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This paper shows recent progress in our understanding of climate variability and trends
in the Amazon region, and how these interact with land use change. The review includes
an overview of up-to-date information on climate and hydrological variability, and on
warming trends in Amazonia, which reached 0.6–0.7◦C over the last 40 years, with
2016 as the warmest year since at least 1950 (0.9◦C + 0.3◦C). We focus on local
and remote drivers of climate variability and change. We review the impacts of these
drivers on the length of dry season, the role of the forest in climate and carbon cycles,
the resilience of the forest, the risk of fires and biomass burning, and the potential “die
back” of the Amazon forests if surpassing a “tipping point”. The role of the Amazon in
moisture recycling and transport is also investigated, and a review of model development
for climate change projections in the region is included. In sum, future sustainability
of the Amazonian forests and its many services requires management strategies
that consider the likelihood of multi-year droughts superimposed on a continued
warming trend. Science has assembled enough knowledge to underline the global and
regional importance of an intact Amazon region that can support policymaking and
to keep this sensitive ecosystem functioning. This major challenge requires substantial
resources and strategic cross-national planning, and a unique blend of expertise and
capacities established in Amazon countries and from international collaboration. This
also highlights the role of deforestation control in support of policy for mitigation options
as established in the Paris Agreement of 2015.

Keywords: Amazonia, El Niño, climate variability, deforestation, tipping point, moisture transport, rainfall, climate
modelling

INTRODUCTION

In this paper we review some aspects of climate variability and change in the Amazon region
in light of new developments. We focus on climate drivers of variability and change, including
natural climate variability and land-use changes, their impacts on the length of dry season, the
role of the forest on climate and carbon cycles, the resilience of the forest, and the risk of fires. In
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addition, the “die back” of the Amazon forests when surpassing a
“tipping point” and its associated uncertainties are also discussed.
Lastly, we also touch on some experiences of adaptation to hydro-
climate extremes as well as mitigation options such as reducing
deforestation as established in the Paris Agreement of 2015.

This article is organized as follows: Section 1 included
the description of how the climate system over Amazonia
works, including modes of variability, hydroclimatic extremes,
changes in the dry season, moisture transport and moisture
recycling; Section 2 shows how climatic changes interact with
other on-going processes and the potential effects of different
stressors on Amazon forests such as fire, and land use change
due to deforestation; Section 3 shows an evolution on model
development for climate change studies and explains how the
climatic system is changing, as well as shows the future of
Amazon forests look like in a “die back scenario” when surpassing
the critical threshold on temperature or deforestation, as well as
the associated uncertainties in these climate projections. Finally,
Section 4 discusses, among other things the grand questions on
Amazon climate variability and change that need to be explored
in more detail, including strengths and limitations of the current
knowledge we have on Amazon climate variability and change,
climate modeling, human influences and land use change in the
region.

OVERVIEW ON CLIMATE SYSTEM AND
CLIMATE VARIABILITY IN THE AMAZON
REGION

The Amazon basin covers an area of about 7 million km2.
Amazon forests cover about 5.3 million km2, which represents
40% of the global tropical forest area (Laurance et al., 2001;
Aragão et al., 2014; Nobre, 2014; Weng et al., 2018). Its abundant
rainfall of about 2200 mm y−1 makes the Amazon basin an
important latent heat source for the atmosphere, generating an
estimated 210,000 m3

·s−1 to 220,000 m3
·s−1 of river discharge

from the Amazon River, which represents about ∼15% of the
freshwater input into the oceans (Callède et al., 2012; Marengo
and Espinoza, 2016; Nobre et al., 2016). The Amazon River
exhibits interannual and long-term climate variability due to
rainfall variations and this translates into large variations in
downstream discharge (Richey et al., 1989; Zeng et al., 1996;
Zeng, 1999; Milly et al., 2005; Cox et al., 2008; Marengo et al.,
2008a,b; Espinoza et al., 2009a,b; Marengo and Espinoza, 2016;
Sampaio et al., 2018). The Amazon ecosystems host about 10–
15% of land biodiversity (Lewinshohn and Prado, 2002; Hubbell
et al., 2008) and it stores an estimated 150 billion to 200 billion
tons of carbon (Malhi et al., 2006; Cerri et al., 2007; Saatchi et al.,
2011).

Since the initial work by Salati et al. (1979), various studies
show the importance of the Amazon forests, playing a crucial
role in the climate system by means of moisture recycling and
contributing to atmospheric circulation and to the water, energy
and carbon cycles (Zemp et al., 2014, 2017b; Spracklen and
Garcia-Carreras, 2015; Nobre et al., 2016; Sampaio et al., 2018;
among others). The spatial and temporal variability of rainfall

and hydrology in the Amazon basin have also been discussed,
including the influence of El Niño/La Niña or SST anomalies
in the Tropical North Atlantic on natural climatic variations
(Jiménez-Muñoz et al., 2016; Marengo and Espinoza, 2016;
Sorribas et al., 2016), and projections of future climate change for
the coming decades (Magrin et al., 2014; Sampaio et al., 2018).
These studies build on an already solid scientific basis on the
relationship between Amazon forest and climate variations, the
impact of land use and land cover change, and how they change
the water resources in the region.

Long-Term Climate Trends in Amazonia
The Amazon region is viewed as being at great risk from
climate variability and change. The risk is not only due
to projected climate change but also through synergistic
interactions with other threats, such as land clearance, forest
fragmentation, and fire detected in the present. A key question
is whether a general long-term trend exists during recent
decades toward drought conditions and, if so, whether it
is associated with anthropogenic climate change such as
deforestation. Furthermore, fire occurrence could increase the
vulnerability of tropical forest ecosystems in the Amazon
region. Even a single fire can contribute to forest fragmentation
and spread of fire prone biomes (Alencar, 2004; Barlow and
Peres, 2004, 2008; Brando et al., 2014; Gatti et al., 2014;
Alencar et al., 2015; Aragão et al., 2018; Silva C.V.J. et al.,
2018). In the following we review some of the evidence of
change linked to natural climate variability and to land-use
change.

Observational studies show an increase in the mean air
temperature in the Amazon region of 0.6◦C from 1973 to
2013 (Almeida et al., 2017). Previously, Jiménez-Muñoz et al.
(2016) detected a warming of 0.5◦C since 1980, with stronger
warming during the dry season over the southeastern Amazonia.
Figure 1 shows the observed warming in the region derived
from various data sets since 1950. Warming reached 0.6–
0.7◦C over the last 40 years, with 2016 as the warmest year
since at least 1950 (0.9◦C + 0.3◦C). While there are some
systematic differences among the trends, all sources show that
the recent two decades were the warmest, with 2016 as the
warmest year followed by 1998. Both of these years were El Niño
years.

No long-term unidirectional total rainfall trends have been
identified (Marengo, 2004; Espinoza et al., 2009a; Satyamurty
et al., 2010; Almeida et al., 2017) in the region. However, a
positive trend in precipitation detected in northwestern Amazon
since 1990 may be a consequence of the intensification of the
hydrological cycle in the region (Gloor et al., 2013). Furthermore,
Alves (2016) detected a statistically significant negative rainfall
trend in southern Amazonia during the pre-rainy season and
the peak of the rainy season during 1979–2014. Recent work
by Espinoza et al. (2018) shows that while southern Amazonia
exhibits negative trends in total rainfall and extremes, the
opposite is found in Northern Amazonia.

The forest has an important role in maintaining local and
regional rainfall, contributing to the hydrological cycle by means
of recycling and transport of moisture inside and outside the
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FIGURE 1 | Average surface air temperature anomalies (◦C) over the Amazon region for 1949–2017 relative to 1961–1990. Red arrows indicate El Niño years.
Sources of data are: GISS-NASA Goddard Institute for Space Studies, EUA (blue line); NCDC-National Climatic Data Center, EUA (green line); HadCRU-Hadley
Centre-Climate Research United Kingdom (red line); average over all data sets (black line).

region. Moisture is transported from Amazonia to regions
such as Southeastern South America by means of the low
level jet to the east of the Andes that forms part of the
regional circulation (Marengo et al., 2004; Arraut et al., 2012).
Although climate change can affect this moisture flux from
Amazonia (Soares and Marengo, 2009), deforestation resulting
from intensive land-use activities poses a more immediate threat
to the Amazon forests (Aragão et al., 2018; Sampaio et al., 2018).
Climate modeling studies simulating Amazon deforestation show
significant reductions in rainfall in Amazon forests, affecting
regional hydrology and thus increasing the vulnerability of
ecosystem services for the local and regional population in and
outside the Amazon region (see next sections). This highlights
the connection between the Amazon forests, rainfall and human
well-being.

Satellite measurements, field observations and climate models
suggest that the impact of deforestation on climate on longer
time scales may depend on: a threshold of forest area converted
by deforestation; the spatial arrangement of forests surrounded
by deforested area, i.e., its matrix effect; different land-use
practices; and external forcing caused by global-scale climate
change (Lawrence and Vandecar, 2015). At the global scale,
Haddad et al. (2015) show that deforestation generates habitat
fragmentation that can reduce biodiversity by 13–75%, and
impair key ecosystem functions by decreasing biomass and
altering nutrient cycles. Various studies (Nobre and Borma, 2009;
Marengo et al., 2010a,b, 2011; Davidson et al., 2012; Anadon
et al., 2014; Duffy et al., 2015; Nobre et al., 2016; Lovejoy and
Nobre, 2018) suggest changes in climate and climate variability
may affect parts of the Amazon basin that are susceptible

to biome shifts (Lapola et al., 2009), biodiversity loss and
depletion of carbon storage. Sampaio et al. (2007) suggest that
a threshold value of 40% regional deforestation could be a
“tipping point” followed by a sudden change of climate in the
region to a warmer and drier climate. For small patches of
deforestation in extensive forest areas, studies point to increased
precipitation in deforested areas and “small” changes in local
climatic conditions, i.e., evapotranspiration, mean temperature,
rainfall frequency (D’Almeida et al., 2006, 2007). However, such
small-scale deforestation does not predominate in the region
(Ewers and Laurance, 2006; Rosa et al., 2012).

Recent extreme climatic events in the region, such as droughts
and floods, changes in the rainy and dry seasons, increased
fire risk with associated their impacts on climate, health, and
biodiversity are examples of what could happen in Amazonia as
a consequence of climate change (Espinoza et al., 2011, 2012a,b;
Jiménez-Muñoz et al., 2013, 2016; Gatti et al., 2014; Duffy et al.,
2015; Erfanian et al., 2017; Aragão et al., 2018). Three “mega-
droughts" in 2005, 2010 and 2016 (Jiménez-Muñoz et al., 2016;
Marengo and Espinoza, 2016; Zou et al., 2016) were events
classified at the time of their occurrence as “one-in-100 year
event”. Past mega-droughts were registered in 1925–1926, 1982–
1983, and 1997–1998 due to El Niño (Tomasella et al., 2011,
2013; Marengo and Espinoza, 2016). In contrast, “mega-floods”
were detected in 2009, 2012, and 2014 (Chen et al., 2010;
Vale et al., 2011; Marengo et al., 2012a,b; Sena et al., 2012;
Coelho et al., 2013; Espinoza et al., 2013, 2014; Satyamurty
et al., 2013a,b) pointing to increased climate variability. Their
observed impacts on natural and human systems in the region
demonstrate the vulnerability of population and ecosystems to

Frontiers in Earth Science | www.frontiersin.org 3 December 2018 | Volume 6 | Article 228

https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-06-00228 January 9, 2019 Time: 14:50 # 4

Marengo et al. Climate Change in Amazonia

the occurrence of such hydro-meteorological extremes in the
region. Moreover, climate-induced changes in the extent or
character of the forest could themselves exert a feedback on
climate change, both through effects on the regional climate
and on global warming itself via the carbon cycle (Betts et al.,
2004). In addition to being a major driver of global warming,
increasing concentrations of carbon dioxide could impact the
regional climate of the Amazon by reducing the return of
moisture to the atmosphere by evapotranspiration (Betts et al.,
2004).

The attribution of these droughts or floods and their impacts
on nature and society are still not totally resolved. For drought,
the risk of subsequent ire depends on the timing of the beginning
and demise of the rainy season and on the length of the
dry season. Droughts can have natural causes via changed
climate-ocean interactions and lead to climate extremes (2005,
2010, 2016). However, human activities related to deforestation
can cause high fire years (2004 and 2016), and coincide with
extreme dry years (2016) as shown by Aragão et al. (2018).
Deforestation, increases in greenhouse gasses and changes in
land-surface characteristics associated with human-caused fires
leads to the release of more aerosols which in combination
with urban pollution may influence precipitation formation,
thus affecting variability in the region’s rivers (Summers et al.,
2004; Magrin et al., 2014; Spracklen and Garcia-Carreras, 2015;
Marengo and Espinoza, 2016). Initial work by Andreae et al.
(2004) suggests that biomass-burning aerosols in the Amazon
region can delay the onset of the rainy season in southern
Amazonia. Later on, Gonçalves et al. (2015) pointed out that
regional climate over the region can be significantly affected
by aerosol particles. Recent work by Esquivel-Muelbert et al.
(2018) show that within the Amazon region, the increase in
atmospheric CO2 is driving a shift within tree communities to
large-statured species and that climate changes to date will impact
forest composition,

Climate Variability and Hydroclimatic
Extremes
The annual cycle of precipitation varies across the region. As
shown in Figueroa and Nobre (1990) and Fisch et al. (1998),
rainfall in southern Amazonia peaks during austral summer
while in central Amazonia and near the Amazon delta it peaks
in the autumn, and north of the Equator it peaks in austral
winter. The physical cause is the meridional migration of
the Intertropical Convergence Zone (ITCZ). While Northwest
Amazonia is the wettest and shows no dry season, rainfall in
southern Amazonia shows months during the austral winter
with rainfall that can be lower than 100 mm. As a consequence
of the seasonal cycle in rainfall, the Amazon River main stem
and tributaries show the peak of river levels few months
after the peak rainfall season. The river level and discharge
both depend on the precipitation in the rainy season during
the previous wet season. Rivers that extend over southern
Amazon basin (e.g., Solimões, Madeira) peak in April-May
while rivers with basins in the central Amazon basin (e.g., Rio
Negro) peak in May-June. For more details about rainfall and

river regimes in the Amazon basin, please refer to Marengo
et al. (2014) and Marengo and Espinoza (2016) and references
therein.

Observations of evapotranspiration (ET) vary from
3.5 mm·d−1 to 4 mm·d −1 (105 mm·mo−1 to 120 mm·mo−1,

respectivelly) as shown by Shuttleworth (1988). This value
is lower than rainfall in the dry months, where precipitation
is below 100 mm·mo−1, value that defines a dry month by
Sombroek (2001). If ET exceeds incoming precipitation P the
forest is in water deficit and drought conditions can be identified.
Several studies have documented droughts in the Amazon
region in the past, and they have been related to negative rainfall
anomalies, in some cases as a direct consequence of El Niño
events, such as in 1912, 1926, 1983 and 1997–1998 and recently
in 2016 (Williams et al., 2005; Jiménez-Muñoz et al., 2016;
Marengo and Espinoza, 2016; Panisset et al., 2017). However,
the severe droughts in 1964 and 2005 were related to a warmer
than normal tropical North Atlantic Ocean (Uvo et al., 1998;
Marengo et al., 2008a,b; Zeng et al., 2008). In addition, intense
floods have happened in Amazon basin during the last decades,
as in 1989, 1999, 2009, 2012 and 2014 (See reviews in Marengo
and Espinoza, 2016 and references therein).

These drought and flooding events have produced impacts
such as increased risk of forest fires, extreme warming, floods
and inundations, which can affect the human population and
flora and fauna on land as well as in lakes and rivers (e.g.,
Davidson et al., 2012; Marengo et al., 2013; Brando et al.,
2014; Doughty et al., 2015). While droughts increase the risk of
tree mortality, the combination of severe droughts and floods
can put additional stress on Amazon forests, especially if the
flooding regime of regularly inundated areas are perturbed
outside of their natural range (Langerwisch et al., 2013). It
also affects riverine carbon balance via outgassing of carbon
from the Amazon River and the amount exported to the
Atlantic Ocean, with non-linear effects to be expected if
deforestation is also considered (Langerwisch et al., 2016).
It is important to mention that the perception of drought
and flood by the population may be different in Amazonia
compared to other regions, and low or high river levels are
better indicators of drought or floods, respectively compared to
rainfall anomalies. Through their close dependency on water
levels, local people are well placed to detect variability in both
climate and hydrological regime and are able to respond to early
warning signals to cope with potential impacts on their activities
(Pinho et al., 2015).

Teleconnections patterns involving changes in SST anomalies
in both the tropical Pacific and tropical Atlantic Ocean and
changes in rainfall in Amazonia are shown in Figure 2.
Driest years, when Amazonia experienced record droughts
(1987, 1998, 2010, 2016) occurred during El Niño years,
while the drought in 2005 occurred during a neutral year.
Wet years (1989, 1999, 2009, and 2012), which produced
floods, occurred during La Niña Years. Considering the
SST forcing in the tropical Atlantic, dry years (2005, 2010,
2016) occurred during the period with a warmer Tropical
North Atlantic Ocean (Shukla et al., 1990; Satyamurty et al.,
2013a).
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FIGURE 2 | Scatter diagrams of anomalies in the SST anomalies (oC) in the
tropical Pacific (Nino 3.4) (A) and the SST dipole in tropical Atlantic (SST
tropical North Atlantic–SST tropical South Atlantic) (B) during
January–February and GPCC rainfall anomalies (mm/month) during the FMAM
peak season in Amazonia. Base period for the SST and rainfall anomalies is
1961–1990. Drought and wet years in Amazonia are shown by numbers and
the stronger events appear inside circles (Modified from Marengo et al., 2013,
© American Meteorological Society. Used with permission).

Early work by Sternberg (1987); Meggers (1994), and Williams
et al. (2005) reports that during the drought in 1926 an
intense heat wave killed fish, and favored fires lasting several
months which killed thousands of rubber gatherers. Later on,
2005 and 2010 drought-induced water stress was so intense
that it killed large trees, increasing the number of forest fires
and releasing large amounts of carbon to the atmosphere
(Marengo et al., 2008a,b; Lewis et al., 2011; Marengo et al., 2011;
Dos Santos et al., 2017).

The 2015–2016 El Niño saw record-breaking warming in the
Amazon region (Figure 1 and Jiménez-Muñoz et al., 2016), as
well as the most extensive area under extreme drought with up to
13% of the rainforests undergoing extreme drought in February-
March 2016 (Aragão et al., 2018). Erfanian et al. (2017) show that
the ecohydrological consequences from the 2016 drought were
more severe and extensive than the 2005 and 2010 droughts. They
suggested that warmer-than-usual SSTs in the Tropical Pacific

and Tropical Atlantic were not able to explain the severity of
the 2016 drought, and pointed out that land cover change in the
form of deforestation and human-induced warming may have
strongly influenced it. The drought of 2016 also reduced forest
net primary productivity and increased canopy tree mortality,
thereby altering both the short- and the long-term net forest
carbon balance (Leitold et al., 2018).

Changes in the Length of the Dry Season
Various studies have shown evidence of lengthening of the
region’s dry season, primarily over the southern Amazon region
(see Marengo et al., 2017 and references therein). The reasons for
this lengthening are still not clear. This tendency can be related
to large-scale influence of SST gradients of the North and South
Atlantic, or a strong influence of dry season ET in response to
a seasonal increase of solar radiation (Fu and Li, 2004; Li et al.,
2006; Butt et al., 2011; Lewis et al., 2011; Dubreuil et al., 2012; Fu
et al., 2013: Alves, 2016; Marengo et al., 2017). However, current
data show that the dry season has increased by about 1 month in
southern Amazon region since the middle 1970’s up to present
day (Figure 2).

In the drought years 2005, 2010 and 2016, as well as in
previous droughts, the rainy season started late and/or the dry
seasons lasted longer (Marengo et al., 2011; Alves, 2016). Fu et al.
(2013) quantified this apparent lengthening of the dry season,
with an increase of about 6.5 ± 2.5 days per decade over the
southern Amazon region since 1979. During the 2016 drought,
the onset of the rainy season in 2015 occurred 2–3 pentads later
than normal (Marengo et al., 2017). Furthermore, the length
of the dry season also exhibits interannual and decadal-scale
variations linked either to natural climate variability (Figure 3),
or as suggested by Wang et al. (2011) and Alves et al. (2017), the
influence of land-use change in the region.

A longer dry season and thus, late onset of the rainy
season may have direct impacts on the risk of fire and on
the hydrology of the region, enhancing regional vulnerability
to drought. Wright et al. (2017) highlight the mechanisms by
which interactions among land surface processes, atmospheric
convection, and biomass burning may alter the timing of
wet season onset. Furthermore, they provide a mechanistic
framework for understanding how deforestation and aerosols
produced by late dry season biomass burning may alter the
onset of the rainy season, possibly causing a feedback that
enhances drought conditions. Recent work by Agudelo et al.
(2018) shows that longer dry seasons in southern Amazonia
also relate to enhanced atmospheric moisture content over the
Caribbean and northern South America regions, mainly due to
increased contributions of water vapor from oceanic regions and
the increase of surface moisture convergence over the equatorial
region.

Moisture Recycling and Moisture
Transport in and Out of the Amazon
Region
On the local and regional scales, the Amazon forest exerts
control on rainfall and temperature through ET, in a process
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FIGURE 3 | Hovmoller diagram showing monthly rainfall from 1951 to 2017
for Southern Amazonia (mm/month). The isoline of 100 mm/month is an
indicator of dry months in the region (Sombroek, 2001). Drought years are
indicated with green lines. Red lines show the average onset and end of the
rainy season (Adapted from Marengo et al., 2011 and updated to 2017).
Yellow line shows the tendency for a longer dry season after the mid 1970’s
climate shift (Modified from Marengo et al., 2011, © American Geophysical
Union. Used with permission).

known as “moisture recycling.” Several studies have quantified
the water balance in the Amazon basin, and despite uncertainties
due to different measuring techniques, estimates of ET widely
range from about 35% to over 80% of the precipitation (Lettau
et al., 1979; Salati et al., 1979; Salati and Vose, 1984; Dickinson
and Henderson-Sellers, 1988; Lean and Warrilow, 1989; Nobre
et al., 1991; Salati and Nobre, 1991; Dickinson and Kennedy,
1992; Brubaker et al., 1993; Henderson-Sellers et al., 1993, 2002;
Eltahir and Bras, 1994; Marengo et al., 1994; Polcher and Laval,
1994a,b; Sud, 1996; Vorosmarty et al., 1996; Zeng et al., 1996;
Hahmann and Dickinson, 1997; Lean and Rowntree, 1997; Costa
and Foley, 1999, 2000; Trenberth, 1999; Marengo, 2004, 2005,
2006; Voldoire and Royer, 2004; van der Ent et al., 2010, 2014; van
der Ent and Savenije, 2011; Zemp et al., 2014). Furthermore, van
der Ent et al. (2010) estimated that 70% of the water resources of
the La Plata River basin depend on evaporation over the Amazon
forest.

Basin-wide and long-term water balances based on
observations of precipitation and Amazon River discharge
constrain the ET/P ratio to about 0.45–0.60 (e.g., Salati and Vose,
1984; Nobre et al., 1991, among others). van der Ent et al. (2010)
estimated this fraction as 48% for the Amazon region. This
aspect is even more relevant considering that in some areas ET in
the dry season tends to be equal to or higher than wet-season ET
(e.g., Shuttleworth, 1988). The high water vapour flux generated

by the forest’s evapotranspiration during the dry season would
therefore play an important role in the onset of the rainy season
(Fu and Li, 2004).

In addition to the in situ contribution to the moisture
transport, during the wet summertime season, the moisture from
the Amazon basin is exported out of the basin via the South
American low-level jet along the east flank of the Andes to the
La Plata River basin in Southeastern South America. This low
level jet is also referred to as “flying river” – Nobre (2014) or
“aerial river” – Arraut et al. (2012) as an analogy to surface rivers,
and contributes to precipitation over the La Plata basin (Marengo
et al., 2004; Marengo, 2005; Arraut and Satyamurty, 2009; van der
Ent et al., 2010; Arraut et al., 2012; Satyamurty et al., 2013b; Zemp
et al., 2014).

Work by Bosilovich and Chern (2006), Drumond et al. (2008,
2014), van der Ent et al. (2010), and Sorí et al. (2018) has
identified continental and oceanic moistures sources for rainfall
in the Amazon region and its sub-basins, and they conclude
that the tropical Atlantic is the most important remote moisture
source for the Amazon Basin. Inside the Amazon region, Sorí
et al. (2018) confirms the moisture contribution from the
Tropical North Atlantic region modulates the onset and demise
of the rainy season in the Rio Negro Basin. For the Madeira
River Basin, the most important moisture contribution comes
from the basin itself and surrounding regions of Tropical South
America. The intensification of the hydrological cycle in the
Amazon region has been observed in the last decades by Gloor
et al. (2013) and is partly explained by changes in moisture
transport coming from the tropical Atlantic, caused by SST-
induced northward displacement of the ITCZ (Marengo et al.,
2008a,b, 2013). Angelini et al. (2011) have also shown that rainfall
in the Amazon region comes primarily from large-scale weather
systems from the tropical Atlantic and that it is not directly driven
by local evaporation.

It is still difficult to attribute changes in regional circulation
and moisture transport to deforestation. Zemp et al. (2017b)
states that the self-amplifying drying effects lead to forest loss
in 11–19% of the forest area due to intensified dry season and
drought events. This means that when the links from moisture
transport into the Amazon basin are cut, drying intensifies and
increases forest loss further. However, while this analysis explains
a link between moisture transport and deforestation, it cannot be
used as an explanation of the intensification of the hydrological
cycle.

The fundamental role of the forest in the regional moisture
transport and balance has been discussed in the context of a
novel theory – the “biotic pump” – that suggests that local
evaporation and condensation can exert a major influence over
atmospheric dynamics (Makarieva and Gorshkov, 2007, 2009,
2010; Makarieva et al., 2013; Sheil, 2018). This theory proposes
that high rainfall can be maintained within those continental
landmasses that are sufficiently forested, and suggests that
the water vapor delivered to the atmosphere via evaporation
from forests represents a store of potential energy available to
accelerate air and thus drive winds. Therefore, following this
theory, cutting atmospheric moisture transport and respective
recycling of precipitation due to deforestation in climate-critical
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regions may induce a self-amplified drying process which would
further destabilize the Amazon forests in downwind regions,
i.e., the south-western and southern Amazon region, but also
influence moisture arriving at the La Plata basin (Zemp et al.,
2017a). With 40% of the area of the Amazon deforested, local
annual precipitation would be reduced by 5–10% in the Amazon
basin (Zemp et al., 2017b).

Following Arias et al. (2018), understanding the interplay
between climate variability and land cover is fundamental to
the conservation and sustainable management of tropical river
basins, where forests play an important role in regional water
and carbon cycles. This is particularly true in the Amazon
region, where deforestation and climate variability threaten to
cause major environmental and hydrological changes at regional,
continental, and global scales (Malhi et al., 2008; Davidson et al.,
2012; Coe et al., 2013).

POTENTIAL EFFECTS OF DIFFERENT
STRESSORS (LAND USE CHANGE,
FIRES) ON AMAZON NATURAL AND
HUMAN SYSTEMS

Land Use Change: Deforestation as a
Socio-Climatic Problem
Development in the Amazon region has pushed the agricultural
frontier, resulting in widespread land-cover change. As
agriculture in the region has been of low productivity
and unsustainable, the loss of biodiversity and continued
deforestation will lead to high risks of irreversible change of
the Amazon forests (Ometto, 2011; Nobre et al., 2016). In
the Amazon countries, at an underlying level, deforestation is
caused by multiple factors acting synergistically, e.g., economic
factors such as low internal costs (for land, labor, fuel or timber),
and the increase in the price of products (especially cash
crops or timber). Institutional factors include formal measures
that favor deforestation, land use policies and economic
development programs associated with colonization, transport,
and subsidies for land-based activities (RAISG, 2015). Existing
land-tenure systems and failed policies (like the corruption or
mismanagement of the forestry sector) are also important drivers
of forest loss (Geist and Lambin, 2002). For the entire Amazon
region, the Rede Amazonica de Informacion Socio Ambiental
Georeferenciada-RAISG (RAISG, 2015) shows that deforestation
rates in the entire Amazon from all Amazon countries region
reached 118,530 km2 in 2000–2005; 77,809 km2 in 2005–2010
and 47296 km2 in 2010–2015, and Brazil is the country with
the highest loss in absolute terms, both in historical and recent
deforestation (Table 1). Work by Kalamandeen et al. (2018)
identify hotspots of Amazonian forest loss are moving away from
the southern Brazilian Amazon to Peru and Bolivia.

The PRODES (Monitoramento do Desmatamento na
Amazônia Legal por Satélite) program provides annual estimates
of deforestation for the entire Brazilian Amazon since 1988
based on 30m-resolution Landsat satellite images (Instituto
Nacional de Pesquisas Espaciais [INPE], 2015). There has been

a marked decline in deforestation in the Brazilian Amazon
over the last decade, where deforestation was reported to have
fallen from a record 27,772 km2 in 2004 (consequence of
cattle ranching) to 4,571 km2 in 2012 (Figure 4). Meanwhile,
a rebound of the deforestation rate has been observed since
2013 (Hansen et al., 2013; Aragão et al., 2018) and in 2015–2016,
during the El Niño-related drought the clearing reached about
8,000 km2 (higher than in 2014–2015) of primary forests. The
combination of law enforcement, close monitoring and the
soy and beef moratoria were contributing to the decline in
deforestation rates in the Brazilian Amazon (Nepstad et al., 2004,
2008, 2014, Godar et al., 2014). In fact, land-use change and shifts
in land-uses after deforestation show spatial heterogeneity in
the Amazon region (Müller-Hansen et al., 2017). These findings
point to an important interplay of governance, monitoring and
policy-making requiring the involvement of all important actors
to reach, for example, a zero-deforestation goal or reduce forest
degradation. These estimates are somewhat different pattern
from the PRODES data for Brazil due mainly to differences in
methodologies to calculate deforested areas.

Deforestation within the Amazon region is one of the
driving forces for climate change in the region (Aragão
et al., 2018; Sampaio et al., 2018). Spracklen and Garcia-
Carreras (2015) suggest that considering deforestation rates
prior to 2004, this could lead to a 8.1 + 1.4% reduction
in the annual mean Amazon basin rainfall by 2050, which
is greater than the natural variability. Recent work by
Spracklen et al. (2018) reviews the current understanding of
the processes through which tropical land-cover change affects
rainfall, and they show that tropical deforestation leads to
reduced evapotranspiration, increasing surface temperatures
by 1–3◦C and causes boundary layer circulations, which in
turn increases rainfall over some regions and reduces it
elsewhere.

Land-use change has affected 1.4 million km2, around 20%
of the Amazon basin so far (Castello and Macedo, 2016). The
peak of deforestation in the Amazon (around 2004), when

TABLE 1 | Deforestation in Amazon countries (km2) (RAISG, 2015, updated to
2015).

Amazon
country

Cumulative
deforestation
until 2000
(km2)

Deforestation
rate
200–2005
(km2)

Deforestation
rate
2005–2010
(km2)

Deforestation
rate
2005–2010
(km2)

Bolivia 14,035 4,614 3,733 3,035

Brazil 458,500 101,138 57,399 30,003

Colombia 34,673 3,446 6,167 3,360

Ecuador 9,343 487 424 957

Guyana 3,097 785 821 1,138

French
Guyana

1,539 295 257 354

Peru 55,649 6,680 7,225 5,164

Suriname 5,664 194 263 500

Venezuela 8,914 890 1,521 2,781

Total
Amazonia

591,414 118,530 77,809 47,296
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FIGURE 4 | Deforestation rates in the Brazilian Amazon region from 1988 to 2017 (Source: data from PRODES-INPE). Years with strong and very strong El Niño and
La Nina events are depicted by brown and green arrows, respectively (Source: : ggweather.com/enso/oni.htm).

approximately 28,000 km2/yr−1 was being cleared (Aragão et al.,
2018), was primarily the result of cattle ranching (Nepstad
et al., 2006), but soybean production has also been expanding
(Barona et al., 2010; Settele et al., 2014; Silvério et al., 2015).
Palm oil is one of the main biofuel crops, and while its current
use is still relatively small, Brazil has the largest potential for
expansion in South America and around half of the Amazon is
suitable for its cultivation (Butler and Laurance, 2009; Magrin
et al., 2014) but with the risk of higher sedimentation rates,
and thus implications for riverine ecosystems (Silva C.V.J. et al.,
2018).

Fires and Biomass Burning
The impacts of deforestation are greater under drought
conditions, as fires set for forest clearance can become
uncontrollable and burn larger areas, especially forests that have
been previously logged (Cochrane et al., 1999; Asner et al.,
2005; Soares-Filho et al., 2006; Alencar et al., 2015). Forest
fires, drought, and logging increase susceptibility to further
burning through fragmentation, flammability and ignition, while
deforestation and smoke can inhibit rainfall, exacerbating fire
risk. Therefore, the increase in the risk of forest fires represents
an additional environmental driver of change in the Amazon
region.

Almost all modern fires in the Amazon region are caused
by human activities. However, natural fires have long played a
critical role in determining the forest–savanna transition. Hirota
et al. (2010) showed that for current climate conditions the
tropical forest would penetrate 200 km into the savanna domain

in the absence of fires. Drought-related mortality can result from
other mechanisms, such as desiccation, reduced pest-defense
mechanisms and fires (Brando et al., 2014), which may further
reduce the forest resistance to droughts (Longo et al., 2018).

During the recent drought of 2015–2016 in Amazonia,
Anderson et al. (2018) estimated that 46% of the Brazilian
Amazon biome was under severe to extreme drought, compared
with 16% and 8% for the 2010 and 2005 droughts, respectively.
They suggest that forests in the twenty-first century are
becoming more vulnerable to droughts, with larger areas
intensively and negatively responding to water shortage in the
region.

The potential effects of fire as stressor on Amazon climate
and forests depend on the rainfall distribution mainly in the
“dry season.” De Faria et al. (2017) identify major fires occur
in different parts of the Basin, and they are more likely to
occur in southern Amazonia, where deforestation is more intense
(eg., the arc of deforestation located on that region), and also
to water stress and higher temperatures due to a longer dry
season as shown in previous sections. This is in agreement
with recent rainfall and extreme rainfall trends identified in
Amazonia by Espinoza et al. (2018), where l has been increasing
on the recent decades in northern Amazonia, while in southern
Amazonia, where and the rate of deforestation is relatively
higher than in northern Amazonia, rainfall has been diminishing
in time, consistent with a longer dry season as previous
discussed.

For many years, fire was highly correlated with areas
of deforestation in the Amazon. However, recent analysis
by Cano-Crespo et al. (2015) showed that area burnt
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and deforestation now follow different trends, with 75%
of forest fires that occur along forest periphery resulting
from fires that escaped from neighboring pasture land.
While there is a 76% decline in deforestation rates over
the past 13 years, fire incidence increased by 36% during
the 2016 drought compared to the preceding 12 years. The
cumulative deforested area still play important roles in
burned area, either by increasing the surface of flammable
edges or decreasing fuel connectivity, this was the case of
2010 where much of the material that burned was due to
the drought of 2005 (Gatti et al., 2014). The 2016 drought
in the Amazon region had the largest ever ratio of active
fire counts to deforestation, with active fires occurring over
an area of 799,293 km2, and extending beyond the arc of
deforestation, impacting areas in central Amazon region
that were barely affected by fires in the past (Aragão et al.,
2018).

Any increase in fire frequency, whether associated with
climate variability (e.g., El Niño), climate change, logging,
or road construction is likely to trigger positive feedback
mechanisms that promote establishment of fire-dominated, low-
biomass forests (Barlow et al., 2003; Aragão et al., 2018).
Conversely, deliberate limitation of deforestation and fire
may be an effective intervention to maintain the resilience
of Amazon forests in the face of imposed 21st Century
climate change. This is technically and economically viable
with intensification of cattle ranching and improved soil
management in croplands, which does not require fires and
clearing new forests to increase beef and crop productivity
(Latawiec et al., 2014; Gibbs et al., 2015; Moutinho et al.,
2016).

EVOLUTION OF MODEL DEVELOPMENT
FOR SIMULATING LAND USE EFFECTS
ON CLIMATE IN THE AMAZON REGION

Evolution of Climate and Land Use
Modeling in Amazonia
Deforestation changes the energy, carbon and water balance, and
the interaction between atmosphere and forest, and atmosphere
and agricultural area. Such changes have been investigated in
the Amazon region using global and regional climate models.
The initial deforestation experiments in the 1980s using global
climate models assumed unrealistically large perturbations, with
scenarios of complete deforestation of the Amazon basin. These
projections mostly resulted in warming and drying of the entire
Amazon region in most of the models, although a few models
showed warmer and wetter conditions in the region, suggesting
that projections may depend also upon model parameterizations
(See reviews in Zhang et al., 2001; Lawrence and Vandecar,
2015; Marengo and Espinoza, 2016; Chambers and Artaxo,
2017; Sampaio et al., 2018). These models have also been used
to simulate scenarios of climate change, considering low and
extreme conversion of forests by deforestation and an increase

in greenhouse gasses concentration (Feddema et al., 2005; Badger
and Dirmeyer, 2016).

Climate model experiments since that time have allowed the
simulation and estimation of the difference in energy balance
of forest areas caused by deforestation at various space-scales.
Model experiments by D’Almeida et al. (2006, 2007) and Pitman
and Lorenz (2016) indicate that deforestation impacts at other
scales, i.e., local, regional, and meso-scale, would be significant.
The scenario of complete loss of forest by deforestation is
unlikely, but serves as a warning to society and decision-makers
about the potential risks of deforestation under climate change.
Kalamandeen et al. (2018) found that small scale (<1 ha) low-
density forest loss expanded markedly in geographical extent
during 2008–2014. Recent findings show a substantial proportion
of tropical forests being fragmented and following a power law,
where approx. 11% of the Amazon forest area are forest fragments
smaller than 10000 ha (Taubert et al., 2018). These findings shift
presents an important and alarming new challenge for forest
conservation, despite reductions in overall deforestation rates.
Additionally, forest degradation caused by selective logging,
forest fires and forest fragmentation may reduce forest resilience
to climate change (Malhi et al., 2009; Davidson et al., 2012;
Brando et al., 2014; Castanho et al., 2016), which still needs to be
investigated using climate models to capture feedbacks between
climate, land and ocean.

When considering only the results of global climate models
on a regional scale, i.e., on the Amazon scale, the impact of
deforestation on climate is more severe. Studies reported by
Magrin et al. (2014) derived from IPCC CMIP3 models point
to an increase in annual mean temperature ranging from 0.1
to 3.8◦C, and a reduction of 10–30% in annual precipitation,
which would lead to changes in the climatic seasons both locally
and regionally or the A1 scenario (high emissions). Spracklen
et al. (2012) found that clearing 40% of the Amazon results
in a 12% reduction in wet-season rainfall and a 21% reduction
in dry-season rainfall across the Amazon basin. In any case,
the magnitude of rainfall reduction and the location of the
most affected regions are still uncertain (Joetzjer et al., 2013).
Analyzing the water balance in the Amazon region, Llopart et al.
(2018) shows that under the deforestation scenario the land
surface processes play an important role by driving precipitation
changes in western Amazonia.

Projected changes in annual rainfall for the region’s 21st
century climate show uncertainties, although results from
multiple model predictions generally indicate reductions in
eastern Amazonia and longer dry seasons, particularly in
Southern and Eastern Amazonia (Malhi et al., 2008; Fu et al.,
2013; Intergovernmental Panel on Climate Change [IPCC], 2014;
Peripheral Blood Mononuclear Cell [PBMC], 2014; Boisier et al.,
2015; Longo et al., 2018). This may increase the risk of recurrence
of intense droughts and fires and would jeopardize the biome in
the long term. This is explored in previous sections.

Based on CMIP5 models, warming projected for the entire
Amazonia for RCP8.5 by 2100 reaches about 6◦C (varying from
4◦C to 8◦C). At regional levels, Figure 5 shows by the end of
the century an increase in temperatures can reach even higher
levels and reach approximately 6–7◦C in eastern and southern
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FIGURE 5 | CMIP5 multi-model ensemble projected air temperature (◦C) and rainfall change (%) in annual cycle of precipitation in eastern (60◦W – 48◦W/10◦S – 0◦S)
and southern Amazonia (70◦W – 50◦W/14◦S – 5◦S) under the RCP8.5 scenario for decadal time slices for the period 2020–2100 relative to the 1961–2005 baseline.

Amazon for the RCP8.5. The first decades of the twenty-first
century also follow the tendency of increase according to the
projections, but with a smaller magnitude, with an increase
of up to 1◦C already from the 2020 decade. For rainfall, they
found that rainfall shows a reduction in precipitation for all
months, and it is more pronounced during dry and transition
season of July–November in southern Amazonia, which modifies
the annual cycle. During the transition from dry season to
wet season August–October, the projections show the sharpest
proportional decline in precipitation, varying from 15% in 2020
to 40–55% by 2100 in both southern and eastern Amazonia
for the RCP8.5, and implying a progressive prolongation of
the dry season, resulting in a reduction in the length of the
rainy season and possibly increasing the risk of fire. As shown
Figure 3, a tendency for a lengthening of the dry season
has been already observed in southern Amazonia since the
1970’s.

Land use change in the future depends heavily on socio-
economic factors, as reflected in the various IPCC RCP scenarios
from CMIP5. High emission scenarios such as RCP8.5 project
high land use conversion for agriculture, and high mitigation
scenarios including RCP2.6 suggest high land use conversion
for biofuels. Middle emissions scenarios such as RCP4.5 show

reforestation across Brazil as a climate mitigation measure
(Figure 6). Approaching zero-deforestation would reduce carbon
emissions to a level that could be compensated by forest
productivity until 2050 although uncertainties on the role of
degraded forests and regrowth of secondary forests remain large
(Aguiar et al., 2015; Aguiar et al., 2016).

Future scenarios of complete deforestation in the region
result in a 10–20% decrease of the annual rainfall in the entire
Amazonia (Moore et al., 2007). On larger scales, deforestation
leads to reductions in moisture recycling, reducing regional
rainfall by up to 40% (Figure 5). Results from projections of
climate change scenarios from CMIP5 models with hydrological
models from Abe et al. (2018) suggest that an increase in
deforestation will intensify floods and low-flow events.

Using a Carbon and Land Use Change dynamic carbon model,
De Faria et al. (2017) found that creased air temperature was
the primary driver of changes in simulated future fire intensity,
while reduced precipitation was secondary, particularly in the
eastern portion of the Basin. As a consequence, fire-drought
interactions strongly affect live carbon stocks and that future
climate change, combined with the synergistic effects of drought
on forest flammability, may strongly influence the stability of
tropical forests in the future.
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The Tipping Point and Die Back Scenario
in the Amazon Region, Projections and
Uncertainties
Drought impacts alone could be harmful enough for the
maintenance of ecosystem integrity. Studies have pointed out that
further deforestation and forest degradation will lead to dramatic
biodiversity loss, increasing the risk of irreversible change of
tropical forests (Barlow et al., 2016; Nobre et al., 2016). Previous
studies on a partial rainfall exclusion and drought induced
experiment suggested that the trees in a central Amazon forest
avoided drought by absorbing deep soil moisture, but they also
delayed the onset of drought through hydraulic redistribution of
soil moisture and foliar uptake of dry season rainwater and dew
(Nepstad et al., 2007; Brando et al., 2008; Da Costa et al., 2010;
Rowland et al., 2014).

The combined effects of drought and deforestation, in
combination with fire, have the potential to strongly amplify
these impacts and potentially cause a collapse of the tropical
rainforest ecosystem (Cox et al., 2000, 2004, 2008; Nobre
et al., 2016). Model experiments using the CPTEC climate
model by Oyama and Nobre (2003); Salazar et al. (2007),
and Sampaio et al. (2007) have shown a transformation of
the Amazon forest into a drier savanna-like biome. This
suggests a threshold value of changes in temperature, CO2
concentration or deforested area (“tipping points”) to induce

FIGURE 6 | Disturbed fraction of vegetation across South America simulated
by the HadGEM2-ES Earth System Model, at 1860, 2005, and four future
scenarios at 2100: RCP2.6 (high mitigation), RCP4.5, RCP6.0, and RCP8.5
(high emissions).

these changes in vegetation (the Amazon “dieback”). It has
been suggested that the Amazon may have two “tipping
points,” namely, (1) a critical threshold of drought linked to
global warming, or (2) deforestation exceeding 25% of forest
area (Nobre et al., 2016; Lovejoy and Nobre, 2018) to 40%
(Lenton et al., 2008).

Recently, there have been discussions around the limits of
deforestation, where beyond a certain threshold the forests may
no longer be able to sustain their climate, and the biome could
enter a state of collapse. Lovejoy and Nobre (2018) suggest that
this threshold could be as low as 25% of deforestation, above
which the forest may stop functioning. Today we have reached
about 20% deforestation.

If these tipping points are crossed, large-scale transition to
savanna vegetation in the southern and eastern Amazon region
may take place (Nobre et al., 2016 and references quoted in).
The possible “die-back” of the Amazon region would potentially
have large-scale impacts on climate, biodiversity, and people in
the region. The studies of Cox et al. (2004) and Betts et al.
(2004, 2008), using the HadCM3 model have also projected
this future dieback. The level of global warming associated with
critical drought levels is extremely uncertain (Betts et al., 2004).
After that point is reached, the forest collapses and is replaced
by secondary or degraded forests. With the establishment of
savanna-type vegetation, the soils continue to dry and lose carbon
in a process that has been referred as “savannization” of the
Amazon region (Cox et al., 2000). This savannization can be
interpreted as the deforested analog of the Amazon forests, with
the deforested area covered by pastures and agricultural fields of
a savanna-equivalent vegetation. The resilience of the forest to
the combined pressures of deforestation and climate change is
therefore of great concern.

Although the Amazonian forest persisted during moderate
to extreme droughts in the recent past (Bush et al., 2016), it
is uncertain whether or not future climate change and other
anthropogenic stressors will trigger rapid forest dieback in
the Amazon basin (Davidson et al., 2012; Diffenbaugh and
Giorgi, 2012; Parsons et al., 2018). Therefore the possibility of
this dieback scenario occurring is still an open issue and the
uncertainties are still very high (Huntingford et al., 2004; Rammig
et al., 2010; Shiogama et al., 2011; Good et al., 2013; Boulton
et al., 2017). The dieback depends specifically on the ability of
the tropical rainforest to increase carbon uptake in scenarios
of increasing atmospheric CO2 concentrations (Rammig et al.,
2010), and on the impact that an interruption of the moisture
recycling would have on forest stability (Zemp et al., 2017b).

Work by Malhi et al. (2009) with CMIP3 models used the
evaporation value at 3.33 mm day−1, or 100 mm month−1

in their simulations to define a dry month in the Amazon
(Sombroek, 2001), and show that the models do not allow
large water deficits to develop, thereby constraining the extent
of the dieback. In that sense, an analysis from CMIP3
models combined with alternative models of plant physiological
processes by Huntingford et al. (2013) shows that, despite the
considerable uncertainties, the likelihood of dieback could be
altered, suggesting that there is evidence of forest resilience in the
Amazon region.
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The dieback projections were also based on an oversimplified
representation of the biodiversity of Amazon forests,
representing the tropical rainforests with a maximum of
two plant functional types. Longo et al. (2018) incorporate
ranges of tree age and size into an analysis of Amazon forest
resilience and find that three quarters of the Amazon would not
become critically dry by the end of this century, but they note
that nutrient limitation and leaf and hydraulic trait diversity
are not taken into account. When incorporating observed
plant trait diversity into a dynamic global vegetation model,
tropical forests still collapsed under severe climate change
conditions and constant atmospheric CO2 (unlike in Rammig
et al., 2010), but were more resilient than low-diverse forests
(Sakschewski et al., 2016). These changes would still impact
biodiversity of other organism groups, put moisture recycling
at risk and affect ecosystem services provided to people in the
region.

Rising atmospheric CO2 concentrations also lead to stomatal
closure and increased water use efficiency, which reduces
evapotranspiration (Field et al., 1995; Sellers et al., 1996). This
is known as physiological forcing or the physiological effect (e.g.,
Betts et al., 2007, 2011, 2012). Models suggest that physiological
forcing has the effect of increasing runoff (Gedney et al., 2006;
Betts et al., 2007; Magrin et al., 2014) and altering the surface
energy balance in favor of sensible heat (e.g., Good et al.,
2015; Lemordant et al., 2018), which then increases warming,
reduces relative humidity and in turn reduces the fraction of
low cloud (Cao et al., 2010; Andrews et al., 2011). It is likely
that physiological forcing may be more significant than radiative
forcing in driving hydrological cycle changes in Amazonia (Cao
et al., 2010; Chadwick et al., 2017; Skinner et al., 2017; Lemordant
et al., 2018) and that beyond a doubling of CO2 it may contribute

to non-linear increases in temperature (Good et al., 2015) and
non-linear decreases in evapotranspiration (Halladay and Good,
2016). Good et al. (2015) attribute these non-linear temperature
increases to increases in the Bowen ratio, which are greatest
over the Amazon region (Figure 7). Physiological forcing can
also have a significant effect on precipitation distributions in
forest regions where there is high transpiration (Skinner et al.,
2017). Changes in forest structure at a variety of spatial scales
are also expected to occur, such as increases in leaf area index
(LAI) (Betts et al., 1997; Kergoat et al., 2002; Chapin et al.,
2008) that may interact with the physiological effect and feed
back on climate. However, there is evidence to suggest that
LAI changes are dependent on initial values (Norby and Zak,
2011).

There is, however, a lot of variation in the modeled stomatal
response (Rogers et al., 2017), which is particularly important
to constrain as it has an impact on both the hydrological
and carbon cycles. The stomatal response depends on both
atmospheric CO2 and temperature, indeed, the response of
photosynthesis to temperature was found to be the most
important source of carbon cycle uncertainty in a perturbed
parameter experiment (Booth et al., 2012). These uncertainties
highlight the importance of the proposed Amazon FACE
experiment (Norby et al., 2016) in constraining vegetation
responses to increasing atmospheric CO2 concentrations,
particularly as previous FACE experiments have been in
temperate regions. In addition, it may provide data on
phosphorus limitation, which is an additional source of
model uncertainty that is not currently taken into account
(Lapola, 2018).

In summary, large uncertainties still dominate the hypothesis
of Amazonian forest dieback even though observational evidence

FIGURE 7 | Bowen ratio at 4 × CO2 divided by Bowen ratio at 2 × CO2, based on means over years 50–149 of abrupt 2 × CO2 and abrupt 4 × CO2 simulations
using the HadGEM2-ES Earth System Model (reproduced from Good et al., 2015, British Crown Copyright, by permission of the Met Office).
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shows the forest and regional climate changing (Lapola et al.,
2018). The uncertainties associated with projections of dieback
are related to the vegetation response to climate change and its
response to increases in atmospheric CO2 concentration. These
responses are both model and scenario dependent (particularly
in terms of land use) and will interact with one another. For
example, stomatal closure in response to elevated CO2 leads
to reduced transpiration and increased temperature (e.g., Good
et al., 2015). Studies such as Doughty et al. (2015) gained insight
into the vegetation response to climate by analyzing the forest
response to drought. They found increases in mortality, which
were thought to be caused by changes in carbon allocation,
although there is still some uncertainty as to the mechanisms
(Meir et al., 2015). It has been suggested that tropical forests
may also be vulnerable to high temperatures (Doughty and
Goulden, 2008; Doughty et al., 2012), but experiments have
so far been limited in scope. Some studies (e.g., Slot et al.,
2014) have suggested that acclimation will occur over climate
timescales and alter the potential for dieback. Within the
uncertainty related to the vegetation response to increased
CO2, is the increase in photosynthetic rate with increased
water use efficiency and stomatal closure, which have been
shown in the FACE experiments (Norby and Zak, 2011).
These are well understood at the leaf scale but not when
scaled up to ecosystems (De Kauwe et al., 2013). There is
also uncertainty around how these responses are modulated
by drought stress, temperature, nutrient availability, vegetation
diversity and age (Norby et al., 2016). Furthermore, it is
not known whether or not increased photosynthetic rates will
increase biomass. Vegetation composition may also be affected
as some species may be better adapted to future environments
(e.g., Laurance et al., 2014), which may in turn affect forest
resilience.

More recently, Lapola et al. (2018) discusss socioeconomic
impacts of the dieback in the Amazon region. They estimated
damage over a 30-year period after the dieback is estimated
between US dollar (USD) $957 billion arising primarily
from changes in the provision of ecosystem services, without
mitigation options. In summary, acting now to save the Amazon
would be up to 100 times cheaper than risking a mass forest
die-off.

FINAL THOUGHTS

The present review outlines once more the importance of the
Amazon forests for hydrology, climate and carbon cycling. It
shows how intensely the different processes are intertwined
to maintain ecosystem functioning of the Amazon forests.
Having it preserved maintains regional hydrology, stabilizes
local, regional and continental climate, dampens the impact
of extreme climate events and maintains carbon storage and
the biodiversity hotspot. Unsustainable human activities, i.e.,
large-scale deforestation, fires and predatory exploitation of
natural resources are destabilizing this important, but sensitive
equilibrium and it can influence agriculture intensification across
the region.

The shortness of rainfall records is a major problem in the
Amazon region. Most of these records start in the 1960s, which
hampers the quantification of long-term trends. Only river data
goes back to the beginning of the 20th century, and this allows
identification of the range of flood and drought variability and
risk. In this regard, recent work by Parsons et al. (2018) found that
Amazonia has regularly experienced multi-year droughts over the
last millennium, based on hydroclimatic variability within the
western Amazon Basin shown in lake records. This suggests the
need for a better climate and hydrological data bank for the wider
Amazon region, with all Amazon countries contributing to it,
mainly for rainfall and temperature. River data has allowed for
detection of flood and drought variations starting in the 1900s
and the availability of global reanalyses has enabled studies on
water balance and moisture fluxes and transport in the region
since the 1960s. Field data from experiments such as LBA have
allowed for model validation and studies on carbon, energy and
water cycles in some regions mainly in the Brazilian Amazon.
Novel cloud computing capability enables the processing and
analysis of planetary scale remote sensing data (Gorelick et al.,
2017), which can help improve the understanding of water and
land dynamics associated with land use and land cover activities,
infrastructure construction and climate change (Hansen et al.,
2013; Pekel et al., 2016).

The region has warmed, the dry-season length increased and
more climate extremes affect the region with impacts on carbon
sequestration and storage, river streamflow and biodiversity,
even in the large forested areas designated to conservation
and protection. Recent “once-in-a-century” droughts and floods
have shown the impacts of extreme climate variability and
change on this region’s vegetation, carbon storage, water cycling,
biodiversity, land use, and economy, as explained by Parsons
et al. (2018). The perception of the population of the impacts
of such extremes has been matter of on-going research (Pinho
et al., 2015). Considering ecological impacts, there may be a
natural range to which the ecosystem is adapted; however,
it is still uncertain whether or not those extreme events lie
outside this natural variability. Work by Domingues et al. (2018)
provides evidence of robust acclimation potential to drought
intensification in the diverse flora of an Amazonian forest
community.

Furthermore, it is this increasing vulnerability and risk that
underpins the ambition of the COP21 Paris Agreement to pursue
efforts to limit global warming to no more than 2.0◦C above pre-
industrial levels. The challenges involved in keeping the mean
global warming below 1.5–2.0◦C have, if anything increased since
the Paris COP21 agreement. So, there is a need for decisive action
from governments worldwide so that a 4◦C warmer world can
be avoided (Reyer et al., 2015). It is fundamental that we find
innovative mechanisms that promote financial compensations
for crops that seek to reduce deforestation or to promote forest
conservation, protection of abandoned secondary forests, as well
as to discuss new areas for a region that reconcile environmental,
social and economic dimensions. Impacts of future deforestation
on the hydrological cycle are still uncertain but could be of
similar magnitude to those caused by climate change. Thus,
climate and sustainable development policies need to account
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for the impacts of deforestation on regional rainfall. Mechanisms
such as Reducing Emissions from Deforestation and Degradation
(REDD+) have been proposed, but so far we do not know if they
will be successful or not.

Grand questions on Amazon climate variability and change
that need to be explored in more detail include the following:
(1) What are the current drought and flood trends in Amazonia?
(2) Are those trends linked to natural climate variability and/or
to land-use changes? (3) What are the relative roles of local and
remote forcings in atmospheric moisture transport and hydro-
climatic extremes in the region? (4) What will be the impacts
of aerosols from biomass burning, and changes in atmospheric
circulation and rainfall in the Amazon, including changes in
the length of the dry season and onset of the rainy season? (5)
While highly biodiverse forests are more resilient, although not
resistant to severe climate change impacts, what would be the
physiological processes controlling carbon and water balances
in Amazon forests in future climates? (6) Can we improve
our knowledge of interactions between biodiversity, rooting
schemes and evapotranspiration to buffer drought conditions
(increasing dry-season length, extreme drought years)? (7) What
are the uncertainties of the occurrence of a dieback of the
Amazon forest in future climate change projections given all
possible interactions and feedbacks? (8) How do we understand
and reduce future deforestation and human activities and their
uncertainties and how do the latter impact on regional climate,
water and the carbon cycles? (9) What are the trade-offs between
different economic, social and environmental development
strategies in the region to cope with impacts of climate change?
(10) How can we integrate knowledge on Amazon dieback with
socioeconomic assessments in order to anticipate impacts and
to assess the feasibility and efficacy of mitigation/adaptation
options?

The answers to these questions will be revealed by combining
intensive observational monitoring data with an environmental
modeling strategy, directed toward a more realistic simulation
of the characteristics and variability of Amazon functioning at
various time scales. This will also lead to better projections
of future climate and environmental change scenarios with
uncertainty quantifications. We need integrated and responsive
research, and an engagement program that tackles economic,

social and environmental development strategies by learning
from governance failures at multiple levels, barriers to scaling up
innovative locally based sustainable development programs in the
Amazon, and poor communication between different knowledge
systems, Amazon societies and policy making.

As suggested by Parsons et al. (2018), the future sustainability
of the Amazonian forest and the ecosystem services it offers
may require management strategies that consider the likelihood
of multi-year droughts superimposed on a continued warming
trend. While science can still advance further in this area, we
have also assembled enough knowledge to underline the global
and regional importance of an intact Amazon region, in order
to support policymaking and to keep this sensitive ecosystem
functioning. This major challenge requires substantial resources
and strategic cross-national planning, and a unique blend of
expertise and capacities established in Amazon countries and
from international collaboration.
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