set of conditioning data and compute the corresponding
likelihood value.

In practice it might be unclear how to provide a suitable
collection Q. Assuming that the involved modeling tool samples
from the prior distribution, opens the door to approximate
Q. Even before launching the PoPEx algorithm, we could
produce a sufficiently large number of unconditioned models,
and approximate Q by Equation (6). As the effort of generating
a model is often negligible with respect to the computation of
the likelihood value, the additional cost for approximating Q is
unimportant. If there is a considerable effort required to generate
a model, we could also consider to start with an initial guess
of Q and iteratively improve it. However, changing Q along the
sampling procedure may render the algorithm unstable.

2.3. Posterior Prediction of Events
Solving an inverse problem, not only serves to represent the
posterior measure function, but also aims to compute the
(posterior) probability of events A ⊂ M. More generally, we
would like to compute integrals with respect to σ , such as

µ =

∫

M

f (m)dσ , (7)

where f (·) is an operator that expresses some quantity of interest.
Because the model space M and the posterior measure function
σ can be very complex, an analytical solution of these integrals
is usually not available. The generic term importance sampling
(IS) (Hesterberg, 2003; Robert and Casella, 2004; Liu, 2008;
Rubinstein and Kroese, 2016) stands for a framework that
provides approximations of such integrals by a weighted sum
over a large number of realizations. Because it is often difficult or
inefficient to directly sample from the distribution σ , importance
sampling suggests instead, to draw realizations from a sampling
distribution φ and weight the summands proportionally to the
ratio σ (m)/φ(m). To find and use an appropriate sampling
distribution φ however, can be challenging.

We propose to consider the PoPEx algorithm as a procedure,
that iteratively learns and adapts the sampling distribution φk.
During this procedure, all the previously generated realizations
are combined and used to localize important regions in themodel
space. This is known as adaptive importance sampling (AIS) and
has been introduced in a econometric framework (Naylor and
Smith, 1988; Oh and Berger, 1992). The generation of a new
model mk+1 is understood as to randomly draw one sample
according to φk. By construction, this distribution must include
the random selection of HDk as well as the conditional modeling
tool. For each model in a chain of N realizations, we compute a
weight ratio wk = σ (mk)/φk(mk) and estimate the integral µ by

µ̂ =

N∑

k=1

f (mk)w̃k. (8)
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Again, the tilde notation was used to indicate normalized weights
w̃k such that

w̃k =
wk∑
j wj

.

Several remarks are worth being considered. The computation of
Equation (8) only uses normalized weights. Therefore, it is not
required to know precisely the normalization constant of either
σ or φ. Furthermore, the computation of the weights wk can be
simplified by using the factorization of σ (c.f. Equation 1). Each
likelihood value L(mk) is evaluated during the PoPEx procedure,
so that for constructing the weights, it is sufficient to compute the
ratio

ρ(mk)

φk(mk)
, for k = 1, . . . ,N. (9)

Roughly speaking, this ratio compares the probability measure of
generating a modelmk with and without observed data.

Computation of the Sampling Weights
In every iteration of the PoPEx algorithm, a set of location-value
pairs is derived and imposed as hard conditioning for the next
model. We will show in this section, that when using a pixel-
based MPS technique to generate the models, the sampling ratios
in Equation (9) only depend on the sets HDk. Let us consider
HDk = {(x1, v1) , . . . , (xnk , vnk )} and distinguish two events that
henceforth will be noted similarly:

1. The MPS scheme is assumed to follow the prior probability
measure ρ. Recall that such a tool iteratively supplies
pixels with simulation values from a training image. HDk

appearing within ρ will refer to the event where “the first
nk locations (met during the simulation) were {x1, . . . , xnk}
and they obtained the values {v1, . . . , vnk}.” Following this

line, ρ(m|HDk) expresses the conditional measure to drawm,
when the first nk assignments imposed the values {v1, . . . , vnk}
at the locations {x1, . . . , xnk}.

2. The sampling distribution on the other hand takes the
PoPEx iterations into account. HDk appears within φk

whenever we want to indicate that “during the k-th
PoPEx iteration, HDk has been produced and used as
hard conditioning.” Accordingly, φk(m|HD

k) measures the
probability of sampling m at iteration k, knowing that HDk

has been imposed.

Henceforth, we will only consider combinations m and HDk

that produce strictly positive measure values (i.e., where the
values on the nk locations coincide). Furthermore, we will assume
that all the conditioning binomials in HDk are independent of
each other. This assumption is reasonable if the conditioning
locations are well separated. It is therefore necessary, that the
number of conditioning points is adequate with respect to the
simulation grid. The MPS processes involved behind ρ(m|HDk)
and φk(m|HD

k) are the same. It follows that the two measure
values must be equal, and thus

ρ(m)

φk(m)
=

ρ(m)

ρ(m|HDk)

φk(m|HD
k)

φk(m)
.

Using the definition of conditional probabilities, the ratio can be
rearranged as

ρ(m)

φk(m)
=

ρ(HDk)

ρ(HDk|m)

φk(HD
k|m)

φk(HDk)
.

Standard techniques from the field of combinatorial probability
allow to express all the above quantities. On the one hand,
ρ(HDk|m) measures the probability of informing the first nk
pixels according to HDk, when the sampled model is known. But
knowingm implies that the conditioning values inHDk are given,
so that we only need to compute the probability to meet the nk
conditioning locations (in any order) in the very beginning of
the MPS simulation. If there are n pixels in the simulation grid,
ρ(HDk|m) is given by

ρ(HDk|m) =
nk!(n− nk)!

n!
.

On the other hand, because the hard conditioning data is
assumed to be independent, ρ(HDk) reads

ρ(HDk) =
nk!(n− nk)!

n!

nk∏

j=1

ρ(vj; xj),

where ρ(vj; xj) is the prior probability of meeting the value vj
at location xj. In section 2.2, the simulation values have been

categorized into the set {f1, . . . , fs}. For a fixed HDk, let us define
an index-to-index map r = r(j) such that fr(j) identifies the
category of vj. An approximation to ρ(vj; xj) can be obtained
from Equation (6) by specifying ρ(vj; xj) ≈ qr(j)(xj). This simply
suggests to find the map qr(j) that corresponds to the category of
vj and extract the probability value at xj.

Every iteration contains the following three steps. Select
a number nk, sample conditioning locations from D̃(Pk||Q)
and extract conditioning values by weighting the simulations
according to the computed likelihood measures in L̃k. They are
performed independently such that the probability of selecting
HDk, knowingm, is measured as

φk(HD
k|m) = φk(nk)

nk∏

j=1

D̃(Pk||Q)(xj)

while similarly (with the hard conditioning data points being
independent)

φk(HD
k) = φk(nk)

nk∏

j=1

φk(vj; xj)D̃(P
k||Q)(xj).

The value φk(nk) is the probability of selecting nk while the
measure φk(vj; xj) is the probability to draw a model (according

to L̃k) that presents the value vj at location xj. This quantity can
again be approximated by using the index-to-index relation r(j)
together with the categorical probabilities in Pk (c.f. Equation 4),
such that φk(vj; xj) ≈ pk

r(j)
(xj). It is worthwhile to note that when
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working with discrete models, where the categories {f1, . . . , fs}
have a one-to-one relation to the range of all simulation values
in the training image, these approximations are exact. Finally, a
computable ratio is provided by

ρ(m)

φk(m)
=

nk∏

j=1

qr(j)(xj)

pk
r(j)

(xj)
. (10)

This expression is very practical. All the quantities in Equation
(10) are assembled during the PoPEx algorithm, so that the
required effort for evaluating the ratio is negligible. Moreover,
the expression is easily translated into log-probabilities, what can
simplify the floating-point representation of the values. Although
it only represents an approximation of the true ratio, often
the assumptions are not too strongly violated, and the usage
of the above equation is feasible. Finally, the weights wk are
computed by correcting the likelihood measure according to the
hard conditioning data:

wk = L(mk)
ρ(mk)

φk(mk)
= L(mk)

nk∏

j=1

qr(j)(xj)

pk
r(j)

(xj)
. (11)

The ratios in the correction term compare the prior vs. the
likelihood weighted probabilities of observing the selected values
at the locations of the conditioning data. These quantities are
directly available in the Q and Pk maps.

2.3.1. Degeneracy of the Sampling Weights
The estimator µ̃ in Equation (8) suffers from a degeneracy
in the sense that the distribution of WN = {w1, . . . ,wN}

may become increasingly skewed when the dimension of M

grows large (Doucet et al., 2001; Robert and Casella, 2004;
Liu, 2008). This means, that the weights may take small values
with high probability, but occasionally become very large. Using
such weights in Equation (8) would produce estimators that are
dominated by very few samples. Several preventive techniques
exist, and they often try to consider a reduced dimensionality in
the computation of the weights (Doucet et al., 2001; Rubinstein
and Kroese, 2016). The expression in Equation (10) uses a
reduction technique by limiting the computation of the ratio to
the hard conditioning data. But this expression only represents
one part of the weights in Equation (11), so that the degeneracy
problem still exists. A diagnostic that can be used to assess the
skewness of the weights, is called the effective sample size (Owen,
2013) and defined as

ne(W
N) =

(∑N
i=1 wi

)2

∑N
i=1 w

2
i

=
Nw2

w2
, (12)

where w = (1/N)
∑N

i=1 wi and w2 = (1/N)
∑N

i=1 w
2
i . There is

an obvious link between ne and the variance ofWN . It suffices to
notice, that an estimator of the variance is obtained by w2 − w2.

Strongly varying weights would give w2/w2 << 1 and therefore,
ne << N. In general, lowering the variance increases the effective
number ne. In practice, it is often hard to specify a bound under

which ne is alarmingly small, because this strongly depends on
the application.

We will now present a method that aims to soften the
degeneracy by modifying the variance of the weights. The value
of any positive weight wi > 0 can be changed by exponentiation,
(wi)

α , and we know that

lim
α→0

(wi)
α = 1.

For a given 0 < α < 1, the variance can therefore be reduced by
transforming the setWN into

WN
α = {(w1)

α , . . . , (wN)
α}.

It is clear that in the limit α → 0, ne(W
N
α ) is equal to the

total number of positive weights in WN . Before computing an
estimator µ̂ from WN , we select an appropriate α, and use the
weights in WN

α instead. To make a good choice for α might
depend on the application and can be challenging. We propose
to define a lower bound l0 and choose α such that

ne(W
N
α ) = max

{
l0, ne(W

N)
}
. (13)

The idea of Equation (13) is to ensure that the computation
of µ̂ is based on at least l0 significant models. Furthermore, it
assures that the growth rate of ne(W

N) and ne(W
N
α ) are equal

for ne(W
N) > l0. This might be important for the asymptotic

behavior of the method. Finally, we propose to use the pseudo
code in the algorithm 3 to compute predictions. The computation

Algorithm 3 Prediction

1: Input: l0 and f (·)

2: Output: µ̂

3: compute α such that ne(W
N
α ) = max

{
l0, ne(W

N)
}

4: for (wi)
α > 0 do

5: compute f (mi)
6: end for

7: compute µ̂

of α can be translated into a smooth, 1-dimensional optimization
problem, and does not require a considerable effort. The most
important effort usually goes into the evaluation of f (mi). But
all the weights are known in advance and therefore we can omit
computations that are associated with zero weights. Furthermore,
the iterations in the algorithm 3 are independent and can be
performed simultaneously in parallel.

3. CASE STUDY AND RESULTS

In this section, we illustrate how PoPEx performs to solve
an inverse problem with an example of a tracer test in a
fluvial aquifer. We also consider the problem of quantifying the
uncertainty related to the prediction of the capture zone of a
pumping well in such geological environments.
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FIGURE 2 | Training image.

3.1. Problem Setup
For this example, the conceptual model for the geological
heterogeneity is derived from a 3D simulation of the geological
processes occurring in a fluvial plain using the FLUMY software
(Lopez et al., 2009). This tool combines a process-based
approach with a stochastic component. A meandering river
crosses an alluvial valley with a given slope and causes erosion
and deposition of sediments. Over time, the river migrates
and alter the topography of the alluvial plain. This process
generates complex geological patterns with a realistic and highly
heterogeneous architecture. However, the thickness of the alluvial
sediments is usually negligible with respect to the horizontal
dimensions of the plain. It is therefore reasonable to reduce the
complexity of the problem and neglect the vertical component of
the flow. The parameter of interest is then the transmissivity of
the aquifer.

Following this approach a 2-dimensional training image was
generated. It is represented in Figure 2. The training image
represents a domain of 5, 000 × 4, 000 m and is subdivided
into 1, 000 × 800 quadratic pixels. It was obtained by vertical
integration of a 3D model generated with FLUMY. The resulting
field was categorized into four facies types f1, f2, f3, and f4
that represent transmissivity values of 10−5, 10−3, 10−2, and
10−1(m2/s), respectively. The drainage porosity and the specific
storage were fixed uniformly to 0.2 and 10−6.

We then consider a smaller area of size 1, 000 × 500 m,
discretized into 200 × 100 quadratic pixels. The area hosts a
pumping well at the location (750, 250) that extracts 15(l/s)
of groundwater for a total duration of 20 days. The terrain is
exposed to a natural slope of 4‰ in the x-direction, while the
basin is closed at y = 0 (m) and y = 500 (m). Corresponding
boundary conditions are: fixed head values of 4 (m) (left)
and 0 (m) (right) together with no-flow on the upper and
lower boundary. A constant tracer concentration of 1(kg/m3) is
enforced at (250, 250) throughout the time period.

For any given model, the subsurface water flow together
with the tracer expansion is computed by the GroundWater

FIGURE 3 | (A) Shows the reference domain with tracer injection (left) and

pumping well (right), while (B) is the observed tracer concentration at the

pumping well.

simulation software (Arpat and Caers, 2007). At days 2, 4, 6,
8, 10, 12, 15, and 20 the solute concentration is recorded at
the pumping well. This provides a set of 8 observations and
represents all the data constraints used for conditioning the
inverse problem.

For modeling the spatial structures, we used the training
image shown in Figure 2 and the DeeSse multiple-point statistics
software (Straubhaar, 2011). An arbitrary seed was used to
generate the reference domain in Figure 3A. The black triangles
indicate tracer injection (left, pointing right) and pumping
well location (right, pointing left), respectively. The tracer
concentration at the pumping well resulting from this reference
domain is shown in Figure 3B. The red dots indicate the
extracted data that was used in the inverse procedure. This means
that the entire reference domain in Figure 3A is unknown to
the PoPEx algorithm. Its only task is to represent an unknown
subsurface model and provide a sparse set of data points that
can be used in the sampling procedure. For constructing the
likelihood measure L(m), we assume the observations to be
independent and consider a multivariate normal distribution
between the predictions g(m) = {g1(m), . . . , g8(m)} and
observations dobs = {dobs1 , . . . , dobs8 } with uniform standard
deviation of σL = 0.0015(kg/m3). This represents 1.5‰ of
the concentration at the injection point, and roughly 5% of
the maximal concentration at the extraction location in the
reference domain (c.f. Figure 3B). The subscript L distinguishes
the standard deviation of the likelihood measure σL from the
posterior density σ in Equation (1). Assuming an uniform
and independent Gaussian behavior of g(m) around dobs, the
density function of the likelihood measure is proportional to

exp
{
− 1

2σ 2
L

∑
i(gi(m)− dobsi )2

}
.

3.2. Tracer Breakthrough Curve
The PoPEx method has been trained to run the above problem
for a total of N = 20, 000 models with nmax = 25. Three random
realizations are shown in Figure 4.

The prior facies probabilities in Q were computed from 500
unconditioned MPS models. For each realization in the PoPEx
chain, the algorithm computed the tracer concentration at the
pumping well, extracted 8 data points and compared them to
the reference data in Figure 3B. Together with the weights
from Equation (11), the posterior distribution of the tracer
breakthrough curve can be computed. Figure 5 shows the 2.5 −
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FIGURE 4 | Three random realizations from the PoPEx sampling. The above problem assigns a large likelihood value to the left, a very low likelihood value to the

middle, and an average likelihood value to the right parameter map.

FIGURE 5 | Prior and posterior concentration probabilities at the pumping well. The curves indicate 2.5− 97.5% region (dashed), 25− 75% region (full) and average

value (blue), while the red dots represent the reference concentration.

97.5% (dashed), 25 − 75% (full) and average (blue) curves of
the prior and the posterior tracer concentration at the pumping
well.

The red dots indicate the extracted reference data. It is
clear that for any sampling strategy a critical measure is the
required computational effort, which usually is proportional to
the number of samples. For this reason, all results are shown
for two different stages in the sampling procedure: after 10, 000
and after 20, 000 realizations. At a first glance, both estimations
of the posterior probabilities are quite similar. This may be
surprising when keeping in mind that the computational effort
for the second estimation is twice as high. However, it can be
seen that the probability lines are steadier and smoother in the
last image. Both estimations of the 50% region (between the
full lines) fully embeds the red reference data and follows the
shape of the reference curve very precisely. The estimation of the
posterior expectation (blue) almost matches the entire curve. The
higher density of data points in the first 10 days, increases the
relative importance of this period with respect to the second half.
Thus, it is reasonable to allow less uncertainty in the beginning
of the simulation. The more generous 95% regions (between the
dashed curves) are still appropriate in reproducing the shape of
the reference curve. This is even more significant when realizing
that the prior distribution is far from being centered around the
reference curve.

3.3. Predict 10-Days Capture Zone
In practice, when producing freshwater from an aquifer, it is
often crucial to protect the resource and determine the capture

zone (Leeuwen et al., 1998). Here, we used the results of the
PoPEx model chain for predicting the posterior probabilities of
the 10-days capture zone. It means that for each location in
the simulation grid, we computed a Bernoulli probability value
for the water to be captured within 10 days. Figure 6 shows
the predicted probabilities for the prior distribution and for
the posterior distribution after 10, 000 and 20, 000 iterations,
respectively.

As expected, since the tracer is arriving in <10 days at the
pumping well, the injection point is located within a region
having a high probability to belong to the 10-days capture zone.
This is already clearly visible in the map generated from 10, 000
realizations. These results show the existence of a connected
path of high transmissivity between the injection point and the
pumping well. However, zones of lower probability are located in
between these two points. This indicates that the position of the
channel is not well identified from these tracer data alone. In the
reference domain, shown in Figure 3, we can see that the yellow
facies (with the largest transmissivity value) first shows a very
tight upwards bend before heading almost directly toward the
extraction well. The injected tracer will mostly follow the region
with the largest transmissivity. Therefore, it will not take a direct
path toward the well and its arrival time will be delayed. The only
information that can be extracted from the observations is the
delay. From the available data, it is therefore impossible to predict
precisely water pathways that are far from the tracer injection and
the algorithm is correctly informing us about that uncertainty.

It is interesting that the reference capture zone (red line)
slightly passes outside the 95% region in the top section of the
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FIGURE 6 | Prior and posterior 10 days capture zone probabilities. The curves indicate 5, 25, 50, 75, and 95% regions, while the red lines delineates the capture

zone in the reference domain.

FIGURE 7 | Exact prediction of the 10-days capture zone probability. The red

lines delineates the capture zone in the reference domain.

computational domain. This should not be interpreted as an
inaccuracy of the PoPEx method, because it similarly appears in
the approximation of the exact solution in Figure 7. However,
it indicates that the training image (prior knowledge) together
with the available observations (likelihood function) make the
upwards extension of the reference zone very unlikely in terms
of the posterior probability.

3.4. Convergence and Parallel Behavior
The synthetic inverse problem described above allows to compute
exact predictions from a sufficiently large set of models. To do
so, we put nmax = 0 and generated an empirical reference set of
1, 000, 000 unconditioned realizations. From this large ensemble,
any prediction can be computed accurately by using Equation (8)
together with weights such that wk = L(mk) (c.f. Equation 11).
As the reference set is sufficiently large, the degeneracy problem
described in section 2.3 can be ignored. The resulting predictions
are considered to be the exact solutions and are denoted by
µex. Although the number of realizations is very large, it is
not unsoiled to call these solutions to be exact. Nevertheless,
these are very accurate approximations of the true solution such
that, in this work, we will call them “exact prediction” or “exact
solution.” The corresponding prediction of the 10-days capture
zone probability is shown in Figure 7.

Once an exact solution is available, we might be interested in
the convergence speed of the PoPEx algorithm. Therefore, after
each iteration k = 1, . . . ,N, a prediction µ̂k is computed by using
the algorithm 3 and compared toµex. As mentioned earlier, these
twomaps define Bernoulli probability values for each point in the
computational domain. It determines whether the groundwater

FIGURE 8 | Error between µ̂k and µex for a fixed l0 = 100 and variable nmax

(A), and fixed nmax = 25 and variable l0 (B).

at the corresponding location belongs to the 10 days capture zone
or not. A convenient distance between two Bernoulli probability
maps µ̂k and µex is the Jensen-Shannon divergence (JSD) [e.g.,
Lin (2006)] reading

J(µ̂k||µex) =
1

2

(
D(µ̂k||m)+ D(µex||m)

)
,

with m = (µ̂k + µex)/2 and D being the Kullback-Leibler
divergence as in Equation (5). This distance measure is computed
pointwise over the simulation grid and therefore defines one
distance value per pixel. A (scalar) error value is then obtained by
computing the spatial average of the Jensen-Shannon divergence
map.

Figure 8 shows the evolution of error between µ̂k and µex

with respect to the iteration k. For increasing the statistical
significance of the results, every curve represents the average
performance of 5 similar runs with different initial seed. First, the
minimumnumber of effectivemodels l0 has been fixed to 100 and
we varied the maximum number of conditioning values nmax ∈

{10, 25}. Figure 8A shows that the two convergence curves are
quite similar. This is not surprising, because the PoPEx algorithm
is designed to correct the influence of the hard conditioning
by using Equation (10). It follows that for a reasonable hard
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conditioning bound, the results are not highly sensible to the
choice of nmax. On the other hand, it can be seen from the
blue curve that for nmax = 10 and k > 9, 000 the error
reaches a “plateau.” This signifies that for a certain time, the
PoPEx algorithm was not able to further improve the prediction
or in other words, that the method could not find sufficiently
important realizations. From such behavior it can be deduced
that the learning effect must be reinforced by increasing nmax.
However, what is important is that the overall convergence rate
of both curves well compares with the dashed line representing
k−1/2. This is significant because if we directly sample from
the posterior probability distribution σ and k is the number
of samples, the Central Limit Theorem (CLT) (Durrett, 2010)
predicts a convergence rate of k−1/2. Because the error curves
represent the average performance of 5 PoPEx runs, it is not
surprising that they slightly fluctuate and do not reproduce the
theoretical rate of k−1/2 precisely.

For the second experience, we fixed nmax = 25 and varied
l0 ∈ {0, 25, 100, 500}. We recall that the choice of a large value
for l0 generally increases the effective number of weights but
implies a risk to produce biased predictions. On the other hand,
when the effective number of weights is too low, the predictions
will be based on very few models and may be biased as well. It
is therefore not surprising that for l0 = 0 the approximation
accuracy is very bad (green curve in Figure 8B). However, the
remaining three convergence curves are highly similar for k ≤
4, 000 where the magenta curve (l0 = 25) reaches a “plateau” and
has difficulties to further improve the approximations. As in the
previous figure, the curved represent the average performance of
5 similar PoPEx runs with different initial seed. It follows that
small fluctuations may arise and should not be overestimated.
However, the stagnation of the curve with l0 = 25 might be
due out of a different reason. Whenever the parameter l0 is small,
the weights in Wk

α are more sensible to highly dominant values.
This means that a model mk0 with very large weight wk0 might

dominate the prediction µ̂k for many iteration k > k0 and
therefore, the approximation error only slightly changes. So such
a behavior indicates that l0 should not be too small. We can
again conclude by the fact for a reasonably large l0, the overall
convergence rate compares very well with the theoretical rate of
k−1/2.

The last part of the results section is dedicated to a short
analysis of the parallel scalability of PoPEx. We repeat the
same exercise by first using npar = 15 on a 64 CPU facility
(34.4(Tflop/s)), and then changing to npar = 75 on 320 CPU’s
(172(Tflop/s)). Therefore, between the first and the second
procedure, the computational capacity has been increased by a
factor of 5. The performances will be compared by measuring
the total sampling time and by a convergence analysis similar
to the one in Figure 8. We fixed nmax = 25 and l0 =
100 and ran PoPEx until 20,000 models have been sampled.
All runs were performed 5 times with different initial seeds.
The total runtime for the two setups was 27.51 ± 1.521[h]
and 5.00 ± 0.397[h], respectively. This signifies an overall
speedup factor of 5.5 ± 0.74 and therefore fully satisfies the
expectations.

FIGURE 9 | Error between µ̂k and µex for a fixed nmax = 25, l0 = 100 and

variable npar (A), and the speedup factor for obtaining the same error

accuracy (B).

Considering the convergence analysis in Figure 8 we are
now interested in the speedup factor for obtaining the same
approximation accuracy when predicting the 10-days capture
zone probability. This means that in each iteration k =

1, . . . , 20, 000, the approximation errors are again computed by a
Jensen-Shannon divergence between the prediction and the exact
solution. In Figure 9A however, we compare the approximation
error vs. the elapsed time in (s).

It can be seen that the convergence rate of both curves are
very similar and the obtained gain factor highly matches the
increasement of the computer resources. This becomes even
more obvious in Figure 9B. It shows the observed speedup
in time for obtaining the same approximation accuracy. This
means that for any error value (y-axis) we computed the
times (and the corresponding speedup factor) that were needed
for reaching the considered approximation accuracy. From
the relatively small statistical set of 5 chains per exercise,
it is not surprising that there is a certain variability in the
computations. However, it is evident that the curve significantly
matches the predicted speedup factor of 5 and therefore
underlines the exceptional scaling behavior of the PoPEx
algorithm.

4. DISCUSSION

This paper presents a fast and efficient sampling method for
solving inverse problems having a complex and discrete prior.
The algorithm is parallelized and scales perfectly. This means
that the number of samples computed in parallel is equal to
the time reduction factor without compromising the quality of
the results. Every sample involves two different main processes:
generate a newmodel and compute the corresponding likelihood
value. In this regard, the main concern for using the proposed
method in practice is the number of such processes that can
be run simultaneously. As there are many supercomputers
publicly available however, handling a significant number of
computations in parallel should not be a major issue.
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Some important concepts of the above algorithm have
originally been introduced by Jäggli et al. (2017) where the
inverse method was named Posterior Population Expansion
(PoPEx). In the present paper we suggest some minor changes
concerning the sampling procedure and completely reconsider
the method to compute predictions. Nevertheless, we decided to
keep the name of the algorithm so that whenever the terminology
PoPEx is used in the following, it refers to the algorithm as
presented in this paper. PoPEx is capable to handle all the four
different types of uncertainty distinguished by Sagar et al. (1975):
spatial heterogeneities, initial conditions, boundary conditions
and sources/sinks. The only requirement for the algorithm to be
efficient, is that some uncertainties are modeled by conditional
simulation tools.

As illustrated in the case study, a possibility is to use Multiple
Point Statistics (MPS) to produce the conditional simulations
of heterogeneity. But whenever MPS tools are used, a critical
issue is to select an appropriate training image. In practice, it is
therefore not uncommon to hesitate about this choice. With the
above method, multiple training images can be included. This
corresponds to a discrete choice that needs to be formulated in
the inverse problem. PoPEx can iteratively learn which image
is most appropriate and provide a posterior distribution of the
training image selection issue.

PoPEx has been tested based on a two dimensional
meandering channel aquifer of size 1, 000 × 500 (m). A natural
gradient of 4‰ and a groundwater extraction rate of 15(l/s)
control the groundwater flow. Considering the high complexity
of the categorical models, together with the small number of
extracted data points, the method solved the inverse problem
efficiently and produced accurate estimations of prediction
uncertainty. After a very large computational effort, we were
able to compute the exact solution and compare it with the
predictions made by a PoPEx chain. It was shown empirically
that the prediction converged to the exact solution very fast.
The convergence speed was comparable with the theoretical rate
of k−1/2 predicted by the central limit theorem (where k is the
number of samples). Furthermore, we demonstrated that the
PoPEx results are not very sensitive to the choice of the two main
input variables nmax and l0. This is very convenient, because there
is no uniform criterion for their optimal choice.

In section 2, we mentioned that PoPEx can be interpreted
as an adaptive importance sampler (AIS). According to Oh and
Berger (1992), the sampling distribution φk of an AIS technique
should follow three properties:

• it should be easy to generate random samples from φk;
• the tails of φk should not be sharper than the tails of f ∗ σ ;
• φk should mimic f ∗ σ well.

The first property depends on the conditional simulation tool
entrained to generate new models and is usually satisfied.
Regarding the third property, it can be shown that the sampling
distribution that minimizes the variance of µ̂k in Equation (8)
is proportional to f ∗ σ . When working with prior distributions
ρ that are fairly flat over the region where f (m)L(m) is
concentrated, taking a sampling distribution proportional to f ∗L

is nearly optimal (Oh and Berger, 1992). But as samples may
be used to generate predictions for many different functions,
PoPEx is trying to learn a sampling distribution according to
the likelihood values L(m) (c.f. Equation 4). However, the link
between L and φk must not be too strong. Let’s assume that for
a sufficiently large k, the sampling distributions is approximately
proportional to Lr for a given power r > 1. In this case we have

σ

φk
∝

ρ

Lr−1
.

For a flat distribution ρ and an infinite model spaceM this ratio
might be unbounded so that the variance of Equation (8) is not
finite.

The main limitation of the PoPEx method is that the
likelihood values in Equation (8) must be evaluated and
represented by a floating-point number. If the dimension of
the data space is very large, it may happen that the numerical
likelihood values are zero for most realizations. In this case, most
of the indicator functions in Equation (4) are multiplied by zero
and the learning process of the method is very slow. But if the
number of observations is large, it is not uncommon that they are
highly correlated. This means that it might be possible to trim the
data set and project the observations onto a smaller data space.
In other words, a possible strategy to overcome this issue would
be to analyze the set of observations, extract a smaller amount
of independent information and define an appropriate likelihood
function. Alternatively, the likelihood function may be written as
a Gibbs field (ormeasure) (Winkler, 2012), i.e.,

L(m) =
1

C
exp{−H(m)}.

Such a measure is induced by a normalization constant C and
an energy function H. The latter is unique up to an additive
constant and therefore, for finite model spaces as well as for
Gaussian distributions we may assume that H ≥ 0. Usually, for
floating point operations it is easier to work with the energyH(m)
rather than with the unnormalized Gibbs measure exp{−H(m)}
directly. During the evolution of the PoPEx algorithm, whenever
Pk is computed from Equation (4), we could weight the indicator
functions 1fi (mj) proportional to

1

1+H(mj)

rather than L̃(mj). For the computation of ergodic predictions
however, we would still need to compute the likelihood values.
But considering the underlying floating point operations, it can
be advantageous to learn from non-zero energy values H(m) in
order to obtain a sufficiently large number of non-zero likelihood
values L(m).
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