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Monitoring soil CO2 diffuse degassing areas has become more relevant in the last

decades to understand seismic and/or volcanic activity. These studies are specially

valuable for volcanic areas without visible manifestations of volcanism, such as fumaroles

or thermal springs. The development and installation of permanent soil CO2 flux

instruments has allowed to acquire long time series in different volcanic environments,

and the results obtained highlight the influence of environmental variables on the gas flux

variations. Filtering the influence of these external variables on the gas flux is crucial

to understand deep processes on the volcanic system. This study focuses on the

discussion of different statistical approaches applied to the long time series recorded in

a diffuse degassing area of the Azores archipelago, mainly on the application of stepwise

multivariate regression analysis, wavelets and Fast Fourier transforms to understand the

CO2 flux variations and to detect eventual anomalous periods that can represent deep

changes in the volcano feeding reservoirs. A permanent soil CO2 flux station is installed at

Caldeiras da Ribeira Grande area since June 2010. This degassing site is located at Fogo

Volcano, a polygenetic volcano at S. Miguel Island. The station performs measurements

based on the accumulation chamber method and has coupled several environmental

sensors. Average soil CO2 flux and soil temperature values around 1,165 gm−2 d−1

and 33◦C, respectively, were measured in this site between June 2010 and June 2017.

Multivariate regression analysis shows that about 47% of the soil CO2 flux variations

are explained by the effect of the soil and air temperature, wind speed, and soil water

content. Spectral analysis highlights the existence of 24 h cycles in the soil CO2 flux

time series, mainly during the summer period. The filtered time series showed some

anomalous periods and a correlation with the geophysical data recorded on the area

was carried out. The models proposed have been applied on a near real-time automatic

monitoring system and implementation of these approaches will be profitable in any

volcano observatory of the world since it allows a fast understanding of the degassing

processes and contribute to recognize unrest periods.

Keywords: soil CO2 flux time series, stepwise multivariate regression analysis, Fast Fourier Transform, wavelets,
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INTRODUCTION

Volcanic gas emissions may occur as visible manifestations, such
as fumaroles, gas vents, and bubbling springs, or as invisible
emissions through diffuse degassing (Fischer and Chiodini, 2015
and references therein). The degassing phenomena characterize
the volcanic systems both during eruptive and quiescent periods
of activity. Studies of these permanent and silent gas emissions
started to be performed in the early nineties in Italian volcanoes
(Baubron et al., 1990; Allard et al., 1991). The permanent soil
CO2 flux networks that have been set up in various volcanic
areas of the world since then (Mori et al., 2002; Salazar et al.,
2002; Granieri et al., 2003, 2010; Gurrieri et al., 2008; Padrón
et al., 2008; Viveiros et al., 2008, 2015a; Hernández et al., 2012;
Liuzzo et al., 2013; Laiolo et al., 2016) already contributed
to identify geochemical signs that represent changes on the
volcanic activity, namely by recognizing volcanic unrest episodes
(Granieri et al., 2003, 2010; Salazar et al., 2004; Pérez et al.,
2006) or as precursors of eruptive periods (Brusca et al., 2004;
Carapezza et al., 2004; Aiuppa et al., 2010; Pérez et al., 2012;
Liuzzo et al., 2013; Inguaggiato et al., 2017). Some gas flux
anomalies were also associated with seismic activity (Salazar et al.,
2002) and the stations installed have also been used as proxy for
indoor environments and showed to be useful for risk assessment
in diffuse degassing areas (Viveiros et al., 2009, 2015b).

Despite all the useful information obtained with these stations
for the seismo-volcanic monitoring, the recorded soil CO2 flux
values have showed that gas fluxes are highly influenced by
environmental factors, such as meteorological changes, which
can be responsible for more than 50% of the gas flux variations
(Granieri et al., 2003, 2010; Viveiros et al., 2009, 2015a). Different
statistical methodologies have been applied to filter the recorded
CO2 time series in order to remove the external influences and
produce a gas flux sign that may represent deep changes (e.g.,
Granieri et al., 2003; Viveiros et al., 2008, 2015a; Cannata et al.,
2010; Liuzzo et al., 2013; Lelli and Raco, 2017). Several studies
have also highlighted the existence of cyclic variations on the CO2

flux time series with both daily and seasonal oscillations (Granieri
et al., 2003; Padrón et al., 2008; Hernández et al., 2012; Rinaldi
et al., 2012; Viveiros et al., 2014), even if only few of them attempt
to model and explain the variations observed (Rinaldi et al., 2012;
Viveiros et al., 2014). Even if most of the studies highlight the
impact that meteorological changes may have on the soil gas
fluxes, the use of raw data as routine in the volcano observatories
is still common and may result in biased interpretations. The
current study uses data from a permanent soil CO2 flux station
installed in 2010 in a geothermal area in the north flank of the
active Fogo central volcano (São Miguel Island). This study will
apply for the first time different statistical approaches to the data
recorded by GFOG4 station, and will constitute an opportunity
to discuss the results, highlight positive aspects and limitations,
and to select an adequate methodology to filter the raw data.
Despite the fact that several filtering techniques have been already
applied to soil CO2 flux time series, the present study focuses on
an automatic filtering that may be used as routine in the volcano
observatories to identify anomalous gas values and contribute to
recognize unrest episodes.

CHARACTERIZATION OF THE STUDY
AREA

Fogo is a polygenetic volcano located in the central part
of São Miguel Island (Azores archipelago, Portugal) and has
a summit caldera with maximum diameter of about 3.2 km
(Wallenstein et al., 2015 and references therein). The volcanic
edifice started to form more than 200 ka ago (Muecke et al.,
1974) and the last intracaldera magmatic eruption occurred
after the settlement of the island, in 1563, and was of sub-
Plinian type. This explosive event was followed four days
later by a basaltic eruption in the north flank of the volcano
(Wallenstein et al., 2015). The main tectonic structures that
cross this volcanic system show a dominant NW-SE trend,
the same as the Ribeira Grande graben that dominates the
north flank of the volcano (Carmo et al., 2015). Since 2003
several seismic swarms have affected the central area of São
Miguel, namely Fogo and Congro volcanic systems (Silva et al.,
2012). During the period under analysis in the current study
a total of 4,479 seismic events were recorded by the CIVISA
seismic network for the Fogo Volcano seismogenic area (Silva,
2011 and references therein). Maximum local magnitude (ML)
was 2.9 from an earthquake recorded on 29th April 2012
(CIVISA catalog: http://www.ivar.azores.gov.pt/civisa/Paginas/
homeCIVISA.aspx).

Nowadays the volcanic activity in the area is characterized
not only by seismic swarms (Silva et al., 2012), but also by
episodes of ground deformation (Okada et al., 2015) and the
presence of secondary manifestations of volcanism, such as three
main hydrothermal fumarolic fields (Caldeira Velha, Caldeiras
da Ribeira Grande and Pico Vermelho), thermal and cold
CO2-rich springs, as well as, several diffuse degassing areas
(Ferreira et al., 2005; Caliro et al., 2015; Viveiros et al., 2015b).
These manifestations are essentially found out in the north
flank of the volcano, and seem to be tectonically controlled
by the graben faults. Submarine gas emissions are also found
out in the volcano area and are dominated by high CO2

emissions.
A permanent soil CO2 flux network started to be implemented

in this volcanic system in February 2002 with the installation of
the so-called GFOG1 station in the Pico Vermelho geothermal
power plant area (Viveiros et al., 2008). The network expanded
in May 2005 when a second soil CO2 flux station was installed
inside the Fogo caldera in an area with low CO2 emissions,
and the main goal was to evaluate changes that could be
correlated with the unrest episode that was affecting Fogo-
Congro volcanic systems (Viveiros et al., 2015a). During 2010 a
new degassing anomaly developed in the area surrounding
Caldeiras da Ribeira Grande fumarolic field, caused by the
drilling of a geothermal well. A multidisciplinary monitoring
programme was set up in the area aiming not only to evaluate
the expansion of the anomaly zone but also to identify possible
signs that could represent deep processes and changes on
the gas pressure that could end up in hazardous situations.
A permanent soil CO2 flux station, named GFOG4, was
installed in the area in June 2010 as part of the monitoring
programme.
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METHODOLOGY

Sampling and Data Acquisition
GFOG4 is a permanent automatic station that measures soil CO2

flux and is part of the IVAR/CIVISA seismic-volcanic monitoring
network. The station performs measurements based on the “time
0, depth 0” accumulation chambermethod (Chiodini et al., 1998).
The soil CO2 flux measurement is made once every hour by
lowering the chamber into the ground and by pumping the gases
into an infrared gas analyzer (Dräeger detector, maximum scale
30 vol.%). The soil CO2 flux is computed as the linear best fit
of the flux curve over a predefined period of time. This method
allows the measurement of the flux independently from the
transport regime and the soil properties (Chiodini et al., 1998).

The station also has meteorological and soil sensors, which
simultaneously acquire data related to atmospheric pressure, air,
and soil temperatures, relative air humidity, wind speed and
direction, rainfall, and soil water content. Thermo hygrometers
andwind sensors are set about 1m above the ground, whereas soil
water content and soil temperature sensors give measurements at
a depth of about 30 cm (Viveiros et al., 2015b). For additional
details about the methodology and the characteristics of the
equipment see Viveiros et al. (2015b).

The 2 years of data acquisition, between January 2013 and
December 2014, was the period selected to apply the statistical
methodologies and to understand the CO2 flux variations for
this monitoring site. This selected period was taken from the
middle of the whole recorded period (June 2010–June 2017).
The periods between June 2010 and December 2012, as well as,
between January 2015 and June 2017 were used to check the
adequacy of the models proposed.

Statistical Data Treatment
Stepwise Multiple Linear Regression
Previous studies (Granieri et al., 2003, 2010; Viveiros et al., 2008)
applied multiple linear regression analysis (Draper and Smith,
1981) to the data in order to build a model that can explain the
CO2 flux variations. This regression is normally used when there
is the need to explain the relationship between one dependent
variable and two or more independent variables. In this case,
the dependent variable is the CO2 flux and the independent
variables are chosen from the environmental factors measured by
the station. The model follows Equation(1),

y = β0 + β1x1 + β2x2 + . . . + βnxn (1)

Where β0 is the intercept, βn are the coefficients or the slope
of the independent variables, xn the measured environmental
factors and y is the predicted CO2 flux.

When building the model Neter et al. (1983) advice to choose
independent variables in order that the regression model is as
complete and realistic as possible, so the adequate prediction is
reached. However, a balance is needed and the regression model
must include only the relevant variables because the irrelevant
ones decrease the precision of the predicted values, and increase
the complexity of the model.

To determine, within a multiple regression model, if a
particular factor (xi) is making a contribution to the model, it is
tested the hypothesis that the value of that coefficient is zero: H0:
βi= 0; HA: βi 6= 0.

The null hypothesis says that a change in the value of xi
would neither linear increase or decrease y, meaning, y and xi
are not linearly related. To test these hypotheses the p-values for
all coefficients in the model are determined and are based on a
t-statistic, where the t score (t∗) is calculated (Neter et al., 1983)
as:

t
∗ = (sample coefficient − hypothesized value)/

standard error of coefficient

If the p-value for a coefficient is higher than 0.05 the variable for
that coefficient can be omitted, for a 95% confidence interval.
The application of this parametric methodology requires that
populations follow the normal distribution (Draper and Smith,
1981).

Because multiple linear regression involves multiple variables,
omitting a variable can be challenging, Pardoe et al. (2018) warn
us that this test only suggests that one variable is not needed in
a model with all the other variables included. For example, if we
have more than one variable with a p-value higher than 0.05, by
omitting one of those variables, a newmodel without that variable
must be considered because the other variables can now have
significance.

An alternative method to identify a good subset of variables
to include in the model, with considerably less computing than
what is required for all possible regressions, is the Stepwise
Multivariate Regression method. Rawlings et al. (1998) explain
that these subset models are identified sequentially by adding
or deleting the variable that has the greatest impact on the
residual sum of squares. These stepwise methods are not
guaranteed to find the “best” subset for each subset size, and
the results produced by different methods may not agree with
each other. This method consists of a forward stepwise selection,
which chooses variables by adding one variable at a time to
the previously chosen subset model. It starts by choosing the
independent variable that accounts for the largest amount of
variation in the dependent variable. At each successive step, it
adds the variable that causes the largest decrease in the residual
sum of squares. Forward selection continues until all variables are
in the model. A backward elimination of variables, which starts
with a full model and then eliminates, at each step, the variable
whose deletion will cause the residual sum of squares to increase
the least. Backward elimination continues until the subset model
contains only one variable.

Neither forward selection nor backward elimination takes into
account the effect that the addition or deletion of a variable can
have on the contributions of the other variables to the model.
A variable early added to the model can lose importance after
other variables are added, or variables previously eliminated can
become important after other variables are removed from the
model. So, Stepwise Regression is a forward selection process
that rechecks at each step the importance of all previously
included variables and, if there is a variable that does not meet
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the minimum criterion, it changes the procedure to backward
elimination and variables are dropped one at a time until all
remaining variables meet the minimum criterion. Then, forward
selection resumes. This process continues until the adding or
the removing of variables does not meet the minimum criterion.
Normally this criterion comes in form of a F-Test (Rawlings et al.,
1998).

All the variables that increase more than 1% the explanatory
power of the model are inserted in the model. Additional details
about the methodological approach and criteria used to select
the variables that fit in the model are found out in Viveiros
et al. (2015a). Predicted and residuals values are calculated based
on the proposed model. The Stepwise Multivariate Regression
Analysis was applied using the MATLAB R© software, version
2017b.

SPECTRAL ANALYSIS

Discrete Fast Fourier Transform
Previous soil CO2 flux studies used the Fourier Transform as
the method to identify potential periodicities on the analyzed
datasets (Padrón et al., 2008; Hernández et al., 2012; Rinaldi et al.,
2012; Viveiros et al., 2014). The Fourier Transform is a method
to transform a time domain function into frequency domain.
It decomposes any periodic function in a sum of cosines and
sines of different frequencies making it a good tool to identify
harmonic oscillations. It is a complex-valued function, whose
absolute value represents the intensity of a frequency present in
the function.

Because the data in this work is a finite time series of samples,
i.e., discrete values, the Discrete Fourier Transform (DFT) is
used. It will transform a finite sequence of equally spaced samples
of a time domain function into a sequence of complex numbers
on frequency domain. With N samples of input, we will have N
independent values of output. Each output value corresponds to
the intensity of a frequency.

To chose the adequate sampling rate, Press et al. (1992) explain
that there is a special frequency, the Nyquist critical frequency,
given by f = 1/2∆, where ∆ is the sampling interval. This
frequency corresponds to the value of N/2 and it means that
every frequency higher than f will be somewhat falsely translated
into the frequencies lower than f. To overcome this problem,
the sample rate must be, at least, the double of the maximum
frequency to be measured, so that two points per cycle of that
frequency are present. Also, the output of a DFT will repeat itself
after N/2.

By definition the DFT (H) is given by Equation (2) and its
inverse by Equation (3):

Hk =
∑N−1

n=0
hne

−i2πkn/N , k = 1, 2, 3, . . . ,N − 1 (2)

hn = 1

N

∑N−1

k=0
Hke

−i2πkn/N , n = 1, 2, 3, . . . ,N − 1 (3)

where N is the number of samples, hn a discrete time series and
e−i2πkn/N is the Euler’s formula, which states that ei2πkn/N =
cos(2πkn/N)+ i sin(2πkn/N).

Unfortunately DFT is a computational intensive algorithm
and a powerful computer is not always available. So, a more
efficient algorithm, the Fast Fourier Transform (FFT), will be
used to simplify the calculation of the Discrete Fourier Transform
and its inverse. The calculation of the DFT by definition and for
a data sequence with N points has an order of N2 arithmetic
operations, but with the help of a FFT algorithm, it computes the
same result having an order of N.log(N) operations as shown in
Cooley and Tukey (1965). The difference in calculation time may
be substantial, especially for a large set of data.

There are many different algorithms that can be called FFT,
but the most widely used is the Radix-2 Decimation in Time
algorithm by Cooley and Tukey (1965). This algorithm divides
a N size transform into two N/2 dimension intervals in each
calculation step. It first calculates the transform of the even index
elements and then the odd index elements, and then combines
the two results to produce the Fourier transform of the sequence.
This idea can bemade recursively to reduce calculation time. This
simplification assumes that N is a power of two (2n), but since it
is usually possible to choose the number of points to use or to pad
the end of the time series with zeros, this restriction is not a major
problem.

To decompose the local time-frequency of a waveform, a
Windowed Fourier Transform is used. Because the transform is
performed on a segment of constant time through a time series at
a constant step, the transformwill have a constant time frequency
resolution and discontinuities will exist between the function at
the start and finish of the window. Those discontinuities will
cause the transform to develop non-zero values at frequencies
that do not exist. This is commonly called spectral leakage
(Mallat, 2009). In order to reduce this problem the waveform
is multiplied by a windowing function that decreases smoothly
from one at its center to zero at its ends. Also to change the
resolution, the window size needs to be changed. The choice of a
particular window size depends on the desired resolution trade-
off between time and frequency (Mallat, 2009). There are many
different choices of windowing functions and the one used in
the present study was the Hanning, which was already applied
previously by Viveiros et al. (2014) to similar datasets.

Wavelet Transform
Some studies performed on SO2 and CO2 flux time series
recorded from different volcanoes plumes used wavelet analyses
to identify potential cyclic variations (Boichu et al., 2010; Pering
et al., 2014). Similarly to the Fourier analysis, wavelet analysis is
also a method to decompose a time series into time-frequency,
but instead of using a sum of cosines and sines, it uses special
made functions to have specific properties, such as better
frequency localization or better transient localization that make
them useful for signal processing (Mallat, 2009).

Mallat (2009) highlights that wavelets request less coefficients
to represent local transient structures, which leads to a fast
computational algorithm comparing to the FFT. In addition,
wavelets are less affected by the lack of data, which allows
an easier analysis of long time series. Another drawback of
FFT analysis is that the time information may be lost in the
transform since, depending on the window’s size, it may be
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difficult to tell when an event took place. Wavelet analysis is
thus becoming a common tool for analyzing localized variations
within a time series (Torrence and Compo, 1998). Wavelet
transform also has continuous and discrete transforms, but, to
analyze how the frequency content of a signal changes over time
the continuous transform is the most used. Farge (1992) states
that the continuous wavelet transform is better suited because
its redundancy allows good legibility of the signal’s information
content.

The formulation of the continuous wavelet transform (CWT)
(Wx) was developed by Grossmann and Morlet (1984) and for a
function x(t) is expressed by Equation (4):

Wx (u, s) =
∫ +∞

−∞
x (t)

1√
s
ψ

∗
(

t − u

s

)

dt (4)

where, s corresponds to the wavelet scale, u to the shift parameter
and t is the time component.

Because this work uses discrete time series, Equation (5),
defined by Torrence and Compo (1998), consists of the
continuous wavelet transform of a discrete sequence xn as the
convolution of xn with a scaled and translated version of a wavelet
function ψ0 (η):

Wn (s) =
∑N−1

n
′=0

xn′ψ
∗





(

n
′ − n

)

δt

s



 (5)

where the (ψ∗) indicates the complex conjugate of the wavelet.
By varying the wavelet scale s and translating along the localized
time index n for a time step δt, it is possible to construct a
graphic similar to a spectrogram, called scalogram, showing the
amplitude power vs. the scale and how this amplitude varies with
time. These calculations can be very computational intensive but
they are considerably fast to do if they are done in the Fourier
space (for additional details, see Torrence and Compo, 1998).

One of the criticism about using wavelet analyses is related
with the randomness associated with the selection of the wavelet
function, ψ . Choosing the wavelet function depends on the
final objectives of the data analysis. In this work, the goal is
to perform a time-frequency analysis. MATLAB R© was used to
perform the wavelet analysis and the wavelet function supported
by MATLAB R© that was used, was the bump wavelet because it
provides good frequency localization. The Fourier transform of
the bumpwavelet with parameters σ andµ, is defined inMeignen
et al. (2012) and is expressed by Equation (6):

9̂ (ξ) = e

1− 1

1−
(

ξ−µ
σ

)2

χ[µ−σ ,µ+σ ] (6)

Where ξ is a real value and χ is the indicator function for
the interval [µ− σ ,µ+ σ ]. In this last case, χ is 1 if inside
the interval and 0 if lays outside. By default, the values of the
parameters used by MATLAB are µ = 5 and σ = 0.6. Another
option could have been the Morlet wavelet, also available on
the MATLAB’s wavelet analysis toolbox, which exhibits poorer
frequency localization than the bump wavelet, but superior time
localization, making it a better choice for transient localization.

By using FFT, one can obtain the spectrum of the data;
however, with wavelets, Shu and Qinyu (2005) demonstrated that
the global wavelet spectrum on some occasions did not provide
the correct results, especially when there are sharp peaks in
the power spectrum. This happens because the global wavelet
spectrum at small wavelets (high frequencies) will smooth the
spectrum and at large wavelet scales (low frequencies) the peaks
are sharper and have a higher amplitude. Shu and Qinyu (2005)
state that because there is the need to know whether there are
sharp peaks in the time series prior to this spectral analysis, the
Fourier spectrummight be a better choice for this type of analysis.

Residuals Filtering
When cycles are identified in the time series, to remove unwanted
cycles from the datasets (high frequencies) and reveal the
constants components (low frequencies), a low pass filter may
be used (Sedra and Smith, 2004). FFT was already applied in
previous studies (Viveiros et al., 2014) and can be used for
filtering since the signal may be converted between the time
and the frequency domain. In order to apply a filter, one has to
transform the signal into the frequency domain, apply the filter
by zeroing the unwanted part of the spectrum, and transform
it back into the time domain. But FFT filtering would imply
high computational tasks and a high number of samples to be
considered for filtering, increasing latency, and if the continuity
of the waveform is no longer guaranteed artifacts will appear.
For this reason, for time series with identified cyclic behavior,
the application of other type of filtering, such as continuous-time
filters, is suggested. Within this type of filters, one can choose
from different families of filters, such as Chebyshev filter, which
has the best approximation to the ideal response but with the
cost of adding ripples, or the Butterworth filter that has a more
flat frequency response. For this reason, this last type of filter is
preferable to a Chebyshev filter (Jurišić et al., 2002).

RESULTS

The data analyzed in this work were collected from June 2010
to June 2017 (Figure 1). During this period the CO2 flux varied
between 0.37 and 6,606 g m−2d−1, with a mean of 1,165 gm−2

d−1 (Table 1). The permanent station is also installed in a
thermal anomalous zone with soil temperature varying around
32.2◦C and maximum recorded values for the whole period was
47.2◦C (Table 1). Several spike-like variations are observed on
the soil CO2 flux time series and seasonal cycles with higher
CO2 emissions recorded during winter period are also observed.
Higher scatter on the recorded data is also observed on the winter
period when compared to the summer (Figure 1).

Building a Model
As mentioned above, the period selected for the construction of
the explanatory model corresponded to 2 years of data, from
January 2013 to December 2014. Figure 2 shows the soil CO2

flux and the various environmental time series recorded by the
permanent station. Detailed analyses of the figure shows that
some variables seem to correlate inversely with the soil CO2 flux,
namely the air (Figure 2a) and soil temperature (Figure 2c). On
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FIGURE 1 | Soil CO2 flux data acquired in GFOG4 during the period June 2010–June 2017. The gray area represents the period used to produce the explanatory

regression model.

TABLE 1 | Descriptive statistics of the data acquired in GFOG4.

Average SD Median Minimum Maximum Number

of data

Soil CO2 flux

(g m−2 d−1)

1,165 1,034 819 0.37 6,606 55,726

Soil

temperature (◦C)
32.2 9.7 32.8 17.8 47.2 55,324

Soil water

content (%)

25.6 3.2 25.8 14.0 48.1 57,786

Atmospheric

pressure (hPa)

990 7 991 931 1010 57,874

Rainfall (mm) 0.2 1.0 0.0 0.0 64.2 57,678

Air relative

humidity (%)

83.0 8.4 84.7 36.7 97.2 57,576

Air temperature (◦C) 16.8 4.1 16.4 6.1 32.6 57,829

Wind speed (m/s) 1.02 0.89 0.75 0.0 10.81 57,829

the other hand, soil water content (Figure 2b) shows in general
similar variations as the soil CO2 fluxes. Pearson correlation
coefficients confirm these observations (Figure 3), with soil
temperature showing the highest inverse correlation (−0.63) with
the soil CO2 flux. For the other side, soil water content is the
variable with highest direct correlation (0.56) with the gas flux.
Rainfall is the least influential variable with a correlation of just
0.05.

The stepwise regression model selected is the number 4
(Table 2), which accounts with the air and soil temperature, wind
speed, and soil water content as the explanatory variables to
be included in the model. Before applying the stepwise model,
several partial regression models were tested, but theoretically
the same result can be obtained in a much faster way by using a
stepwise regression. The rainfall variable showed always p-values
higher than 0.05, and for this reason it was never selected as
variable to include in the regression models (Table 2). By looking

at the RMS (root mean square) error, it starts to stabilize at step 4.
In fact, after that step, the gains in precision of the model by
adding more variables are <1%, and for this reason the models
are not considered. Similar criteria were used in previous studies
(Viveiros et al., 2008, 2015a, 2016).

Equation (7) represents the proposed final regression model
for the soil CO2 flux (y), which is composed by the air
temperature (Air T.), soil temperature (Soil T.), soil water content
(Soil W.) and wind speed (W. Speed):

y = 1508.5+ 53.993AirT.− 86.284SoilT.+ 85.877SoilW. (7)

−268.75W.Speed

Soil temperature and wind speed have an inverse influence on
the soil CO2 flux, and for the other side air temperature and soil
water content correlate positively.

According to the adjusted R2, the model explains around 47%
(0.4682) of the gas flux variations in this monitoring site, and soil
temperature is the variable with higher explanatory power (about
30% of the CO2 flux variation).

Based on the model, the predicted and residuals time series
were calculated (Figure 4). The predicted values (y) correspond
to the estimated values according to the proposed model and for
the recent years there is a good agreement between the measured
soil CO2 fluxes and the predicted by the regression (Pearson
correlation of 83%).

Based on Equation (7), predicted values were calculated and
the difference between observed and predicted allows to calculate
a third time series, the residuals (Figure 4), which correspond to
the gas flux variations that cannot be explained by the proposed
regression model.

Searching for Cycles
To evaluate the presence of harmonic oscillations a wavelet
analysis and a spectral analysis were performed to the time series.
The spectrogram was calculated using 512 samples of the time
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FIGURE 2 | Environmental and soil CO2 flux time series for the period selected to build the regression model (2013–2014). Orange lines represent the soil CO2 flux in

all graphics, black line the rainfall (b), and the blue lines the other monitored environmental variables, from (a–f) soil temperature, soil water content, air temperature,

air relative humidity, atmospheric pressure and wind speed.

FIGURE 3 | Pearson correlation coefficients between soil CO2 flux and the monitored environmental variables. Blue points correspond to the environmental variables

vs. the soil CO2 flux and the pink lines are the correlation trendlines.

series with a step of 24 samples and to minimize spectral leakage,
a Hanning window was used, similarly to previous studies.
Considering that the sample rate is 24 samples per day in the
studied time series, the Nyquist critical frequency will be 12 cycles
per day. Based on results obtained in previous works, more than
2 or 3 cycles per day should not be expected, which shows that
this sample rate is adequate for this study.

Figure 5 shows the results of the FFT and wavelet analyses
performed on the soil CO2 fluxes and residuals for the
period used to perform the models. One cycle per day (cpd),
corresponding to the diurnal peak (S1), may be observed on
both the spectrogram (FFT analysis, Figures 5A,C) and on the
scalogram (wavelet analysis, Figure 5B), even if 1 cpd signal is
not constant along the time series and shows different intensities.

The higher noise observed on the spectrogram close to the origin
(Figure 5A) compared with the scalogram can be explained as the
DFT normally represents the zero frequency as the offset from the
time series to the origin.

The spectrum of the soil CO2 fluxes shows however 1 and
2 cpd (Figure 5C); the weaker 2 cpd (12 h cycle) does not
appear in the spectrogram or even in the scalogram. FFT and
wavelet analyses were also applied to the environmental time
series (Supplementary Figure 1) in order to identify the periodic
behavior, as well as, to highlight eventual differences using
both methodologies (Table 3). Higher number of cycles were
identified based on the spectrograms when compared with the
scalograms, namely for the atmospheric pressure, air and soil
temperature.
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FFT spectrum applied to the entire monitored period shows
higher energy peaks at a periodicity of 358 day, which coincide in
general with the annual cycle (Figure 6).

Spectral analysis was also applied to the residuals in order to
check if the filtered time series still shows harmonic behavior.
Figures 5D–F show that 1 cpd is also found out in this time
series, even if the 2 cpd is practically absent on the spectrum.
Considering that high frequency cycles are still observed on the
residuals time series, a second order of filtering was applied to
the residuals dataset, namely a Butterworth filter (Figure 7). The
greenish band in Figure 7 represents the mean plus-minus two
times the standard deviation of the filtered residuals (y ± 2σ )
estimated for the period 2013–2014.

DISCUSSION

GFOG4 station is installed in an anomalous soil CO2 flux and
temperature area, and is clearly located in a Diffuse Degassing

TABLE 2 | Stepwise regression model steps for GFOG4 data (period 2013–2014).

Step Used variables RMS error Adj. R2

1 Air T. 11,321.12 0.0990

2 Air T., Soil T. 923.58 0.4004

3 Air T., Soil T., W. Speed 892.43 0.4401

4 Air T., Soil T., W. Speed, Soil W. 869.75 0.4682

5 Air T., Soil T., W. Speed, Soil W., Atm.

Press.

864.55 0.4747

6 Air T., Soil T., W. Speed, Soil W., Atm.

Press., Air R.H.

862.34 0.4773

RMS, Root mean square; Adj. R-sq, Adjusted R2; Air T, air temperature; Soil T, soil

temperature; W. Speed, wind speed; Soil W, soil water content; Atm. Press, atmospheric

pressure; Air R.H, air relative humidity. The bold values correspond to the model selected

to explain the variations at GFOG4 station.

Structure (DDS, Chiodini et al., 2001) in the north flank of Fogo
Volcano (S. Miguel Island). This monitoring site corresponds to
the one that shows the highest average soil CO2 flux emissions
(1,165 gm−2d−1) from all the permanent stations installed at S.
Miguel Island (Viveiros et al., 2008, 2015a).

As previously mentioned, multivariate regression analysis
has been commonly applied to gas geochemical time series in
different degassing areas (e.g., Granieri et al., 2003, 2010; Padrón
et al., 2008; Viveiros et al., 2008; Laiolo et al., 2012, 2016; Neri
et al., 2016; Lelli and Raco, 2017) and showed to be adequate
to highlight and filter the influences of the environmental
parameters on the gas flux. The stepwise regression model
here suggested as filtering methodology was already applied to
other CO2 and 222Rn time series in the Azores archipelago
(Silva et al., 2015; Viveiros et al., 2015a) and, despite all the
advantages already mentioned for the linear regression analysis,
the stepwise multivariate regression analysis also facilitates the
selection of the independent variables to be included in the
model, as well as, it is automatic and less user dependent.
The model here proposed explains about 47% of the gas flux
variations at GFOG4 site and the Pearson correlation coefficients
between the observed and the predicted time series for the
period between 2015 and 2017 is 0.83, which suggests a good
agreement between both time series and the adequacy of
the model to explain the observed CO2 flux variations. The
Pearson correlation coefficient for the period from 2010 to 2013
was significantly lower (0.46). This distinct behavior can be
eventually justified by the initial period of instability of the
expanded degassing area. In fact, previous studies (Viveiros
et al., 2015a) already highlighted that the installation procedure
of a permanent station can interfere with the initial acquired
datasets, as it can cause higher variability on the gas flux data
recorded.

The stepwise multivariate regression model proposed for the
data between 2013 and 2014 shows that the soil temperature

FIGURE 4 | Observed, predicted and residuals soil CO2 flux time series for GFOG4 station. Pearson correlation coefficients (r) between predicted and observed

values are displayed for the different periods. Gray area represents the period used to define the regression model.

Frontiers in Earth Science | www.frontiersin.org 8 November 2018 | Volume 6 | Article 208

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Oliveira et al. Automatic Filtering of CO2 Flux Data

FIGURE 5 | Spectral results for the observed and residuals soil CO2 fluxes for the period 2013–2014: (A) spectrogram, (B) scalogram and (C) FFT spectrum of the

observed values; (D) spectrogram, (E) scalogram (F) and FFT spectrum of the residuals.

TABLE 3 | Identified daily cycles for the different monitored variables based on the

two spectral methodologies.

1 cpd 2 cpd 3 cpd 4 cpd

Soil CO2 flux Scalogram X – – –

Spectrogram X – – –

Atmospheric pressure Scalogram X X X –

Spectrogram X X X X

Air temperature Scalogram X X – –

Spectrogram X X X –

Air relative humidity Scalogram X X – –

Spectrogram X X – –

Soil temperature Scalogram X – – –

Spectrogram X X – –

Soil water content Scalogram – – – –

Spectrogram – – – –

Wind speed Scalogram X – – –

Spectrogram X – – –

Rainfall Scalogram – – – –

Spectrogram – – – –

cpd corresponds to cycles per day.

is the variable with greater influence on the soil CO2 fluxes
explaining about 30% of the gas variations (Table 2). Similar
inverse correlation between soil CO2 fluxes and soil temperature
was already highlighted in other permanent soil CO2 flux
stations installed at Furnas and Fogo volcanoes (S. Miguel Island)
(Viveiros et al., 2008, 2015a), or even in other degassing areas,
such as Stromboli Volcano (Laiolo et al., 2016). Viveiros et al.
(2008) suggested that these inverse correlations should result
from the long-term seasonal effects, with the lower emissions
occurring during summer time when compared with the winter
period. Similar seasonal behavior is observed at GFOG4 site
(Figure 1) and the seasonal cycle was identified (Figure 6).

Wind speed also correlates inversely with the soil CO2 fluxes at
GFOG4 station and this influence is in agreement with previous
observations in other monitoring sites of S. Miguel Island
(GFUR2, GFUR3, GFOG3, and GFOG3.1 stations). Intrusion of
some air into the upper parts of the soil may dilute the soil gases
and decrease the CO2 fluxes during high wind speed periods.
Air temperature and soil water content correlate positively with
the soil gas flux according to the regression model proposed
(Equation 7). The positive correlation between soil water content
and gas fluxes was also previously identified in other monitoring
sites and it was explained by the covering effect of the station
shelter that maintains the soil dry during rainfall periods and
allows the gas to escape. In the area surrounding the permanent
stations the soil is wet and the pores are saturated, fact that
hinders gas release. Several spike-like anomalies observed on the
soil CO2 fluxes time series are associated with the increases on
the soil water content. This type of association was observed
not only on the Azores monitoring sites (Viveiros et al., 2008,
2009, 2015a) but also on other sites with similar monitoring
stations, such as at the summit area of Usu (Mori et al., 2002),
Solfatara (Granieri et al., 2003, 2010) and Stromboli volcanoes
(Carapezza et al., 2009). The positive correlation between air
temperature and soil CO2 flux is not widely observed and
usually both variables correlate inversely as the CO2 fluxes
depend on the daily thermal cycles (Rinaldi et al., 2012; Viveiros
et al., 2014). However, this positive correlation has been also
identified at GFOG3.1 station and it was explained as resulting
from an artifact, i.e., the superimposition of other monitored
environmental variables. One additional explanation is that both
monitoring sites are located in a thermally anomalous zone, that
can eventually unbalance the expected pressure gradients on the
soil-air interface due to the thermal cycles. In fact, and even
if the models are specific for each monitoring site, considering
that different characteristics (e.g., soil properties, drainage area,
topography) can control the effect that environmental variables
have on the soil CO2 fluxes (Viveiros et al., 2008, 2014),
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FIGURE 6 | Amplitude spectrum showing the low-frequency peaks for the entire monitored period of the observed soil CO2 fluxes.

the model here proposed is quite similar to the regression
defined to GFOG3.1 station. In this case, with exception to the
atmospheric pressure, the same environmental variables correlate
with the CO2 fluxes and show similar type of influence (for more
details on GFOG3.1 station see Viveiros et al., 2015a).

Considering that previous studies applied to volcanic gas
emissions used both Fast Fourier Transform and wavelet analyses
as the spectral techniques, we applied both techniques to the soil
CO2 flux time series in order to evaluate potential differences
and discuss their adequacy to apply in a real-time monitoring
system. Spectral analyses applied to the soil CO2 flux time series
identified the diurnal (S1) peak (Figure 5), even if only the FFT
spectra recognized a weaker semidiurnal cycle (12 h variation).
Similar diurnal cycles were also recognized in the CO2 flux time
series not only in the Azores archipelago (Rinaldi et al., 2012;
Viveiros et al., 2014), but also in other soil diffuse degassing
areas (Granieri et al., 2003; Padrón et al., 2008; Hernández et al.,
2012) and were mainly explained and modeled as consequence
of the influence of the meteorological variables (Rinaldi et al.,
2012; Viveiros et al., 2014). A low frequency signal (period of
358 days), which represents the annual period, was recognized
on the spectrum soil CO2 fluxes for the whole period. A cycle
of about 340 days was previously identified at Furnas Volcano
permanent stations (Viveiros et al., 2014) and it was interpreted
as representing the annual period. The divergence to the 365
days was then interpreted as a FFT resolution problem caused
by the length of the analyzed time series. In fact, in the current
study with 7 years of data available, the identified annual cycle
(358 days) approaches the annual band when compared with the
results obtained by Viveiros et al. (2014).

This study used two different spectral approaches, which
were previously applied to volcanic gas data, to the recorded
time series in order to discriminate potential differences and
evaluate which approach could be more adequate for a real-
time monitoring environment. Even if both techniques identified
the diurnal cycle on the soil CO2 flux time series and showed

quite similar behavior in the spectrogram and in the scalogram
(Figure 5), by definition wavelet analysis should be more
permissible to the lack of data, what can be advantageous to
use for monitoring time series that frequently are affected by
technical problems. Other positive aspect of the use of wavelets
should be a better detection of the cycle (stability of the
periodicities). These differences were not however particularly
evident in the current study. In addition to the fact that it is
easier to apply, FFT also allows to calculate the spectra and
consequently allows to identify low frequencies. The soil CO2 flux
spectra (Figure 5C) also showed the semidiurnal cycle, which
was not highlighted in the spectrogram or in the scalogram.
One potential explanation may be that this weaker signal was
hidden in the noise, especially in the winter periods, when the
time series is more scattered. The existence of periodicities in
the other monitored environmental variables was also evaluated
(Table 3) and FFT again better discriminates high frequencies
when compared with the wavelet analyses. Some of these high
frequencies may eventually be due to harmonics of the diurnal
signal, however looking at the other side one may suggest that
wavelets hide some of the frequencies.

Considering the recognized periodicities in the environmental
variables and the fact that the semidiurnal cycle is still detected
in the residuals time series (Figures 5D–F), and even if there is
a good agreement between the observed and predicted values,
the regression model proposed does not seem to filter all the
external influences on the soil CO2 fluxes. Viveiros et al. (2014)
also identified this problem in the time series recorded at Furnas
Volcano (S. Miguel Island) and suggested a second filtering
procedure using the FFT low-pass filter. In the current study
we suggest the use of the Butterworth filter as it reduces the
computational tasks and requires a lower number of samples
to be considered for filtering, which is more appropriate for a
real-time monitoring system.

The final calculated residuals dataset (Figure 7), resulting
from two step filtering, should be the one used in any Volcano
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FIGURE 7 | Soil CO2 flux residuals at GFOG4 station after applying the two step filtering (MRA and Butterworth filters). Orange line corresponds to the number of

seismic events recorded at Fogo Volcano (CIVISA catalog). Gray vertical band represents the period used to produce the regression model and the green band

corresponds to the interval (y ± 2σ ).

Observatory as the best representative of the deep-source gas
flux variations. Similarly to previous studies (Viveiros et al.,
2014, 2015a), a band of variation was defined and any values
that lay outside this band can represent anomalous periods of
activity and need to be evaluated as a multidisciplinary approach
since they may represent precursors of deep changes in the
system. Four main periods in Figures 7 (A, B, C and D) were
highlighted and, even if the main scope of the current study
was to apply different statistical methodologies to the soil gas
flux time series and evaluate its adequacy for automation in
a real-time monitoring basis, an attempt to correlate the gas
flux residuals with the number of seismic events recorded at
Fogo Volcano was done. No direct correlation was observed
between the identified anomalous periods for the residuals and
the number of seismic events. Periods identified as “B” and “C”
are probably a local response of the system to some works carried
out by the geothermal company in the area surrounding the
station and that included injection of concrete at depth. These
works were developed between July 2012 and March 2013, thus
coincident with the above mentioned anomalous periods. As
mentioned previously, the installation of a permanent station
may also drive some period of instability in the gas release
and this can potentially be the explanation to the lower than
expected CO2 fluxes at period “A”. Even if anomalous period
“D” (between end of December 2015 and early February 2016)
occurs after a seismic swarm with 71 events, other similar seismic
swarms did not cause significant changes on the CO2 fluxes. A
common observation for all the anomalous periods is that they
occur during winter periods, when the gas flux data are more
scattered and thus more challenging for the statistical approaches

applied. GPS data are only available in the literature for the
period from 2010 toMay 2013 (Okada et al., 2015). Those authors
highlighted deformation on the Fogo Volcano edifice for the
period September 2011 to August 2012, associated with some of
the recorded seismic swarms. The CO2 flux residuals do not show
any anomalous values for that period, but the anomalous vectors
are mainly in the eastern part of the volcano edifice and not close
to the GFOG4 monitoring site.

CONCLUSIONS

Environmental variables explain almost half of the variation
observed on the soil CO2 fluxes recorded in this monitoring
site. This relevant correlation between gas fluxes and external
factors was already shown in several degassing areas worldwide
and, for this reason, it is fundamental to filter the data in
order to highlight variations that may represent the deep
volcanic/hydrothermal processes. In what concerns the statistical
approaches applied, both spectral analyses seem adequate to
apply to the soil CO2 time series. However, considering that the
wavelets are more complex to apply and may even hide eventual
frequencies, we suggest the coupled use of stepwise multivariate
regression analyses and FFT analyses as a good approach to filter
external influences from the soil gas fluxes. The second order
filtering, when high frequencies on the residuals are identified,
may be carried out using the Butterworth filter since it is easy to
apply in a routine time-real monitoring environment.

In the particular case of GFOG4 site, the final residuals do not
show trends, nor any persistent increase that could eventually
be correlated with some unrest, nor a decrease that could show
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a reduction of the anomaly in an area that expanded after a
geothermal drilling. This observation seems to highlight that
a constant and persistent deep flux of gas is being released
in this degassing area. Nevertheless, analyses of the residuals
show some periods laying outside the “normal” band and four
anomalous periods were identified, but no direct correlation
with the seismic and/or ground deformation observed at Fogo
Volcano was established. We have to consider the low magnitude
of the earthquakes and the fact that the ground deformation
was identified in a different sector of the volcano edifice. Future
studies should develop additional tools to join multidisciplinary
time series recorded in the volcano observatories. A closer look
to these variations shows that these periods occur essentially
in the winter when the time series are more scattered and
potentially represent periods of extreme weather conditions that
the regression model does not manage to account.

The definition of intervals of variation considered “normal”
are crucial to identify the anomalous periods especially in
any Volcano Observatory, where recognizing precursors of
volcanic activity is challenging and demanding. The application
of automatic methods is a relevant approach that allows any user
to identify potential anomalies. In addition to what mentioned
above and considering the effect that environmental changes may
have also on other gas species, such as radon (e.g., Perrier and
Girault, 2013; Silva et al., 2015), the methodologies now proposed
can be also tested and expanded to other degassing series and
used as routine in any Volcano Observatory. Each Volcano

Observatory should build specific models for the different
monitoring sites. However, the use of the two steps filtering,
coupling regression and spectral methodologies, will improve not
only the knowledge about the gas flux behavior but also will allow
to easily detect anomalous degassing periods.
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