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Impurity Resistivity of fcc and hcp
Fe-Based Alloys: Thermal
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Institute for Planetary Materials, Okayama University, Tottori, Japan

It is widely known that the Earth’s Fe dominant core contains a certain amount of
light elements such as H, C, N, O, Si, and S. We report the results of first-principles
calculations on the band structure and the impurity resistivity of substitutionally
disordered hcp and fcc Fe based alloys. The calculation was conducted by using
the AkaiKKR (machikaneyama) package, which employed the Korringa-Kohn-Rostoker
(KKR) method with the atomic sphere approximation (ASA). The local density
approximation (LDA) was adopted for the exchange-correlation potential. The coherent
potential approximation (CPA) was used to treat substitutional disorder effect. The
impurity resistivity is calculated from the Kubo-Greenwood formula with the vertex
correction. In dilute alloys with 1 at. % impurity concentration, calculated impurity
resistivities of C, N, O, S are comparable to that of Si. On the other hand, in concentrated
alloys up to 30 at. %, Si impurity resistivity is the highest followed by C impurity resistivity.
Ni impurity resistivity is the smallest. N, O, and S impurity resistivities lie between Si and Ni.
Impurity resistivities of hcp-based alloys show systematically higher values than fcc alloys.
We also calculated the electronic specific heat from the density of states (DOS). For pure
Fe, the results show the deviation from the Sommerfeld value at high temperature, which
is consistent with previous calculation. However, the degree of deviation becomes smaller
with increasing impurity concentration. The violation of the Sommerfeld expansion is
one of the possible sources of the violation of the Wiedemann-Franz law, but the
present results could not resolve the inconsistency between recent electrical resistivity
and thermal conductivity measurements. Based on the present thermal conductivity
model, we calculated the conductive heat flux at the top of terrestrial cores, which is
comparable to the heat flux across the thermal boundary layer at the bottom of the
mantle. This indicates that the thermal stratification may develop at the top of the liquid
core of super-Earths, and hence, chemical buoyancies associated with the inner core
growth and/or precipitations are required to generate the global magnetic field through
the geodynamo.
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INTRODUCTION

Because the electrical current and the heat are mainly transported
by mobile electrons in the metallic core, it is important to
understand the electron scattering mechanisms in Fe-based
alloys at high pressure and temperature to estimate the thermal
conductivity and the electrical resistivity. Gomi et al. (2013)
proposed the core resistivity model that the resistivity saturation
was firstly taken into account. Later, many studies (Kiarasi and
Secco, 2015; Gomi et al., 2016; Ohta et al., 2016, 2018; Pozzo and
Alfè, 2016a,b; Wagle et al., 2018; Xu et al., 2018) investigated
the resistivity saturation. Because of its universality, we expect
that the resistivity saturation model is applicable to metallic
cores of terrestrial planets with various pressure, temperature
and compositions. In order to improve our previous model, we
address the following two topics in this study.

The first topic of this study is the compositional effect on
the electrical resistivity of cores, namely impurity resistivity.
On the one hand, first-principles molecular dynamics (FPMD)
studies computed the effects of alloying Si, O, and S (de Koker
et al., 2012; Pozzo et al., 2013, 2014; Wagle et al., 2018). On
the other hand, high pressure experimental works investigated
the impurity resistivities of Si, Ni, S and C (Matassov, 1977;
Gomi et al., 2013, 2016; Seagle et al., 2013; Gomi and Hirose,
2015; Kiarasi and Secco, 2015; Suehiro et al., 2017; Ohta et al.,
2018; Zhang et al., 2018). In order to understand the relative
importance of light elements, Gomi et al. (2013) calculated the
impurity resistivities of C, S, and O from the impurity resistivity
of silicon by using the Linde’s rule (Norbury, 1921; Linde, 1932).
However, Suehiro et al. (2017) demonstrated the violation of
the Linde’s rule from measurements on Fe-Si-S ternary alloys.
The Linde’s rule is known as a model for impurity resistivity in
noble metal hosts, which predicts a parabolic dependence as a
function of valence difference Z between impurity element and
the host metal. The Linde’s rule is valid for impurity elements
located at the right hand side of the host noble metal in the
periodic table, however, it is strongly violated for magnetic
transition metal impurity. Therefore, application to transition
metal hosts is indeed questionable. Instead of the Linde’s rule,
we will show the relative importance of the impurity resistivity
of light alloying elements in fcc and hcp Fe by means of the
Korringa-Kohn-Rostoker method combined with the coherent
potential approximation (KKR-CPA) (Oshita et al., 2009; Kou
and Akai, 2018), which successfully reproduces the impurity
resistivities of Si and Ni in hcp Fe (Gomi et al., 2016).

The second topic of this study is the validity of theWidemann-
Franz law. The Widemann-Franz law predicts the thermal
conductivity from the electrical resistivity as:

k =
LT

ρ
(1)

where k is the thermal conductivity, L is the Lorenz number,
T is the absolute temperature and ρ is the electrical resistivity.
The Lorenz number is almost independent of temperature
and common for almost all metals. The Sommerfeld value
LSomm = 1

3
π2k2B
e2

= 2.445 × 10−8 W�/K2 is widely

used as the Lorenz number, where kB is the Boltzmann’s
constant and e is electronic charge (e.g., Anderson, 1998;
Poirier, 2000; see also Appendix of Gomi and Hirose, 2015).
However, FPMD studies predict the deviation of the Lorenz
number from the Sommerfeld value (de Koker et al., 2012;
Pozzo et al., 2012, 2013, 2014; Pozzo and Alfè, 2016b). More
importantly, the experimentally determined Lorenz number
of hcp Fe, which is calculated from recent laser heated
diamond-anvil cell (LHDAC) measurements on the electrical
resistivity (Ohta et al., 2016) and the thermal conductivity
(Konôpková et al., 2016), exhibit substantially smaller than the
Sommerfeld value. Even though these LHDAC results may have
large uncertainty (Dobson, 2016), this fact suggests potential
violation of the Widemann-Franz law. Gomi and Hirose (2015)
pointed out three important approximations, which potentially
violate the Wiedemann-Franz law: omitting the additional
contribution from lattice or ionic conductivity, neglecting the
anelastic scattering, and the application of the Sommerfeld
expansion. Additionally, electron-electron scattering may affect
the Lorenz number (Pourovskii et al., 2017). Among them,
the violation of the Sommerfeld expansion may cause 2–
43% deviation from the Sommerfeld value of the Lorenz
number, if we adopt the calculated electron density of states
(DOS) of fcc and hcp Fe reported by Boness et al. (1986).
However, this argument is limited to pure Fe. As well as the
impurity resistivity calculation, the KKR-CPA method can easily
simulate the DOS of disordered alloys (Gomi et al., 2016,
2018).

This paper is organized as follows. In the section Methods,
the first-principles methods were described. The impurity
resistivities of various impurities in fcc Au were first calculated
to examine the validity and the physical origin of the violation
of the Linde’s rule (section Dilute Alloys). Then, impurity
resistivities in fcc and hcp Fe-based alloys were simulated
at high pressure (sections Dilute Alloys and Concentrated
Alloys). Simultaneously, electron DOS were computed. The
electronic specific heat was then estimated by numerical
integration based on the DOS. The numerically-calculated
specific heat values were compared with that was obtained by
the Sommerfeld expansion to discuss the possible deviation
of the Lorenz number from its Sommerfeld value (section
Electronic Specific Heat andWiedemann-Franz Law). Combined
with the present impurity resistivity and the Lorenz number,
we revised our thermal conductivity model (Gomi et al.,
2016) (section Electrical Resistivity and Thermal Conductivity
of the Earth’s Core). Finally, the model was applied to the
planetary cores with various planetary mass from 0.1 to 10
times Earth mass (section Heat Flux at the CMB of Super-
Earths).

METHODS

We carried out the first-principles electronic band structure
calculation of fcc Au-, hcp and fcc Fe-based alloys. For fcc Au
alloys, the lattice parameters are set to a = 7.71 Bohr, which
correspond the ambient pressure value. For hcp Fe alloys, the
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lattice volumes are set to 19.10, 16.27, and 9.80 Å3. These
values correspond to 40, 120, and 1,000 GPa pressure at ambient
temperature (Dewaele et al., 2006). The axial ratio was set to the
ideal value (c/a = 1.633). For fcc Fe alloys, we used the same
atomic volumes as for hcp Fe alloys. The Kohn-Sham equation
was solved by means of Korringa-Kohn-Rostoker (KKR) Green
function method, which implemented in AkaiKKR package
(Akai, 1989). The local density approximation (LDA) was
adapted to exchange-correlation potential (Moruzzi et al., 1978);
the specific choice of the exchange-correlation functional may
not significantly affect the resistivity value (see Supplementary
Figure S1 of Gomi et al., 2016). The crystal potential was
approximated by using the atomic spherical approximation
(ASA). The maximum angular momentum quantum number
was set to l = 3. Relativistic effects are considered in the
scalar relativistic approximation. The substitutional chemical
disorder is described in the coherent potential approximation
(CPA). The electrical resistivity is calculated from the Kubo-
Greenwood formula with the vertex correction (Butler, 1985;
Oshita et al., 2009; Gomi et al., 2016; Kou and Akai, 2018).
The hcp Fe-alloys have two independent resistivity components
with respect to crystallographic orientation; ρ|| and ρ⊥ are
the resistivities calculated parallel and perpendicular to the c-
axis, respectively. The resistivities of polycrystalline hcp Fe-
alloys are calculated as ρpoly = (2ρ⊥ +ρ||)/3 (Alstad et al.,
1961).

DILUTE ALLOYS

Norbury (1921) conducted systematic measurements of impurity
resistivity of dilute alloys, and found that the impurity
resistivity is enhanced with increasing horizontal distance
between the positions of impurity element and host metal
in the periodic table. Linde (1932) reported that impurity
resistivity of noble metal-based alloys is proportional to
Z2, where Z is the difference in valence between impurity
element and host metal. This relationship is observed in the
noble metal alloyed with the impurity element located at the
right hand side of the noble metal in the periodic table,
and is so-called the Linde’s rule. Mott (1936) provided an
interpretation for Linde’s rule, assuming the impurity atom
to be a point charge Z × e, where e is the elementary
electrical charge. This approximation successfully explained the
Z2 dependence of the impurity resistivity. However, impurity
elements on the left hand side of the noble metal exhibit
complicated behavior. This is reasonably explained by Friedel
model with the idea of the virtual bond state (VBS) (Friedel,
1956).

Figure 1A shows the impurity resistivities of impurity
elements with the atomic numbers from 1 (H) to 18 (Kr) in fcc
Au host. We tried to simulate both of non-magnetic and local
magnetic disorder (LMD) state for all these impurity elements,
and the LMD solution was obtained only for V, Cr, Mn, Fe, Co,
and Ni impurity. For these six impurity elements, the impurity
resistivity value is largely different between the non-magnetic
state and the LMD state, and the LMD results are consistent with

FIGURE 1 | Impurity resistivities of 1st (green cross; H and He), 2nd (blue
diamond; Li, Be, B, C, N, O, F and Ne), 3rd (orange triangle; Na, Mg, Al, Si, P,
S, Cl, and Ar) and 4th (black square; K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, Ga, Ge, As, Se, Br and Kr) period elements. (A) fcc Au-alloys at 1 bar
compared with literature values (Friedel, 1956). (B) hcp Fe-alloys at 40 GPa
compared with previous DAC experiments (Ni: Gomi and Hirose, 2015; Si:
Gomi et al., 2016; C: Zhang et al., 2018). (C) fcc Fe-alloys at 40 GPa. In
common, solid symbols with solid lines are present nonmagnetic calculations,
gray square symbols with broken line are obtained from present LMD
calculations and open symbols represent previous experiments.

previous experimental results. The impurity resistivities of the
other 12 elements without local magnetic moments show good
agreement with previous experimental results (Friedel, 1956).
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For 3rd period impurity elements located at the right hand
side of Cu in the periodic table, namely Zn, Ga, Ge and As, are
known to follow the Linde’s rule (Norbury, 1921; Linde, 1932),
and our first-principles calculations without local magnetic
moment well reproduce previous experimental results (Friedel,
1956). Our calculations on 13 to 15 group of 2nd and 3rd period
elements, which include the possible candidates of the light
elements alloying with planetary cores (C, N, O, Si, S), also show
the similar trend predicted by the Linde’s rule.

In the Figure 1A, filled squares are present first-principles
calculation without spin-polarization, which show parabola
dependence. Open squares indicate present first-principles with
local magnetic disorder (LMD), which reproduce previous
experimental results (Friedel, 1956). To discuss the Friedel
mode, we computed the partial density of states (PDOS) of
impurity elements in fcc Au (Figure 2). Figure 2A shows the
non-magnetic PDOS of Ti, V, Cr, Mn, Fe, Co, and Ni. In
fcc Au, PDOS of these transition impurities have a sharp
peak at the vicinity of the Fermi level, which is so-called
virtual bond state (VBS) (Friedel, 1956; Mertig, 1999). The
peak position shifts from high energy to low energy with
increasing the atomic number. The impurity resistivities of non-
magnetic fcc Au-based alloys exhibit the maximum coincidence
with the VBS peak across the Fermi energy. Experimental and
LMD impurity resistivity can also be explained by the peak
position relevant to the Fermi energy. Figure 2B represents
the PDOS of Cr with non-magnetic (solid line) and LMD
(broken lines). The impurity resistivity of non-magnetic Cr
is predicted to be 1.0 × 10−7 �m, which is larger than
the experimental value of 4.0 × 10−8 �m. In an opposite
manner, non-magnetic Co impurity resistivity is larger than
experimental and LMD impurity resistivity. The VBS of non-
magnetic Co is a little bit shifted to lower energy compared
with the Fermi energy, but, in LMD state, the VBS split and the
up spin peak move to the Fermi level. This causes the strong
scattering.

Figure 1B shows the impurity resistivities of hcp Fe-based
alloys at the volume of 19.1 Å3, which corresponds to the pressure
of 40 GPa for pure hcp Fe at 300K (Dewaele et al., 2006).
Experimentally determined impurity resistivities of Ni, Si, and
C are also plotted, which is interpolated between binary alloys
(Gomi and Hirose, 2015; Gomi et al., 2016; Zhang et al., 2018)
and pure Fe (Gomi et al., 2013) at ambient temperature. The
present calculations of impurity resistivities of light element
candidates (C, N, O, Si, and S) are almost identical and larger
than Ni impurity resistivity. It is well-known that the impurity
resistivity of 3d transition metal impurity in 3d transition metal
host is small, in general (Tsiovkin et al., 2005, 2006). Among
the light element candidates, the impurity resistivity increases
with increasing atomic number in the same period. Also, in
the same group, the second period atoms show higher impurity
resistivity than third period atoms, which is consistent with the
experimental fact that the impurity resistivity of C (Zhang et al.,
2018) is higher than that of Si (Gomi et al., 2016). This trend
is also observed for fcc Fe-based alloys (Figure 1C). Impurity
resistivity of H seems comparable to the other light elements,
however, it may be overestimate. In this study, we assumed that

FIGURE 2 | Partial density of states (PDOS) of impurity elements in fcc Au.
(A) PDOS of Ti (purple), V (green), Cr (cyan), Mn (orange), Fe (yellow), Co
(blue), and Ni (red) without local magnetic moment. (B) PDOS of Cr with
(broken lines) and without (solid line) local magnetic moment. (C) PDOS of Co
with (broken line) and without (solid line) local magnetic moment.

the all impurity elements substitute the Fe sites. But H is known
to enter the interstitial sites (Antonov et al., 2002; Fukai, 2006).
The partial density of states (PDOS) of interstitial H in hcp
and double hexagonal close-packed (dhcp) Fe is located at far
below the Fermi energy (e.g., Tsumuraya et al., 2012; Gomi et al.,
2018). Therefore, Gomi et al. (2018) argued that the impurity
resistivity of interstitial hydrogen is negligibly small. This is
consistent with recent DAC experiments on fcc FeHx alloys
(Ohta et al., 2018).
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CONCENTRATED ALLOYS

In the previous section, we discussed dilute alloys, however, the
Earth’s core should have a large amount of impurity elements
(e.g., Hirose et al., 2013). Gomi et al. (2016) reported the
resistivity calculation of Fe-Si and Fe-Ni alloys by using the KKR-
CPA method, as well as DAC experiments of Fe-Si alloys. Here,
we show the systematic survey of impurity resistivity of light
element candidates (C, N, O, Si, and S) and Ni in Fe-based
high concentration alloys at zero Kelvin (Figure 3 and Table 1).
Basically, impurity resistivity of light element candidates is
larger than Ni, which agree with dilute alloy results. This can
qualitatively be understood in terms of the broadening of energy
dispersion via the uncertainty relationship between energy and
time; 1E1t ≥ h̄/2, where 1E is the uncertainty in energy, 1t
is electron life time, and h̄ is the reduced Planck’s constant
(the Dirac’s constant) (Gomi et al., 2016). Figure 4 shows the
Bloch spectral function along with the path, which connects the
high symmetry points in the Brillouin zone of the hexagonal
lattice. If there is no scattering, the Bloch spectral function is
equivalent to the band structure of perfectly ordered crystal.
Indeed, the broadening features of Fe-Ni alloys are weaker
than that of other Fe-light elements alloys. At 19.10 Å3 (∼40
GPa), Si shows the largest impurity resistivity, followed by C,
S, and N. The smallest impurity resistivity is obtained from O
impurity among the light element candidates. Note that this
sequential order is completely different from that of dilute alloys
(Figure 1).

This is potentially explained by the variation of the saturation
resistivity due to the chemical composition. The electrical
resistivity of transition metals and alloys tends to saturate at high
resistivity (Mooij, 1973; Bohnenkamp et al., 2002). This resistivity
saturation is observed when the mean free path of conduction
electrons becomes comparable to the inter-atomic distance; this
condition is so-called the Mott-Ioffe-Regel criteria (Mott, 1972;
Gurvitch, 1981). This condition may be graphically identified
from the cross sections of the Bloch spectral function at the Fermi
energy (Figure 5), because the inverse of the mean free path is
proportional to the width of the Fermi surface broadening, and
the boundary of the first Brillouin zone is proportional to the
inverse of the lattice parameter (Butler and Stocks, 1984; Butler,
1985; Banhart et al., 1989; Glasbrenner et al., 2014; Gomi et al.,
2016). Gomi et al. (2016) compared the cross section of Fe-Si
and Fe-Ni alloys, and argued that the non-linear concentration-
resistivity relationship observed in Fe-Ni alloys is explained by
the Nordheim’s rule, whereas that of Fe-Si alloys is due to the
resistivity saturation. Interestingly, the broadening feature of S,
C, N and O impurity alloys are similar to the Si alloy. Especially,
the O alloy’s width seems even larger than that of Si alloy. This
suggests that the high-concentration Fe-O alloys satisfies the
Mott-Ioffe-Regel criteria, even though the impurity resistivity is
smaller than Fe-Si alloy.

We also calculated the impurity resistivity of Fe-Si-S ternary
alloys (Figure 6). The results are consistent with the DAC
measurements by Suehiro et al. (2017). Figure 6 also implies
the violation of the Matthiessen’s rule, which is a simple sum
rule of resistivity of all the scattering terms. The violation of the

Matthiessen’s rule is already reported by previous calculations
(Glasbrenner et al., 2014; Gomi et al., 2016; Drchal et al., 2017).

ELECTRONIC SPECIFIC HEAT AND
WIEDEMANN-FRANZ LAW

Only a few direct thermal conductivity measurements at high
pressure and temperature have been reported (Konôpková et al.,
2011, 2016; McWilliams et al., 2015). Even though the thermal
conductivity can directly be calculated from first-principles
calculations (Sha and Cohen, 2011; de Koker et al., 2012; Pozzo
et al., 2012, 2013, 2014; Pozzo and Alfè, 2016b; Pourovskii et al.,
2017; Wagle et al., 2018; Xu et al., 2018; Yue and Hu, 2018),
the Wiedemann-Franz law has been widely used to estimate
the thermal conductivity of the Earth’s core from the electrical
resistivity measurements (Anderson, 1998; Stacey and Anderson,
2001; Stacey and Loper, 2007; Deng et al., 2013; Gomi et al., 2013,
2016; Seagle et al., 2013; Gomi and Hirose, 2015; Ohta et al.,
2016, 2018; Hieu et al., 2017; Suehiro et al., 2017; Pommier, 2018;
Silber et al., 2018; Zhang et al., 2018) (see Williams, 2018 for a
recent review). The Lorenz number is related to the electronic
band structure (Vafayi et al., 2006; Gomi and Hirose, 2015;
Secco, 2017). Gomi and Hirose (2015) mentioned that the Lorenz
number may have up to ∼40 % uncertainty, based on the first-
principles calculations on the electronic specific heat reported
by Boness et al. (1986). However, this value was calculated only
for pure Fe. Therefore, in this section, we investigated how the
specific heat deviates from its Sommerfeld value for Fe-based
alloys.

At around the ambient temperature, the electronic specific
heat can be estimated based on the Sommerfeld expansion,

cve (T) =
π2

3
k2BD(εF)T (2)

where cve is the electronic specific heat, kB is the Boltzmann
constant, εF is the Fermi energy, D(ε) is the DOS, and
T is temperature. However, this relation is violated at high
temperatures, as in terrestrial planetary cores (Boness et al., 1986;
Boness and Brown, 1990; Tsuchiya and Kawamura, 2002; Lin
et al., 2008). The exact values can be calculated from numerical
integration with the electronic density of state. Following Boness
et al. (1986), we calculated the electronic specific heat from its
definition:

cve (T) =

(

∂ue

∂T

)

v

, (3)

where ue is the internal energy of electrons, which can be
obtained from electron density of state D(ε),

ue (T) =

∫

εf (ε,T)D (ε) dε (4)

and f (ε, T) is the Fermi-Dirac distribution function,

f (ε,T) =
1

exp
{

ǫ−µ(T)
kBT

}

+ 1
. (5)
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FIGURE 3 | Impurity resistivities of concentrated Fe based alloys (A) hcp at 40 GPa, (B) fcc at 40 GPa, (C) hcp at 120 GPa, (D) fcc at 120 GPa, (E) hcp at 1000 GPa,
(F) fcc at 1000 GPa. The alloying elements are Si (purple), Ni (green), S (cyan), C (orange), N (yellow) and O (blue).

The chemical potential µ(T) is obtained from conservation of
number of electrons (ne),

ne =

∫

f (ε,T)D (ε) dε. (6)

Figure 7 shows the electron DOS of Fe-Si alloys and the
corresponding electronic specific heat. In the DOSs of pure
Fe, sharp peaks are observed around the Fermi level. However,
these sharp peaks are broaden by the effect of alloying of
impurity elements (Gomi et al., 2016). In the temperature
dependence of the electronic specific heat of Fe and Fe-Si
alloys (Figures 7B,D,F,H), the solid lines are obtained from

numerical calculation (Equations 3–6), whereas the broken lines
are calculated based on the Sommerfeld expansion (Equation
2). Boness et al. (1986) and Boness and Brown (1990) argued
that both numerical and Sommerfeld values of the electronic
specific heat show linear temperature dependences for hcp Fe for
temperatures below∼2,000K. However, at higher than∼2,000K,
the numerical value increases more rapidly than the Sommerfeld
value, which indicates the violation of the Sommerfeld expansion.
Our calculations for pure Fe broadly reproduce this temperature
dependence (Figure 7B). Such a violation is widely observed
in many metals at extremely high temperature (e.g., Tsuchiya
and Kawamura, 2002; Lin et al., 2008). On the other hand,
as Si content increases, the deviation from the Sommerfeld
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expansion becomes small (Figure 7). This trend is also found
in other Fe-light element alloys. Boness et al. (1986) argued
that the relation between the deviation and the location of
the Fermi level is within the sharp peaks of the DOS. In
this sense, in highly concentrated alloys, these sharp peaks
are smeared out because of impurity scattering. This is the
reason why the deviation from the Sommerfeld expansion is
relatively small in highly concentrated alloys. The Wiedemann-
Franz law is based on the fact that the carrier of both of electric
current and heat is conduction electrons. The pre-factor of
linear temperature dependence attributed to the result of the
Sommerfeld expansion, thus, Gomi and Hirose (2015) pointed
out the deviation of the Lorenz number from its Sommerfeld
value.

Figure 8 represents the deviation of the Lorenz number
of Fe alloyed with Ni or light element candidates as function
of temperature. The representative values at V = 16.27
Å3 and T = 4,000K or 5,500K are summarized in the
Table 2. Broadly speaking, Fe-Si alloys show relatively
large Lorenz number, whereas the alloying O tend to
decrease the Lorenz number. Also, the Lorenz number
decreases with increasing impurity concentration and/or
temperature. These trends are consistent with previous first-
principles molecular dynamics calculation (de Koker et al.,
2012).

It is worth mentioning about the relationship between energy-
dependent conductivity σ (ε) and the Lorenz number. The
thermal conductivity of metals is represented by using the
Onsager’s kinetic coefficient,

Kn =

∫

σ (ε) (ε − µ)n
(

−
∂f

∂ε

)

dε, (7)

the electrical resistivity can be described as

σ = K0, (8)

and the thermal conductivity is

k =
1

e2T

(

K2 −
K2
1

K0

)

(9)

Applying the relaxation time approximation, the energy-
dependent conductivity function can be expressed as

σ (ε) =
e2

3
D (ε) {v (ε)}2 τ (ε) (10)

where D(ε) is the density of states, v(ε) is the group velocity
and τ (ε) is the relaxation-time. Pourovskii et al. (2017) focused
on the energy dependence of the relaxation-time of electron-
electron scattering. They conducted the dynamical mean-
field theory (DMFT) calculations to incorporate the electron
correlation effects and found that the hcp Fe exhibits a nearly
perfect Fermi liquid (FL) behavior, which strongly decrease
the Lorenz number and hence the thermal conductivity. Xu
et al. (2018) also carried out DMFT calculations. Although
they did not observe FL behavior at high temperature, the

TABLE 1 | Impurity resistivity of Fe-alloys at zero Kelvin.

χ (at.%) ρhcp,⊥
(µ�cm)

ρhcp,||
(µ�cm)

ρhcp,poly
(µ�cm)

ρfcc
(µ�cm)

Fe-Si ALLOYS AT V = 9.55 Å3/ATOM (P∼40 GPa).

5 29.11 37.40 31.87 19.47

10 50.85 67.75 56.49 36.25

15 67.70 89.84 75.08 50.24

20 79.95 101.67 87.19 62.76

25 89.73 107.71 95.73 75.06

30 98.45 111.69 102.86 88.03

Fe-Ni ALLOYS

5 8.38 11.61 9.46 5.26

10 18.04 20.50 18.86 11.27

15 24.84 27.84 25.84 16.75

20 29.55 34.00 31.03 21.25

25 33.34 39.21 35.30 25.32

30 36.36 43.43 38.72 28.45

Fe-S ALLOYS

5 31.49 37.61 33.53 21.31

10 48.34 61.42 52.70 38.72

15 56.38 70.47 61.08 50.62

20 60.74 72.76 64.75 57.37

25 63.28 72.41 66.32 61.25

30 64.78 71.19 66.92 63.47

Fe-C ALLOYS

5 30.86 37.45 33.05 20.13

10 50.75 64.91 55.47 36.18

15 62.30 79.62 68.07 48.49

20 69.36 85.28 74.66 57.64

25 74.22 86.90 78.45 64.05

30 77.70 86.65 80.68 68.38

Fe-N ALLOYS

5 31.19 38.11 33.50 21.49

10 46.24 59.67 50.72 35.11

15 54.00 69.07 59.02 43.64

20 58.82 72.79 63.48 49.27

25 62.23 74.12 66.20 53.29

30 64.92 74.52 68.12 56.45

Fe-O ALLOYS

5 30.32 38.16 32.94 21.61

10 42.43 56.01 46.96 34.20

15 48.33 63.30 53.32 41.58

20 52.20 66.62 57.00 46.41

25 55.22 68.53 59.65 49.97

30 57.61 69.85 61.69 52.65

Fe-Si ALLOYS AT V = 8.14 Å3/ATOM (P ∼ 120 GPA).

5 26.82 34.58 29.41 18.22

10 46.62 62.39 51.88 33.59

15 62.08 82.74 68.97 46.44

20 74.07 94.98 81.04 57.92

25 83.55 101.32 89.47 69.12

30 91.98 105.30 96.42 81.03

(Continued)
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TABLE 1 | Continued

χ (at.%) ρhcp,⊥
(µ�cm)

ρhcp,||
(µ�cm)

ρhcp,poly
(µ�cm)

ρfcc
(µ�cm)

Fe-Ni ALLOYS

5 7.79 9.39 8.33 4.70

10 16.87 16.27 16.67 10.49

15 22.00 25.76 23.25 14.98

20 26.49 30.66 27.88 18.75

25 30.01 35.26 31.76 22.48

30 32.70 39.17 34.86 25.47

Fe-S ALLOYS

5 28.88 34.75 30.83 19.52

10 46.10 58.91 50.37 36.04

15 54.75 69.09 59.53 49.10

20 59.49 72.01 63.66 57.15

25 62.24 71.80 65.43 61.32

30 63.87 70.34 66.03 63.30

Fe-C ALLOYS

5 28.60 35.28 30.82 18.63

10 47.58 61.48 52.22 33.43

15 59.42 76.96 65.27 45.27

20 66.91 83.75 72.52 54.99

25 71.97 85.86 76.60 62.62

30 75.54 85.79 78.95 68.20

Fe-N ALLOYS

5 29.59 30.56 29.92 19.99

10 44.10 56.67 48.29 33.21

15 51.22 65.48 55.97 41.39

20 55.21 68.22 59.54 46.65

25 57.88 68.77 61.51 50.34

30 59.92 68.56 62.80 53.16

Fe-O ALLOYS

5 28.61 33.23 30.15 20.20

10 39.67 51.43 43.59 31.85

15 44.77 58.07 49.20 38.69

20 48.15 61.04 52.44 43.23

25 50.79 62.67 54.75 46.57

30 53.02 63.83 56.62 49.19

Fe-Si ALLOYS AT V = 4.90 Å3/ATOM (P∼1,000 GPA).

5 17.83 20.32 18.66 12.24

10 30.13 36.60 32.29 22.49

15 39.60 48.54 42.58 31.36

20 47.84 57.28 50.98 39.29

25 55.60 64.51 58.57 46.80

30 63.12 71.51 65.92 54.36

Fe-Ni ALLOYS

5 4.87 5.38 5.04 2.98

10 9.48 10.18 9.71 6.21

15 13.60 14.67 13.95 8.92

20 16.66 18.79 17.37 11.46

25 19.14 22.27 20.19 14.00

30 21.29 25.03 22.53 16.10

(Continued)

TABLE 1 | Continued

χ (at.%) ρhcp,⊥
(µ�cm)

ρhcp,||
(µ�cm)

ρhcp,poly
(µ�cm)

ρfcc
(µ�cm)

Fe-S ALLOYS

5 19.03 21.11 19.72 12.88

10 31.78 38.30 33.95 23.85

15 41.40 51.35 44.72 33.72

20 48.72 60.63 52.69 43.18

25 53.94 66.41 58.09 52.23

30 58.19 69.22 61.87 58.84

Fe-C ALLOYS

5 19.11 21.10 19.77 12.43

10 31.05 37.05 33.05 22.27

15 40.35 49.32 43.34 30.34

20 48.49 61.30 52.76 37.55

25 51.74 71.76 58.42 44.55

30 54.73 72.70 60.72 51.64

Fe-N ALLOYS

5 20.48 22.30 21.08 13.31

10 31.37 37.34 33.36 23.45

15 37.51 46.04 40.35 31.00

20 39.96 49.63 43.18 36.42

25 41.96 50.92 44.95 40.18

30 44.01 51.44 46.48 42.79

Fe-O ALLOYS

5 20.15 22.56 20.95 14.03

10 28.10 34.64 30.28 22.95

15 32.20 40.61 35.00 28.80

20 35.03 43.81 37.96 33.03

25 37.44 45.78 40.22 36.26

30 39.58 47.14 42.10 38.77

energy dependence of the relaxation-time reduced the Lorenz
number by 20–45% of the Sommerfeld value. Yue and Hu
(2018) calculated the thermal conductivity of hcp Fe based on
the non-equilibrium ab initio molecular dynamics (NEAIMD)
simulation, which simultaneously incorporates the electron-
phonon and electron-electron scattering. On the other hand,
the present study focused on the energy dependence of the
DOS, via the electronic specific heat, which also relates to the
energy dependent conductivity as Equation (10). These recent
theoretical assessments on the Lorenz number have been partly
motivated by the inconsistency of experimental results between
the electrical resistivity measurement by Ohta et al. (2016) and
the thermal conductivity measurements by Konôpková et al.
(2016) (see also Dobson, 2016). The theoretical works are broadly
consistent with the experimental result of low resistivity (Ohta
et al., 2016), however, failed to reproduce the low thermal
conductivity (Konôpková et al., 2016). Pourovskii et al. (2017)
reported k = 190 W/m/K for hcp Fe at the inner core boundary
(ICB) condition. Xu et al. (2018) suggested k = 97 W/m/K
for hcp Fe at the CMB. Yue and Hu (2018) obtained k ∼ 190
W/m/K for hcp Fe at both of the CMB and ICB. These values
are significantly higher than k = 33 and 46 W/m/K at the CMB
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FIGURE 4 | The band structure of hcp Fe-based alloys with the volume of 19.10 Å3 (∼40 GPa). The Fermi energy is set to be 0 Ry. The compositions are (A)
Fe0.95Si0.05, (B) Fe0.85Si0.15, (C) Fe0.70Si0.30, (D) Fe0.95Ni0.05, (E) Fe0.85Ni0.15, (F) Fe0.70Ni0.30, (G) Fe0.95S0.05, (H) Fe0.85S0.15, (I) Fe0.70Si0.30, (J)
Fe0.95C0.05, (K) Fe0.85C0.15, (L) Fe0.70C0.30, (M) Fe0.95N0.05, (N) Fe0.85N0.15, (O) Fe0.70N0.30, (P) Fe0.95O0.05, (Q) Fe0.85O0.15 and (R) Fe0.70O0.30.
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FIGURE 5 | The cross section of the Bloch spectral function at the Fermi energy (Fermi surface) of hcp Fe-based alloys with the volume of 19.10 Å3 (∼40 GPa). The
compositions are (A) Fe0.95Si0.05, (B) Fe0.85Si0.15, (C) Fe0.70Si0.30, (D) Fe0.95Ni0.05, (E) Fe0.85Ni0.15, (F) Fe0.70Ni0.30, (G) Fe0.95S0.05, (H) Fe0.85S0.15, (I)
Fe0.70Si0.30, (J) Fe0.95C0.05, (K) Fe0.85C0.15, (L) Fe0.70C0.30, (M) Fe0.95N0.05, (N) Fe0.85N0.15, (O) Fe0.70N0.30, (P) Fe0.95O0.05, (Q) Fe0.85O0.15 and (R)
Fe0.70O0.30.
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FIGURE 6 | Impurity resistivity of hcp Fe100−xSix binary (green) and
Fe95−xSixS5 ternary (purple) alloys as a function of silicon content at the
volume of 19.10 Å (∼40 GPa) and zero Kelvin. Gray broken line shows the
sum of the resistivity of Fe95S5 and Fe100−xSix (the Matthiessen’s rule). The
orange cross represents the resistivity of hcp Fe89.3Si5.7S5.0 alloy measured
at ∼40 GPa and ambient temperature (Suehiro et al., 2017).

and ICB, respectively (Konôpková et al., 2016). This situation is
not altered by considering the effect of alloying on the energy
dependence of DOS obtained by this study, and the uncertainties
due to the deviation from the Sommerfeld value may be smaller

ρph,ideal (V ,T) = B (V)

(

T

2D (V)

)5 ∫ 2D(V)
T

0

x5dx

(exp (x) − 1)(1− exp (−x))
(14)

than 30% for the Earth’s core (see Table 2). Therefore, we
conclude that, even though it is a not good approximation for
pure Fe, the Sommerfeld value is a good proxy of the Lorenz
number of the planetary cores.

ELECTRICAL RESISTIVITY AND THERMAL
CONDUCTIVITY OF THE EARTH’S CORE

In the section Concentrated Alloys, we computed the impurity
resistivity of Ni and light element candidates (C, N, O, Si, and
S). In the section Electronic Specific Heat and Wiedemann-
Franz Law, we computed the electron DOS of Fe-based
alloys to estimate the Lorenz number, which varies with
pressure, temperature, impurity species and concentration. In
this section, we first calculated the total resistivity of the
Earth’s core by combining the impurity resistivity and phonon-
contributed resistivity following Gomi et al. (2016). Then, we
estimated the thermal conductivity via the Wiedemann-Franz
law (Equation 1) using the present resistivity and the Lorenz
number.

The total electrical resistivity was calculated from the Cote
and Meisel (1978) model combined with the present impurity
resistivity and the phonon-contributed resistivity modeled by
Gomi et al. (2013, 2016, 2018).

ρtot(V ,T) =

(

1−
ρtot (V ,T)

ρsat (V)

)

ρph,ideal(V ,T)

+ ρimp(V) exp(−2W(V ,T)) (11)

where ρtot(V, T) is the total electrical resistivity, ρsat(V) is
the saturation resistivity, ρph,ideal(V, T) is the “ideal” phonon-
contributed resistivity, which neglects the effect of the resistivity
saturation, ρimp(V) is the impurity resistivity, and exp(−2W(V,
T)) is the Debye Waller factor, which gives the temperature
dependence of the impurity resistivity. Because the resistivity
saturation phenomena occurs when the mean free path becomes
comparable to the inter atomic distance, the saturation resistivity
may scale by V1/3 (Gomi et al., 2013)

ρsat (V) = ρsat (V0)

(

V

V0

)
1
3

(12)

where ρsat(V0) = 1.68 × 10−6 �m is the saturation resistivity
of bcc and fcc Fe-based alloys (Bohnenkamp et al., 2002). The
phonon-contributed resistivity of hcp Fe at ambient temperature
was obtained from previous measurement (Gomi et al., 2013) as

ρ (V , 300 K) = 5.26× 10−9 ×

(

1.24−
V

V0

)−3.21

�m (13)

The “ideal” phonon-contributed resistivity can be
extrapolated from the ambient temperature resistivity by
using the Bloch-Grüneisen formula,

where B(V) is the material constant, which can be obtained from
Equation (13), and ΘD(V) is the Debye temperature (Dewaele
et al., 2006). Assuming the Debye model, W(V, T) can be
calculated as Markowitz (1977)

W(V ,T) =
3ℏ2K2T2

2mkB2
3
D

∫

2D
T

0

(

1

exp (x) − 1
+

1

2

)

xdx (15)

where h is the reduced Planck’s constant (the Dirac’s constant),
m is the atomic mass, K(V) ∼ π /a is the electronic wave vector
transfer, where a is the lattice parameter. The impurity resistivity
ρimp(V) is obtained from the present DFT calculations of hcp
Fe-based alloys. The resistivity of the solid Fe alloy depends on
the crystal structure (Figures 1, 3). The crystal structure of Fe at
the Earth’s core pressure is known to be hcp (Tateno et al., 2010;
Smith et al., 2018). However, its stability field may be influenced
by further compression (Stixrude, 2012). Alloying elements also
affect the crystal structure: Ni extends the stability field of fcc
phase (Kuwayama et al., 2008), H stabilizes dhcp structure (Gomi
et al., 2018) and Si favors B2 or body-centered cubic (bcc)
structure (Tateno et al., 2015; Ozawa et al., 2016). Recent shock
compression experiments on Fe with 15 wt.% Si suggest that
bcc structure is stable at the center of super-Earth with three
times Earth mass (Wicks et al., 2018). Although the solid phase
crystal structure is important, we simply assumed that the hcp Fe
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FIGURE 7 | Density of states (DOS) (A,C,E,G) and corresponding electronic specific heat (B,D,F,H). Green broken lines represent the electronic specific heat
obtained from the Sommerfeld expansion.

alloys are good proxy. The spin disorder scattering is potentially
important (Drchal et al., 2017), especially for small planets with
hydrogen containing core (Gomi et al., 2018). But in this study,
we neglect this effect. It is known that the resistivity change upon
melting is very small for transition metals at 1 bar (e.g., Van
Zytveld, 1980). Van Zytveld (1980) reported that the resistivity
increase upon melting is ∼8% for Fe. The ratio of resistivity
between liquid and solid phase at themelting temperature, ρL/ρS,
is generally very close to unity for transition metals, but it
is also known to be ∼1.5 for alkali metals and ∼2 for noble
metals (Mott, 1934; Cusack and Enderby, 1960; Faber, 1972). This
systematic trend was also confirmed by Secco and co-workers

at high pressure (Ezenwa and Secco, 2017a,b,c; Ezenwa et al.,
2017; Silber et al., 2017, 2018). Mott (1934) considered that the
resistivity change uponmelting is related to the entropy of fusion,
and semi-empirically formulated as follows:

ρL

ρS
= exp

(

2Sm
3R

)

(16)

where Sm is the entropy of fusion and R is the gas constant. This
model shows good agreement with large resistivity ratio observed
in alkali and noble metals, however, it cannot account the small
degree of the resistivity jump of transition metals. One possible

Frontiers in Earth Science | www.frontiersin.org 12 November 2018 | Volume 6 | Article 217

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Gomi and Yoshino Impurity Resistivity of Fe Alloys

FIGURE 8 | The deviation of the Lorenz number from the Sommerfeld value predicted by the electronic specific heat of hcp Fe0.95X0.05, Fe0.85X0.15 and
Fe0.70X0.30, where X is Si (purple), Ni (green), S (cyan), C (orange), N (yellow) and O (blue) at the volume of V = 19.10 Å3 (P ∼ 40 GPa at 300K) (A–C), 16.27 Å3

(P∼120 GPa at 300K) (D–F) and 9.80 Å3 (P∼1,000 GPa at 300K) (G–I). Black broken lines are pure Fe for comparison.

modification of this model is the incorporation of the effect
of the resistivity saturation (Mott, 1972); the solid transition
metals exhibit already large electrical resistivity at the melting
temperature, which is comparable to the saturation resistivity.
As a result the saturation suppresses the resistivity jump upon
melting. The other model was proposed by Wagle and Steinle-
Neumann (2018) based on the Ziman approximation (Ziman,
1961), which yields the following equation

ρL

ρS
=

(

KT,L

KT,S

)−1
(

ρden
L

ρden
S

)−2

(17)

where KT ,L and KT ,S are the isothermal bulk modulus, ρden
L and

ρden
S are the density of liquid and solid metal, respectively. This

model can reasonably reproduce the small jump of transition
metals, as well as the large contrast of simple metals (e.g., Na
and Al). However, it systematically underestimates the resistivity
ratio of closed d-shell metals (Zn and noble metals). These two
models may be verified by investigating the pressure dependence
of the resistivity ratio. If the former model is correct, the

resistivity ratio may increase with increasing pressure, because
the resistivity of hcp Fe decreases faster than theV1/3 dependence
of the saturation resistivity (Gomi et al., 2013). On the other
hands, if the latter model is correct, the resistivity ratio may
not significantly change (Wagle and Steinle-Neumann, 2018).
The results of high-pressure melting experiments are still
controversial. Secco and Schloessin (1989), Silber et al. (2018),
and Ezenwa and Secco (2017c) measured the resistivity of Fe
and Co, respectively. These measurements on transition metals
verified the small degree of the resistivity jump upon melting
even at high pressure 12 GPa. Deng et al. (2013) also measured
the resistivity of Fe, but their results seem to have large resistivity
enhancement upon melting at the identical pressure. Pommier
(2018) reproduced the Deng et al. (2013)’s results at 4.5 GPa.
Ohta et al. (2016) carried out the melting experiments in a laser-
heated diamond-anvil cell showing∼20% increase upon melting
at 51 GPa. Bi et al. (2002) measured the electrical resistivity of
shock induced melting of Fe with melt fraction of 0.7 at 208 GPa.
The resultant resistivity values follow the general trend obtained
in the solid phase region along the Hugoniot, which suggests
the absence of large resistivity change upon melting. In this
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TABLE 2 | Transport properties of Fe-alloys at the Earth’s outer core (V = 16.27 Å3).

χ (at.%) T = 4,000K T = 5,500 K

ρ (µ�cm) L/Lsomm k (W/m/K) ρ (µ�cm) L/Lsomm k (W/m/K)

Fe-Si ALLOYS

5 70.92 1.331 183.41 79.93 1.268 213.21

10 85.00 1.241 142.62 92.20 1.172 170.74

15 95.71 1.172 119.67 101.53 1.099 145.48

20 103.27 1.116 105.59 108.12 1.042 129.46

25 108.56 1.065 95.85 112.72 0.991 118.13

30 112.91 1.021 88.36 116.51 0.949 109.41

Fe-Ni ALLOYS

5 57.71 1.354 229.24 68.43 1.292 253.68

10 62.94 1.238 192.17 72.98 1.171 215.55

15 67.06 1.145 166.83 76.57 1.077 188.95

20 69.96 1.058 147.76 79.10 0.990 168.14

25 72.39 0.985 132.92 81.22 0.916 151.62

30 74.34 0.923 121.29 82.91 0.854 138.37

Fe-S ALLOYS

5 71.81 1.321 179.80 80.71 1.255 208.93

10 84.05 1.203 139.80 91.38 1.129 166.04

15 89.79 1.099 119.60 96.38 1.023 142.64

20 92.38 1.025 108.41 98.63 0.947 129.01

25 93.49 0.973 101.69 99.60 0.894 120.59

30 93.87 0.935 97.31 99.93 0.856 115.07

Fe-C ALLOYS

5 71.80 1.309 178.16 80.70 1.245 207.24

10 85.21 1.205 138.22 92.39 1.135 165.01

15 93.39 1.128 118.08 99.51 1.055 142.39

20 97.93 1.063 106.07 103.47 0.988 128.32

25 100.49 1.011 98.28 105.70 0.936 118.94

30 101.96 0.970 93.00 106.98 0.896 112.53

Fe-N ALLOYS

5 71.24 1.262 173.05 80.21 1.194 199.99

10 82.75 1.162 137.23 90.24 1.084 161.44

15 87.56 1.095 122.17 94.43 1.011 143.87

20 89.80 1.046 113.85 96.38 0.960 133.77

25 91.04 1.011 108.54 97.46 0.924 127.35

30 91.84 0.985 104.84 98.16 0.899 123.05

Fe-O ALLOYS

5 71.38 1.274 174.43 80.34 1.196 199.98

10 79.81 1.142 139.85 87.68 1.050 160.93

15 83.32 1.055 123.71 90.74 0.953 141.14

20 85.35 0.997 114.11 92.51 0.887 128.87

25 86.80 0.955 107.55 93.77 0.839 120.25

30 87.97 0.924 102.69 94.79 0.803 113.76

study, we assume that the resistivity difference between liquid and
solid Fe-alloys is very small. This may be good approximation,
because, even if the former model is correct, the total core
resistivity may be close to the saturation resistivity because
of large impurity resistivity. Finally, the thermal conductivity
is calculated via the Wiedemann-Franz law (Equation 1) with
the predicted Lorenz number from the electronic specific heat
(see section Electronic Specific Heat and Wiedemann-Franz
Law).

Figure 9 illustrates the electrical resistivity of Fe alloyed with
5, 15, or 30 atomic % impurity elements at the volume of
19.10, 16.27, and 9.80 Å3. The electrical resistivity increases with
increasing impurity concentration. The impurity resistivity of Si
is the largest and that of Ni is the smallest, as already discussed in
the section Concentrated Alloys. The electrical resistivity is also
enhanced at high temperatures following the Bloch-Grüneisen
formula (Equation 14). At high resistivity ∼100 µ�cm, the
total resistivity saturates. The saturation resistivity decreases with
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FIGURE 9 | Electrical resistivity of hcp Fe0.95X0.05, Fe0.85X0.15, and Fe0.70X0.30, where X is Si (purple), Ni (green), S (cyan), C (orange), N (yellow), and O (blue) at the
volume of V = 19.10 Å3 (P∼40 GPa at 300K) (A–C), 16.27 Å3 (P ∼ 120 GPa at 300K) (D–F), and 9.80 Å3 (P ∼ 1,000 GPa at 300K) (G–I). Black broken lines are
pure Fe for comparison.

increasing pressure via the Equation (12). Figure 10 represents
the thermal conductivity of Fe alloyed with 5, 15, or 30 atomic
% impurity elements at the volume of 19.10, 16.27, and 9.80
Å3. The temperature and impurity concentration dependences
of the thermal conductivity are more complicated compared
with the electrical resistivity. At low temperatures smaller
than ∼5,000K, the thermal conductivities of Fe based alloys
have positive temperature coefficient because of the following
reason. First, it should be noted that the Wiedemann-Franz law
(Equation 1) predicts the linear temperature dependence, if the
electrical resistivity and the Lorenz number are independent of
temperature. This condition is nearly satisfied for the electrical
resistivity of Fe-light element alloys because, at low temperatures,
the impurity resistivity is predominant. Also, as shown in
Figure 8, the Lorenz number exhibits positive temperature
coefficient. Combining these two temperature effects, the thermal
conductivity initially increases with increasing temperature.
Above 5,000K, the thermal conductivity becomes insensitive
to temperature. The temperature coefficient of the resistivity
becomes small due to the resistivity saturation (Figure 9),
whereas the Lorenz number tends to decrease with increasing

temperature (Figure 8). Therefore, the effects of temperature
on the Lorenz number and the linear temperature factor in
the Wiedemann-Franz law are canceled out, which result in
the nearly constant thermal conductivity at high temperature.
Table 2 summarized the electrical resistivity, the Lorenz number
and the thermal conductivity of Fe alloys at V = 16.27 Å3 and
T = 4,000 or 5,500K, which correspond to the Earth’s outer core
conditions. Considering the compositional effects, our preferred
thermal conductivity is higher than∼90 W/m/K.

HEAT FLUX AT THE CMB OF
SUPER-EARTHS

The recent developments of astronomical observation can allow
to find many terrestrial exoplanets. The exoplanets with the
masses of <10 times the Earth’s mass (ME) are so-called super-
Earths (e.g., Valencia et al., 2007; Charbonneau et al., 2009).
Some of these planets locate within the habitable zone, suggesting
the presence of liquid water at the surface of the planet (e.g.,
Anglada-Escudé et al., 2012; Gillon et al., 2017). In term of the
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FIGURE 10 | Thermal conductivity of hcp Fe0.95X0.05, Fe0.85X0.15, and Fe0.70X0.30, where X is Si (purple), Ni (green), S (cyan), C (orange), N (yellow), and O (blue) at
the volume of V = 19.10 Å3 (P∼40 GPa at 300K) (A–C), 16.27 Å3 (P∼120 GPa at 300K) (D–F), and 9.80 Å3 (P∼1,000 GPa at 300K) (G–I). Black broken lines are
pure Fe for comparison.

surface habitability, the existence of the global magnetic fields is
a necessary condition. The planetary magnetic field is generated
via the geodynamo driven by thermal and/or chemical convective
motion in the liquid outer core. If super-Earths have thermally
driven geodynamo, the heat flux through the bottom of mantle,
qCMB, must be higher than the conductive heat flux along the
adiabatic temperature gradient at the top of their core

qs = k

(

∂T

∂r

)

S

= k
ρdengγ

KS
T (18)

where k is the thermal conductivity, ρden is the density, g is the
gravity, γ is the Grüneisen parameter and KS is the adiabatic
bulk modulus. Morard et al. (2011) suggested the absence of
liquid core in the super Earth from the first-principles calculation
of melting temperature of Fe. Many studies investigated the
mantle convection in the super-Earths with varying physical
quantities. The effects of depth increasing mantle viscosity
(Tackley et al., 2013), thermal conductivity (Kameyama and
Yamamoto, 2018) and compressibility (CíŽková et al., 2017)

suppress the mantle convection in the deep portion of the super-
Earths. The phase transitions of mantle materials with negative
Clapeyron slope also contribute as a stratification of the mantle
(Umemoto et al., 2006; Tsuchiya and Tsuchiya, 2011; McWilliams
et al., 2012). On the other hand, Stixrude (2014) argued the
energetics of accretion, giant impact and core formation events
of the super-Earths, and concluded that the mantle convection is
sufficiently vigorous to sustain the geodynamo. Miyagoshi et al.
(2017) demonstrated the occurrence of thermal convection in
the mantle of super-Earth from numerical mantle convection
simulations with initially hot shallow mantle conditions, which is
expected due to giant impacts. Tachinami et al. (2011) calculated
the thermal evolution of the cores of super-Earths coupled
with the mixing-length theory for the mantle convective heat
transfer, in order to discuss the possibility of the thermally
driven geodynamo. However, they adopted the core thermal
conductivity of k = 40 W/m/K, which is one order smaller than
the present estimate for the 10 Earth mass planet. The purpose
of this section is to calculate the conductive heat flux at the top
of the liquid core of super-Earths with high thermal conductivity
inferred from the previous sections.
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To calculate the energy balance in the super-Earths, one-
dimensional density and temperature model is required (e.g.,
Valencia et al., 2006; Papuc and Davies, 2008; Tachinami et al.,
2011). In this study, we read the density profile of super-Earths
from Figure 1 of Tachinami et al. (2011). Hence, the planetary
masses of our model are 0.1, 0.2, 0.5, 1, 2, 5, and 10 times to the
Earth’s mass (ME). The gravity profile can be calculated from

g(r) = G
M(r)

r2
(19)

where G = 6.67408 × 10−11 m3/kg/s2 is the gravitational
constant,M(r) is the inner mass of the radial position r. The mass
of the inner core Mc is assumed to be 30% of the planetary mass
Mp. The pressure-density relation at the reference temperature
T0 = 300K is given by the Vinet equation of state (EOS):

P(ρden,T0) = 3K0
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ρden
0

ρden
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(20)

where ρden
0 , K0 and K ′

0 are density, bulk modulus and its
pressure differentiation at zero pressure, respectively. These
parameters are given as ρden

0,Fe = 8,300 kg/m3, K0,Fe = 164.8 GPa

and K ′
0,Fe = 5.33 for Fe liquid, whereas ρden

0,FeS = 5,330 kg/m3,
K0,FeS = 126 GPa and K ′

0,FeS = 4.8 for FeS liquid (see Tachinami
et al., 2011 and references therein). The EOS parameters for the
outer core of Fe-FeS liquid mixture are given as function of mass
fraction of S as

xFeS = xS
ZFe + ZS

ZS
(21)

ρden
0,OC =

(

1− xFeS

ρden
0,Fe

+
xFeS

ρden
0,FeS

)−1

(22)

K0,OC =
1

ρden
0,OC

1
1− xFeS

ρden
0,Fe

1

K0,Fe
+

xFeS

ρden
0,FeS

1

KFeS

(23)

K′
0,OC = −1+ ρden

0,FeK
2
0,OC

(

1− xFeS

ρden
0,Fe

1+ K′
0,Fe

K2
0,Fe

+
xFeS

ρden
0,FeS

1+ K′
0,FeS

K2
0,FeS

)

(24)

where xFe, xFeS are mass fractions of Fe and FeS, ZFe = 55.845
and ZS = 32.065 are mass of Fe and S. Following Tachinami et al.
(2011), we assumed the bulk S content is set to be x0S = 0.1 and
also assumed that S completely partition into the outer core, the
mass fraction of S can be calculated as

xS = x0S
Mc

Mc −Mic
(25)

where Mc and Mic are the mass of bulk and inner core,
respectively. In this study, we only considered the situation that

Mic = 0.06 Mc, which is close to the present Earth’s value.
This leads xS = 0.10638. Our assumption of pure Fe inner
core may look unrealistic, however, note that the present heat
flux calculation does not refer the chemical composition of
the inner core. The isothermal bulk modulus at the reference
temperature is obtained by differentiation of the Vinet density-
pressure equation of states:
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The thermal effect on the equation of states is incorporated as
the thermal corrections by the Mie-Grüneisen equation with the
Debye model as:

P
(

ρden,T
)

= P
(

ρden,T0

)

+ 1Pth(ρ
den,T) (27)

1Pth

(

ρden,T
)

=

( γ

V

) (

Eth

(

ρden, T
)

− Eth(ρ
den,T0)

)

(28)

Similarly, the thermal effect on the isothermal bulk modulus is
represented as follows (Stixrude and Lithgow-Bertelloni, 2005):

KT

(

ρden,T
)

= KT

(

ρden,T0

)

+ 1KT(ρ
den,T) (29)
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2D

)3 ∫ 2D
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x3

exp (x) − 1
dx (31)
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= 9nkB

(

T

2D

)3 ∫ 2D
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0

x4 exp(x)
(

exp (x) − 1
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where V is the molar volume (1/V = ρden/V0ρ
den
0 ).

KS = KT(1 + 1αγT) (33)

α =
γCv

VKT
(34)

The Grüneisen parameter can be calculated as follows:

γ = γ0

(

ρden
0

ρden

)q

(35)
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FIGURE 11 | (A) Thermal conductivity of terrestrial planets at the top of the
core as functions of planetary mass normalized to the Earth’s mass (ME).
Purple line with circles indicates present estimate. Gray broken line represents
previous scaling (Stixrude, 2014). (B) The heat flux at the CMB as a function of
planetary mass. Purple solid line with circles indicates conductive heat flux
along the isentropic temperature gradient at the top of the core. Green broken
lines indicate the calculated heat flux across the thermal boundary layer (TBL)
at the bottom of the mantle with assumed viscosity (see text). Gray broken line
shows the previous estimate of the heat flux across the TBL (Stixrude, 2014).

with the parameter values of γ 0 = 1.36 and q= 0.91 for the outer
core liquid (see Tachinami et al., 2011 and references therein).
The melting temperature of Fe at the ICB is estimated based on
Anzellini et al. (2013) as

Tm,Fe = TTP

(

P − PTP

161.2
+ 1

)
1

1.72

(36)

where PTP = 98.5 GPa and TTP = 3,712K. This extrapolation
is same as the first-principles calculation (Morard et al., 2011).
The ICB temperature should be equal to the melting temperature
of Fe-S alloy at the ICB pressure, which may be lower than
the melting temperature of pure Fe. Such melting temperature
depression is expressed as TICB = (1 – χS)Tm,Fe (Usselman,
1975; Stevenson et al., 1983). Assuming the adiabatic temperature
gradient, the temperature profile can be calculated by solving the

following ordinary differential equation:

dT

dr
= −

ρdengγ

KS
T (37)

We estimated the thermal conductivity of the top of the
core of super-Earths from KKR-CPA calculation of Fe82.83S37.13
alloys combined with phonon scattering (see section Electrical
Resistivity and Thermal Conductivity of the Earth’s Core)
(Figure 11A). The thermal conductivity of 1 ME planet is
calculated to be k = 124 W/m/K. The thermal conductivity
increases with increasing planetary mass, and is k = 361 W/m/K
for the 10 ME planet. Stixrude (2014) extrapolate the thermal

conductivity from Pozzo et al. (2012), which yields k ∝ M
1
2
p . Our

thermal conductivity values are basically consistent with Stixrude
(2014). The actual heat flux across the CMB is regulated by the
thermal conduction at the thermal boundary layer (TBL) located
at the bottom of the mantle.

qTBL = kTBL
1TTBL

δ
(38)

where kTBL = 10 W/m/K is the thermal conductivity of the TBL,
1TTBL is the temperature difference between top and bottom of
the TBL, and δ is the thickness of the TBL. To discuss the thermal
convection in the mantle, a dimensionless number, Ra, which is
so-called the Rayleigh number, is usually used.

Ra =
ρdengα1Td3

κη
(39)

where 1T and d are the temperature difference and thickness
between top and bottom of the layer, respectively, κ is the thermal
diffusivity, and η is the viscosity. Note that

κ =
k

ρdenCp
(40)

where CP is the isobaric specific heat. According to the thermal
boundary layer theory, the thickness of the TBL can be estimated
from the condition that the local Rayleigh number of the TBL,
Ral is nearly equal to the critical Rayleigh number Rac, which is
∼650 for thermal convection.

Ral =

(

ρgα

κη

)

l

δ31TTBL ∼ Rac ∼ 650 (41)

The temperature profile of the mantle is calculated from
the adiabatic temperature gradient with assumed potential
temperature to be 1,600K. Figure 11B plots the conductive heat
flux at the top of the liquid core as function of the planetary mass
normalized by the Earth’s mass (Equation 18). The conductive
flux increases rapidly with increasing the planetary mass, mainly
because of the internal temperature. The green broken lines
indicate the total core cooling across the CMB (Equation 38),
which strongly depends on the mantle viscosity. The calculated
TBL heat flux values are qTBL = 111, 54 and 26 mW/m2 forMp =

1ME planet with the viscosity values of η = 1022, 1023, and 1024
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Pa·s, respectively. These values correspond to the Earth’s CMB
heat flux, which is ranging from 33 to 99 mW/m2 (5–15 TW)
(e.g., Lay et al., 2008). At 1 ME, the core conductive heat flux is
comparable or larger than the thermal boundary layer heat flux.
In this case, the liquid core may partly stratify (Labrosse et al.,
1997; Lister and Buffett, 1998; Pozzo et al., 2012; Gomi et al.,
2013; Labrosse, 2015; Nakagawa, 2017), which is consistent with
seismic observation (Tanaka, 2007; Helffrich and Kaneshima,
2010). Considering increase of core thermal conductivity with
depth, before the onset of the inner core growth, the fluid core
tends to be stratified from the bottom (Gomi et al., 2013).
This in turn means that purely thermal buoyancy cannot drive
the convection, if the top of the core is subisentropic. Hence,
additional chemical buoyancies are necessary to maintain the
geodynamo. In our Earth, the chemical buoyancy arising from
the growing inner core contributes large portion of geodynamo
efficiency (e.g., Lister and Buffett, 1995; Labrosse, 2015). Recently,
MgO or SiO2 precipitation is proposed for another source of
chemical buoyancy (O’rourke and Stevenson, 2016; Hirose et al.,
2017). Assuming that the mantle viscosity is independent of
the planetary mass, the magnitude relation between the core
adiabatic heat flux and the TBL heat flux ofMp > 1ME is similar
to that ofMp = 1ME, which suggests that the similar situation is
predicted in the super-Earths: thermally stratified layer at the top
of the liquid core and a requirement of chemical buoyancies for
geodynamo.

In this study, we considered only one specific scenario
with many assumptions, however, many scenarios should be
considered because of large uncertainties of material properties
other than the thermal conductivity of the core. One of
the most important uncertainty may be caused by viscosity
of the mantle (Tachinami et al., 2011; Tackley et al., 2013).
Experimental and theoretical studies suggested that the lattice
thermal conductivity of the mantle strongly depends on pressure,
temperature and phase transitions (Manthilake et al., 2011; Ohta
et al., 2012; Dekura et al., 2013). In addition to the lattice
thermal conductivity, the radiative conductivity may become
important because it is expected to enhance with temperature,
although the value is controversial (Goncharov et al., 2008;
Keppler et al., 2008). Since we are interested in the super-
Earth located within the habitable zone that have the surface
liquid water, we assumed that the mantle potential temperature
may be comparable to that of the Earth T = 1,600K. On the
other hand, Stixrude (2014) suggests a higher mantle potential
temperature due to accretion. Miyagoshi et al. (2017) concluded
that if shallow part of the mantle was hotter than the adiabatic
temperature extrapolated from the deeper mantle at the initial
stage of mantle convection, such layered structure continues
more than several billion years. Furthermore, if the temperature
is sufficiently high to melt the mantle material, dynamo process
in the magma ocean can also be possible due to high electrical
conductivity of melt (McWilliams et al., 2012; Soubiran and
Militzer, 2018). Similarly, the core temperature is also uncertain.
We just assumed the inner core radius to determine the core
adiabat, however, Morard et al. (2011) suggested that the core
temperature is too low to melt the metallic core. The internal
temperature should vary with time. Therefore, simulations of

coevolution of thermally coupled mantle and core are needed for
the future work.

SUMMARY

We conducted KKR-CPA-DFT calculations of impurity
resistivity of Fe-based light elements (C, N, O, Si, S) or Ni alloys,
which is consistent with recent diamond-anvil cell experiments
(Gomi and Hirose, 2015; Gomi et al., 2016; Suehiro et al.,
2017; Zhang et al., 2018). The results suggest that impurity
resistivity of Si is the largest among the light elements candidates,
followed by C, S, N, and O (Figure 3). This may be due to the
variation of the saturation resistivity on composition (Figure 5).
The impurity resistivity of Ni is smaller than that of five light
elements candidates. The resistivity calculation on Fe-Si-S
ternary alloys suggests the violation of the Matthiessen’s rule
(Figure 6). We also computed the electronic specific heat of Fe
alloys, which show the violation of the Sommerfeld expansion
(Boness et al., 1986) with low impurity concentration. However,
the degree of deviation becomes smaller with increasing impurity
concentration (Figures 7, 8), which suggests that the Sommerfeld
value of the Lorenz number may be good approximation at the
terrestrial cores. The implausibility of geodynamo motion in
the super-Earths has been discussed in terms of the absence of
mantle convection (Tachinami et al., 2011; CíŽková et al., 2017;
Kameyama and Yamamoto, 2018). The present study, on the
other hand, focused on the thermal conductivity of the core. We
modeled the thermal conductivity to be higher than∼90W/m/K
for the Earth’s outer core (Table 2). For the super-Earth with 10
ME, the thermal conductivity of the top of the core is estimated
to be 361 W/m/K (Figure 11A), which is one order higher than
the value of k = 40 W/m/K, which adopted previous thermal
evolution calculation (Tachinami et al., 2011) and is consistent
with result from recent scaling calculation (Stixrude, 2014). The
resultant conductive heat flux at the top of the liquid core of
terrestrial planets as function of planetary mass is compared
with the heat flux across the thermal boundary layer (TBL) at the
bottom of mantle (Figure 11B). The present result suggests the
absence of the thermal convection in the core, which predicts
the presence of the thermally stratified layer at the top of the
core of super-Earths, similar to the Earth. In order to sustain
the geodynamo motion in the liquid core, chemical convection
is required, which associates with the inner core growth or
precipitation of MgO and/or SiO2 (O’rourke and Stevenson,
2016; Hirose et al., 2017).
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and thermal conductivity of liquid Fe alloys at high P and T, and
heat flux in Earth’s core. Proc. Natl. Acad. Sci. U.S.A. 109, 4070–4073.
doi: 10.1073/pnas.1111841109

Dekura, H., Tsuchiya, T., and Tsuchiya, J. (2013). Ab initio lattice thermal
conductivity of MgSiO3 perovskite as found in Earth’s lower mantle. Phys. Rev.
Lett. 110:025904. doi: 10.1103/PhysRevLett.110.025904

Deng, L., Seagle, C., Fei, Y., and Shahar, A. (2013). High pressure and temperature
electrical resistivity of iron and implications for planetary cores. Geophys. Res.
Lett. 40, 33–37. doi: 10.1029/2012GL054347

Dewaele, A., Loubeyre, P., Occelli, F., Mezouar, M., Dorogokupets, P. I., and
Torrent, M. (2006). Quasihydrostatic equation of state of iron above 2 Mbar.
Phys. Rev. Lett. 97:215504. doi: 10.1103/PhysRevLett.97.215504

Dobson, D. (2016). Geophysics: earth’s core problem. Nature 534, 45.
doi: 10.1038/534045a

Drchal, V., Kudrnovský, J., Wagenknecht, D., Turek, I., and Khmelevskyi, S.
(2017). Transport properties of iron at Earth’s core conditions: the effect of spin
disorder. Phys. Rev. B 96:024432. doi: 10.1103/PhysRevB.96.024432

Ezenwa, I. C., and Secco, R. A. (2017a). Constant electrical resistivity of Zn
along the melting boundary up to 5 GPa. High Press. Res. 37, 319–333.
doi: 10.1080/08957959.2017.1340473

Ezenwa, I. C., and Secco, R. A. (2017b). Electronic transition in solid Nb at high
pressure and temperature. J. Appl. Phys. 121, 225903. doi: 10.1063/1.4985548

Ezenwa, I. C., and Secco, R. A. (2017c). Invariant electrical resistivity of
Co along the melting boundary. Earth Planet. Sci. Lett. 474, 120–127.
doi: 10.1016/j.epsl.2017.06.032

Ezenwa, I. C., Secco, R. A., Yong, W., Pozzo, M., and Alfè, D. (2017). Electrical
resistivity of solid and liquid Cu up to 5 GPa: decrease along the melting
boundary. J. Phys. Chem. Solids 110, 386–393. doi: 10.1016/j.jpcs.2017.06.030

Faber, T. E. (1972). An Introduction to the Theory of Liquid Metals. Cambridge:
Cambridge University Press.

Friedel, J. (1956). On some electrical and magnetic properties of metallic solid
solutions. Can. J. Phys. 34, 1190–1211. doi: 10.1139/p56-134

Fukai, Y. (2006).TheMetal-Hydrogen System: Basic Bulk Properties, Vol. 21. Berlin;
Heidelberg; New York, NY: Springer Science & Business Media.

Gillon, M., Triaud, A. H., Demory, B. O., Jehin, E., Agol, E., Deck, K. M., et al.
(2017). Seven temperate terrestrial planets around the nearby ultracool dwarf
star TRAPPIST-1. Nature 542, 456. doi: 10.1038/nature21360

Glasbrenner, J. K., Pujari, B. S., and Belashchenko, K. D. (2014). Deviations from
Matthiessen’s rule and resistivity saturation effects in Gd and Fe from first
principles. Phys. Rev. B 89:174408. doi: 10.1103/PhysRevB.89.174408

Gomi, H., Fei, Y., and Yoshino, T. (2018). The effects of ferromagnetism
and interstitial hydrogen on the equation of states of hcp and dhcp FeHx :
implications for the Earth’s inner core age. Am. Mineral. 103, 1271–1281.
doi: 10.2138/am-2018-6295

Gomi, H., and Hirose, K. (2015). Electrical resistivity and thermal conductivity
of hcp Fe–Ni alloys under high pressure: implications for thermal
convection in the Earth’s core. Phys. Earth Planet. Inter. 247, 2–10.
doi: 10.1016/j.pepi.2015.04.003

Gomi, H., Hirose, K., Akai, H., and Fei, Y. (2016). Electrical resistivity of
substitutionally disordered hcp Fe–Si and Fe–Ni alloys: chemically-induced
resistivity saturation in the Earth’s core. Eart Planet. Sci. Lett. 451, 51–61.
doi: 10.1016/j.epsl.2016.07.011

Gomi, H., Ohta, K., Hirose, K., Labrosse, S., Caracas, R., Verstraete, M. J., et al.
(2013). The high conductivity of iron and thermal evolution of the Earth’s core.
Phys. Earth Planet. Inter. 224, 88–103. doi: 10.1016/j.pepi.2013.07.010

Goncharov, A. F., Haugen, B. D., Struzhkin, V. V., Beck, P., and Jacobsen, S. D.
(2008). Radiative conductivity in the Earth’s lower mantle. Nature 456, 231.
doi: 10.1038/nature07412

Gurvitch, M. (1981). Ioffe-Regel criterion and resistivity of metals. Phys. Rev. B
24:7404. doi: 10.1103/PhysRevB.24.7404

Helffrich, G., and Kaneshima, S. (2010). Outer-core compositional
stratification from observed core wave speed profiles. Nature 468, 807.
doi: 10.1038/nature09636

Hieu, H. K., Hai, T. T., Hong, N. T., Sang, N. D., and Tuyen, N. V. (2017). Electrical
resistivity and thermodynamic properties of iron under high pressure. J. Electr.
Mater. 46, 3702–3706. doi: 10.1007/s11664-017-5411-2

Frontiers in Earth Science | www.frontiersin.org 20 November 2018 | Volume 6 | Article 217

https://doi.org/10.1088/0953-8984/1/43/006
https://doi.org/10.1103/PhysRev.123.418
https://doi.org/10.1016/S0031-9201(98)00123-X
https://doi.org/10.1088/2041-8205/751/1/L16
https://doi.org/10.1088/0953-8984/14/25/311
https://doi.org/10.1126/science.1233514
https://doi.org/10.1088/0953-8984/1/39/012
https://doi.org/10.1088/0953-8984/14/44/389
https://doi.org/10.1063/1.1502182
https://doi.org/10.1029/JB095iB13p21721
https://doi.org/10.1016/0031-9201(86)90025-7
https://doi.org/10.1103/PhysRevB.31.3260
https://doi.org/10.1103/PhysRevB.29.4217
https://doi.org/10.1038/nature08679
https://doi.org/10.1016/j.pepi.2017.04.007
https://doi.org/10.1103/PhysRevLett.40.1586
https://doi.org/10.1088/0370-1328/75/3/310
https://doi.org/10.1073/pnas.1111841109
https://doi.org/10.1103/PhysRevLett.110.025904
https://doi.org/10.1029/2012GL054347
https://doi.org/10.1103/PhysRevLett.97.215504
https://doi.org/10.1038/534045a
https://doi.org/10.1103/PhysRevB.96.024432
https://doi.org/10.1080/08957959.2017.1340473
https://doi.org/10.1063/1.4985548
https://doi.org/10.1016/j.epsl.2017.06.032
https://doi.org/10.1016/j.jpcs.2017.06.030
https://doi.org/10.1139/p56-134
https://doi.org/10.1038/nature21360
https://doi.org/10.1103/PhysRevB.89.174408
https://doi.org/10.2138/am-2018-6295
https://doi.org/10.1016/j.pepi.2015.04.003
https://doi.org/10.1016/j.epsl.2016.07.011
https://doi.org/10.1016/j.pepi.2013.07.010
https://doi.org/10.1038/nature07412
https://doi.org/10.1103/PhysRevB.24.7404
https://doi.org/10.1038/nature09636
https://doi.org/10.1007/s11664-017-5411-2
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Gomi and Yoshino Impurity Resistivity of Fe Alloys

Hirose, K., Labrosse, S., and Hernlund, J. (2013). Composition and
state of the core. Annu. Rev. Earth Planet. Sci. 41, 657–691.
doi: 10.1146/annurev-earth-050212-124007

Hirose, K., Morard, G., Sinmyo, R., Umemoto, K., Hernlund, J., Helffrich, G., et al.
(2017). Crystallization of silicon dioxide and compositional evolution of the
Earth’s core. Nature 543, 99. doi: 10.1038/nature21367

Kameyama, M., and Yamamoto, M. (2018). Numerical experiments on thermal
convection of highly compressible fluids with variable viscosity and thermal
conductivity: implications for mantle convection of super-Earths. Phys. Earth
Planet. Inter. 274, 23–36. doi: 10.1016/j.pepi.2017.11.001

Keppler, H., Dubrovinsky, L. S., Narygina, O., and Kantor, I. (2008). Optical
absorption and radiative thermal conductivity of silicate perovskite to 125
gigapascals. Science 322, 1529–1532. doi: 10.1126/science.1164609

Kiarasi, S., and Secco, R. A. (2015). Pressure-induced electrical resistivity
saturation of Fe17Si. Phys. Status Solidi (b) 252, 2034–2042.
doi: 10.1002/pssb.201552029

Konôpková, Z., Lazor, P., Goncharov, A. F., and Struzhkin, V. V. (2011). Thermal
conductivity of hcp iron at high pressure and temperature. High Press. Res. 31,
228–236. doi: 10.1080/08957959.2010.545059

Konôpková, Z., McWilliams, R. S., Gómez-Pérez, N., and Goncharov, A. F. (2016).
Direct measurement of thermal conductivity in solid iron at planetary core
conditions. Nature 534, 99. doi: 10.1038/nature18009

Kou, S., and Akai, H. (2018). First-principles calculation of transition-metal
Seebeck coefficients. Solid State Commun. 276, 1–4. doi: 10.1016/j.ssc.
2018.02.018

Kuwayama, Y., Hirose, K., Sata, N., and Ohishi, Y. (2008). Phase relations of
iron and iron-nickel alloys up to 300 GPa: implications for composition
and structure of the Earth’s inner core. Earth Planet. Sci. Lett. 273, 379–385.
doi: 10.1016/j.epsl.2008.07.001

Labrosse, S. (2015). Thermal evolution of the core with a high thermal
conductivity. Phys. Earth Planet. Inter. 247, 36–55. doi: 10.1016/j.pepi.
2015.02.002

Labrosse, S., Poirier, J. P., and LeMouël, J. L. (1997). On cooling of the Earth’s core.
Phys. Earth Planet. Inter. 99, 1–17. doi: 10.1016/S0031-9201(96)03207-4

Lay, T., Hernlund, J., and Buffett, B. A. (2008). Core–mantle boundary heat flow.
Nat. Geosci. 1, 25. doi: 10.1038/ngeo.2007.44

Lin, Z., Zhigilei, L. V., and Celli, V. (2008). Electron-phonon coupling and
electron heat capacity of metals under conditions of strong electron-
phonon nonequilibrium. Phys. Rev. B 77:075133. doi: 10.1103/PhysRevB.77.
075133

Linde, J. O. (1932). Elektrische Eigenschaften verdünnter Mischkristallegierungen
III. Widerstand von Kupfer-und Goldlegierungen. Gesetzmäßigkeiten
der Widerstandserhöhungen. Ann. Phys. 407, 219–248.
doi: 10.1002/andp.19324070206

Lister, J. R., and Buffett, B. A. (1995). The strength and efficiency of thermal and
compositional convection in the geodynamo. Phys. Earth Planet. Inter. 91,
17–30. doi: 10.1016/0031-9201(95)03042-U

Lister, J. R., and Buffett, B. A. (1998). Stratification of the outer core
at the core-mantle boundary. Phys. Earth Planet. Inter. 105, 5–19.
doi: 10.1016/S0031-9201(97)00082-4

Manthilake, G. M., de Koker, N., Frost, D. J., andMcCammon, C. A. (2011). Lattice
thermal conductivity of lower mantle minerals and heat flux from Earth’s core.
Proc. Natl. Acad. Sci. U.S.A. 108, 17901–17904. doi: 10.1073/pnas.1110594108

Markowitz, D. (1977). Calculation of electrical resistivity of highly resistivemetallic
alloys. Phys. Rev. B 15:3617. doi: 10.1103/PhysRevB.15.3617

Matassov, G. (1977). The Electrical Conductivity of Iron-Silicon Alloys at High

Pressures and the Earth’s Core. Ph.D. thesis, Lawrence Livermore Laboratory,
University of California.

McWilliams, R. S., Konôpková, Z., and Goncharov, A. F. (2015). A flash
heating method for measuring thermal conductivity at high pressure and
temperature: application to Pt. Phys. Earth Planet. Inter. 247, 17–26.
doi: 10.1016/j.pepi.2015.06.002

McWilliams, R. S., Spaulding, D. K., Eggert, J. H., Celliers, P. M., Hicks, D.
G., Smith, R. F., et al. (2012). Phase transformations and metallization of
magnesium oxide at high pressure and temperature. Science 338, 1330–1333.
doi: 10.1126/science.1229450

Mertig, I. (1999). Transport properties of dilute alloys. Rep. Prog. Phys. 62, 237.
doi: 10.1088/0034-4885/62/2/004

Miyagoshi, T., Kameyama, M., and Ogawa, M. (2017). Extremely long transition
phase of thermal convection in the mantle of massive super-Earths. Earth
Planets Space 69, 46. doi: 10.1186/s40623-017-0630-6

Mooij, J. H. (1973). Electrical conduction in concentrated disordered transition
metal alloys. Phys. Status Solidi 17, 521–530. doi: 10.1002/pssa.2210170217

Morard, G., Bouchet, J., Valencia, D., Mazevet, S., and Guyot, F. (2011). The
melting curve of iron at extreme pressures: implications for planetary cores.
High Energy Density Phys. 7, 141–144. doi: 10.1016/j.hedp.2011.02.001

Moruzzi, V. L., Janak, J. F., and Williams, A. R. (1978). Calculated Electronic

Properties of Metals. New York, NY: Pergamon Press Inc.
Mott, N. F. (1934). The resistance of liquid metals. Proc. R. Soc. Lond. A 146,

465–472. doi: 10.1098/rspa.1934.0166
Mott, N. F. (1936). “The electrical resistance of dilute solid solutions,” in

Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 32
(Cambridge: Cambridge University Press), 281–290.

Mott, N. F. (1972). The electrical resistivity of liquid transition metals. Philos. Mag.

26, 1249–1261. doi: 10.1080/14786437208220339
Nakagawa, T. (2017). On the thermo-chemical origin of the stratified region

at the top of the Earth’s core. Phys. Earth Planet. Inter. 276, 172–181.
doi: 10.1016/j.pepi.2017.05.011

Norbury, A. L. (1921). The electrical resistivity of dilute metallic solid solutions.
Trans. Faraday Soc. 16, 570–596. doi: 10.1039/tf9211600570

Ohta, K., Kuwayama, Y., Hirose, K., Shimizu, K., and Ohishi, Y. (2016).
Experimental determination of the electrical resistivity of iron at Earth’s core
conditions. Nature 534, 95. doi: 10.1038/nature17957

Ohta, K., Suehiro, S., Hirose, K., and Ohishi, Y. (2018). Electrical resistivity of fcc
phase iron hydrides at high pressure and temperatures. Comptes Rendus Geosci.
doi: 10.1016/j.crte.2018.05.004. [Epub ahead of print].

Ohta, K., Yagi, T., Taketoshi, N., Hirose, K., Komabayashi, T., Baba, T.,
et al. (2012). Lattice thermal conductivity of MgSiO3 perovskite and post-
perovskite at the core–mantle boundary. Earth Planet. Sci. Lett. 349, 109–115.
doi: 10.1016/j.epsl.2012.06.043

O’rourke, J. G., and Stevenson, D. J. (2016). Powering Earth’s dynamo
with magnesium precipitation from the core. Nature 529, 387.
doi: 10.1038/nature16495

Oshita, M., Yotsuhashi, S., Adachi, H., and Akai, H. (2009). Seebeck coefficient
calculated by kubo–greenwood formula on the basis of density functional
theory. J. Phys. Soc. Jpn. 78:024708. doi: 10.1143/JPSJ.78.024708

Ozawa, H., Hirose, K., Yonemitsu, K., and Ohishi, Y. (2016). High-
pressure melting experiments on Fe-Si alloys and implications for
silicon as a light element in the core. Earth Planet. Sci. Lett. 456, 47–54.
doi: 10.1016/j.epsl.2016.08.042

Papuc, A. M., and Davies, G. F. (2008). The internal activity and thermal evolution
of Earth-like planets. Icarus 195, 447–458. doi: 10.1016/j.icarus.2007.12.016

Poirier, J. P. (2000). Introduction to the Physics of the Earth’s Interior. Cambridge:
Cambridge University Press.

Pommier, A. (2018). Influence of sulfur on the electrical resistivity of a
crystallizing core in small terrestrial bodies. Earth Planet. Sci. Lett. 496, 37–46.
doi: 10.1016/j.epsl.2018.05.032

Pourovskii, L. V., Mravlje, J., Georges, A., Simak, S. I., and Abrikosov, I. A. (2017).
Electron–electron scattering and thermal conductivity of ǫfnduc at Earth’s core
conditions. New J. Phys. 19, 073022. doi: 10.1088/1367-2630/aa76c9

Pozzo, M., and Alfè, D. (2016a). Saturation of electrical resistivity of solid iron at
Earth’s core conditions. Springerplus 5, 256. doi: 10.1186/s40064-016-1829-x

Pozzo, M., and Alfè, D. (2016b). “Electrical resistivity saturation of solid iron
at Earth’s core conditions from density functional theory,” in AGU Abstract

DI13A-2356, AGU Fall Meeting (San Fransisco, CA).
Pozzo, M., Davies, C., Gubbins, D., and Alfè, D. (2012). Thermal and

electrical conductivity of iron at Earth’s core conditions. Nature 485, 355.
doi: 10.1038/nature11031

Pozzo, M., Davies, C., Gubbins, D., and Alfè, D. (2013). Transport properties for
liquid silicon-oxygen-iron mixtures at Earth’s core conditions. Phys. Rev. B
87:014110. doi: 10.1103/PhysRevB.87.014110

Pozzo, M., Davies, C., Gubbins, D., and Alfè, D. (2014). Thermal and electrical
conductivity of solid iron and iron–silicon mixtures at Earth’s core conditions.
Earth Planet. Sci. Lett. 393, 159–164. doi: 10.1016/j.epsl.2014.02.047

Seagle, C. T., Cottrell, E., Fei, Y., Hummer, D. R., and Prakapenka, V. B. (2013).
Electrical and thermal transport properties of iron and iron-silicon alloy

Frontiers in Earth Science | www.frontiersin.org 21 November 2018 | Volume 6 | Article 217

https://doi.org/10.1146/annurev-earth-050212-124007
https://doi.org/10.1038/nature21367
https://doi.org/10.1016/j.pepi.2017.11.001
https://doi.org/10.1126/science.1164609
https://doi.org/10.1002/pssb.201552029
https://doi.org/10.1080/08957959.2010.545059
https://doi.org/10.1038/nature18009
https://doi.org/10.1016/j.ssc.2018.02.018
https://doi.org/10.1016/j.epsl.2008.07.001
https://doi.org/10.1016/j.pepi.2015.02.002
https://doi.org/10.1016/S0031-9201(96)03207-4
https://doi.org/10.1038/ngeo.2007.44
https://doi.org/10.1103/PhysRevB.77.075133
https://doi.org/10.1002/andp.19324070206
https://doi.org/10.1016/0031-9201(95)03042-U
https://doi.org/10.1016/S0031-9201(97)00082-4
https://doi.org/10.1073/pnas.1110594108
https://doi.org/10.1103/PhysRevB.15.3617
https://doi.org/10.1016/j.pepi.2015.06.002
https://doi.org/10.1126/science.1229450
https://doi.org/10.1088/0034-4885/62/2/004
https://doi.org/10.1186/s40623-017-0630-6
https://doi.org/10.1002/pssa.2210170217
https://doi.org/10.1016/j.hedp.2011.02.001
https://doi.org/10.1098/rspa.1934.0166
https://doi.org/10.1080/14786437208220339
https://doi.org/10.1016/j.pepi.2017.05.011
https://doi.org/10.1039/tf9211600570
https://doi.org/10.1038/nature17957
https://doi.org/10.1016/j.crte.2018.05.004
https://doi.org/10.1016/j.epsl.2012.06.043
https://doi.org/10.1038/nature16495
https://doi.org/10.1143/JPSJ.78.024708
https://doi.org/10.1016/j.epsl.2016.08.042
https://doi.org/10.1016/j.icarus.2007.12.016
https://doi.org/10.1016/j.epsl.2018.05.032
https://doi.org/10.1088/1367-2630/aa76c9
https://doi.org/10.1186/s40064-016-1829-x
https://doi.org/10.1038/nature11031
https://doi.org/10.1103/PhysRevB.87.014110
https://doi.org/10.1016/j.epsl.2014.02.047
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Gomi and Yoshino Impurity Resistivity of Fe Alloys

at high pressure. Geophys. Res. Lett. 40, 5377–5381. doi: 10.1002/2013GL0
57930

Secco, R. A. (2017). Thermal conductivity and Seebeck coefficient
of Fe and Fe-Si alloys: implications for variable Lorenz number.
Phys. Earth Planet. Inter. 265, 23–34. doi: 10.1016/j.pepi.2017.
01.005

Secco, R. A., and Schloessin, H. H. (1989). The electrical resistivity of solid
and liquid Fe at pressures up to 7 GPa. J. Geophys. Res. 94, 5887–5894.
doi: 10.1029/JB094iB05p05887

Sha, X., and Cohen, R. E. (2011). First-principles studies of electrical resistivity of
iron under pressure. J. Phys. 23:075401. doi: 10.1088/0953-8984/23/7/075401

Silber, R. E., Secco, R. A., and Yong, W. (2017). Constant electrical resistivity of
Ni along the melting boundary up to 9 GPa. J. Geophys. Res.122, 5064–5081.
doi: 10.1002/2017JB014259

Silber, R. E., Secco, R. A., Yong, W., and Littleton, J. A. (2018). Electrical resistivity
of liquid Fe to 12 GPa: implications for heat flow in cores of terrestrial bodies.
Sci. Rep. 8, 10758. doi: 10.1038/s41598-018-28921-w

Smith, R. F., Fratanduono, D. E., Braun, D. G., Duffy, T. S., Wicks, J. K., Celliers, P.
M., et al. (2018). Equation of state of iron under core conditions of large rocky
exoplanets. Nat. Astron. 2, 452–458. doi: 10.1038/s41550-018-0437-9

Soubiran, F., and Militzer, B. (2018). Electrical conductivity and magnetic
dynamos in magma oceans of Super-Earths. Nat. Commun. 9, 3883.
doi: 10.1038/s41467-018-06432-6

Stacey, F. D., and Anderson, O. L. (2001). Electrical and thermal conductivities of
Fe–Ni–Si alloy under core conditions. Phys. Earth Planet. Inter. 124, 153–162.
doi: 10.1016/S0031-9201(01)00186-8

Stacey, F. D., and Loper, D. E. (2007). A revised estimate of the conductivity of iron
alloy at high pressure and implications for the core energy balance. Phys. Earth
Planet. Inter. 161, 13–18. doi: 10.1016/j.pepi.2006.12.001

Stevenson, D. J., Spohn, T., and Schubert, G. (1983). Magnetism and
thermal evolution of the terrestrial planets. Icarus 54, 466–489.
doi: 10.1016/0019-1035(83)90241-5

Stixrude, L. (2012). Structure of Iron to 1 Gbar and 40 000K. Phys. Rev. Lett.
108:055505. doi: 10.1103/PhysRevLett.108.055505

Stixrude, L. (2014). Melting in super-earths. Philos. Trans. R. Soc. Lond. A Math.

Phys. Eng. Sci. 372, 20130076. doi: 10.1098/rsta.2013.0076
Stixrude, L., and Lithgow-Bertelloni, C. (2005). Thermodynamics of

mantle minerals—I. Physical properties. Geophys. J. Int. 162, 610–632.
doi: 10.1111/j.1365-246X.2005.02642.x

Suehiro, S., Ohta, K., Hirose, K., Morard, G., and Ohishi, Y. (2017). The
influence of sulfur on the electrical resistivity of hcp iron: implications for
the core conductivity of Mars and Earth. Geophys. Res. Lett. 44, 8254–8259.
doi: 10.1002/2017GL074021

Tachinami, C., Senshu, H., and Ida, S. (2011). Thermal evolution and lifetime of
intrinsic magnetic fields of super-Earths in habitable zones.Astrophys. J. 726:70.
doi: 10.1088/0004-637X/726/2/70

Tackley, P. J., Ammann, M., Brodholt, J. P., Dobson, D. P., and Valencia, D. (2013).
Mantle dynamics in super-Earths: post-perovskite rheology and self-regulation
of viscosity. Icarus 225, 50–61. doi: 10.1016/j.icarus.2013.03.013

Tanaka, S. (2007). Possibility of a low P-wave velocity layer in the outermost
core from global SmKS waveforms. Earth Planet. Sci. Lett. 259, 486–499.
doi: 10.1016/j.epsl.2007.05.007

Tateno, S., Hirose, K., Ohishi, Y., and Tatsumi, Y. (2010). The structure of iron in
Earth’s inner core. Science 330, 359–361. doi: 10.1126/science.1194662

Tateno, S., Kuwayama, Y., Hirose, K., and Ohishi, Y. (2015). The structure
of Fe-Si alloy in Earth’s inner core. Earth Planet. Sci. Lett. 418, 11–19.
doi: 10.1016/j.epsl.2015.02.008

Tsiovkin, Y. Y., Voloshinskii, A. N., Gapontsev, V. V., and Ustinov, V. V. (2005).
Residual electrical resistivity in dilute nonmagnetic alloys of transition metals.
Phys. Rev. B 71:184206. doi: 10.1103/PhysRevB.71.184206

Tsiovkin, Y. Y., Voloshinskii, A. N., Gapontsev, V. V., and Ustinov, V. V. (2006).
Theory of the residual resistivity of dilute alloys of nonmagnetic 3 d−5 d
transition metals. Low Temp. Phys. 32, 863–867. doi: 10.1063/1.2356843

Tsuchiya, T., and Kawamura, K. (2002). First-principles electronic
thermal pressure of metal Au and Pt. Phys. Rev. B 66:094115.
doi: 10.1103/PhysRevB.66.094115

Tsuchiya, T., and Tsuchiya, J. (2011). Prediction of a hexagonal SiO2 phase affecting
stabilities of MgSiO3 and CaSiO3 at multimegabar pressures. Proc. Natl. Acad.
Sci. U.S.A. 108, 1252–1255. doi: 10.1073/pnas.1013594108

Tsumuraya, T., Matsuura, Y., Shishidou, T., and Oguchi, T. (2012). First-principles
study on the structural and magnetic properties of iron hydride. J. Phys. Soc.
Jpn. 81:064707. doi: 10.1143/JPSJ.81.064707

Umemoto, K., Wentzcovitch, R. M., and Allen, P. B. (2006). Dissociation of
MgSiO3 in the cores of gas giants and terrestrial exoplanets. Science 311,
983–986. doi: 10.1126/science.1120865

Usselman, T. M. (1975). Experimental approach to the state of the core; Part I,
The liquidus relations of the Fe-rich portion of the Fe-Ni-S system from 30 to
100 kb. Am. J. Sci. 275, 278–290. doi: 10.2475/ajs.275.3.278

Vafayi, K., Calandra, M., and Gunnarsson, O. (2006). Electronic thermal
conductivity at high temperatures: violation of the Wiedemann-Franz law in
narrow-band metals. Phys. Rev. B 74:235116. doi: 10.1103/PhysRevB.74.235116

Valencia, D., O’Connell, R. J., and Saselov, D. (2006). Internal structure of massive
terrestrial planets. Icarus 181, 545–554. doi: 10.1016/j.icarus.2005.11.021

Valencia, D., Sasselov, D. D., and O’Connell, R. J. (2007). Radius and
structure models of the first super-Earth planet. Astrophys. J. 656, 545.
doi: 10.1086/509800

Van Zytveld, J. B. (1980). Electrical resistivities of liquid transition metals. Le J.
Phys. Colloques 41, C8–C503. doi: 10.1051/jphyscol:19808126

Wagle, F., and Steinle-Neumann, G. (2018). Electrical resistivity discontinuity
of iron along the melting curve. Geophys. J. Int. 213, 237–243.
doi: 10.1093/gji/ggx526

Wagle, F., Steinle-Neumann, G., and de Koker, N. (2018). Saturation and negative
temperature coefficient of electrical resistivity in liquid iron-sulfur alloys
at high densities from first principles calculations. Phys. Rev. B 97:094307.
doi: 10.1103/PhysRevB.97.094307

Wicks, J. K., Smith, R. F., Fratanduono, D. E., Coppari, F., Kraus, R. G., Newman,
M. G., et al. (2018). Crystal structure and equation of state of Fe-Si alloys at
super-Earth core conditions. Sci. Adv. 4:eaao5864. doi: 10.1126/sciadv.aao5864

Williams, Q. (2018). The thermal conductivity of Earth’s core: a key geophysical
parameter’s constraints and uncertainties. Annu. Rev. Earth Planet. Sci. 46,
47–66. doi: 10.1146/annurev-earth-082517-010154

Xu, J., Zhang, P., Haule, K., Minar, J., Wimmer, S., Ebert, H., et al.
(2018). Thermal conductivity and electrical resistivity of solid iron at
Earth’s core conditions from first principles. Phys. Rev. Lett. 121:096601.
doi: 10.1103/PhysRevLett.121.096601

Yue, S. Y., and Hu, M. (2018). Insight of the thermal conductivity of ε iron at
Earth’s core conditions from the newly developed direct ab initiomethodology.
arXiv:1808.10860 [Preprint].

Zhang, C., Lin, J. F., Liu, Y., Feng, S., Jin, C., Hou, M., et al. (2018). Electrical
resistivity of Fe-C alloy at high pressure: effects of carbon as a light element on
the thermal conductivity of the Earth’s core. J. Geophys. Res. 123, 3564–3577.
doi: 10.1029/2017JB015260

Ziman, J. M. (1961). A theory of the electrical properties of liquid metals.
I: the monovalent metals. Philos. Mag. 6, 1013–1034. doi: 10.1080/1478643
6108243361

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Gomi and Yoshino. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Earth Science | www.frontiersin.org 22 November 2018 | Volume 6 | Article 217

https://doi.org/10.1002/2013GL057930
https://doi.org/10.1016/j.pepi.2017.01.005
https://doi.org/10.1029/JB094iB05p05887
https://doi.org/10.1088/0953-8984/23/7/075401
https://doi.org/10.1002/2017JB014259
https://doi.org/10.1038/s41598-018-28921-w
https://doi.org/10.1038/s41550-018-0437-9
https://doi.org/10.1038/s41467-018-06432-6
https://doi.org/10.1016/S0031-9201(01)00186-8
https://doi.org/10.1016/j.pepi.2006.12.001
https://doi.org/10.1016/0019-1035(83)90241-5
https://doi.org/10.1103/PhysRevLett.108.055505
https://doi.org/10.1098/rsta.2013.0076
https://doi.org/10.1111/j.1365-246X.2005.02642.x
https://doi.org/10.1002/2017GL074021
https://doi.org/10.1088/0004-637X/726/2/70
https://doi.org/10.1016/j.icarus.2013.03.013
https://doi.org/10.1016/j.epsl.2007.05.007
https://doi.org/10.1126/science.1194662
https://doi.org/10.1016/j.epsl.2015.02.008
https://doi.org/10.1103/PhysRevB.71.184206
https://doi.org/10.1063/1.2356843
https://doi.org/10.1103/PhysRevB.66.094115
https://doi.org/10.1073/pnas.1013594108
https://doi.org/10.1143/JPSJ.81.064707
https://doi.org/10.1126/science.1120865
https://doi.org/10.2475/ajs.275.3.278
https://doi.org/10.1103/PhysRevB.74.235116
https://doi.org/10.1016/j.icarus.2005.11.021
https://doi.org/10.1086/509800
https://doi.org/10.1051/jphyscol:19808126
https://doi.org/10.1093/gji/ggx526
https://doi.org/10.1103/PhysRevB.97.094307
https://doi.org/10.1126/sciadv.aao5864
https://doi.org/10.1146/annurev-earth-082517-010154
https://doi.org/10.1103/PhysRevLett.121.096601
https://doi.org/10.1029/2017JB015260
https://doi.org/10.1080/14786436108243361
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

	Impurity Resistivity of fcc and hcp Fe-Based Alloys: Thermal Stratification at the Top of the Core of Super-Earths
	Introduction
	Methods
	Dilute alloys
	Concentrated Alloys
	Electronic Specific Heat and Wiedemann-Franz Law
	Electrical Resistivity and Thermal Conductivity of the Earth's Core
	Heat Flux at The CMB of Super-Earths
	Summary
	Author Contributions
	Funding
	Acknowledgments
	References


