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Existing publicly available digital elevation models (DEMs) provide global-scale data
but are often not precise enough for studying processes that depend on small-scale
topographic features in rivers. For example, slope breaks and knickpoints in rivers
can be important in understanding tectonic processes, and riffle-pool structures are
important drivers of riverine ecology. More precise data (e.g., lidar) are available in some
areas, but their spatial extent limits large-scale research. The upcoming Surface Water
and Ocean Topography (SWOT) satellite mission is planned to launch in 2021 and will
provide measurements of elevation and inundation extent of surface waters between
78◦ north and south latitude on average twice every 21 days. We present a novel noise
reduction method for multitemporal river water surface elevation (WSE) profiles from
SWOT that combines a truncated singular value decomposition and a slope-constrained
least-squares estimator. We use simulated SWOT data of 85–145 km sections of the
Po, Sacramento, and Tanana Rivers to show that 3–12 months of simulated SWOT
data can produce elevation profiles with mean absolute errors (MAEs) of 5.38–12.55 cm
at 100–200 m along-stream resolution. MAEs can be reduced further to 4–11 cm by
averaging all observations. The average profiles have errors much lower than existing
DEMs, allowing new advances in riverine research globally. We consider two case
studies in geomorphology and ecology that highlight the scientific value of the more
accurate in-river DEMs expected from SWOT. Simulated SWOT elevation profiles for
the Po reveal convexities in the river longitudinal profile that are spatially coincident with
the upward projection of blind thrust faults that are buried beneath the Po Plain at the
northern termination of the Apennine Mountains. Meanwhile, simulated SWOT data for
the Sacramento River reveals locally steep sections of the river profile that represent
important habitat for benthic invertebrates at a spatial scale previously unrecognizable
in large-scale DEMs presently available for this river.
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INTRODUCTION

Accurate measurements of river water surface elevation (WSE)
and slope at fine spatial scales are useful for monitoring river
discharge (LeFavour and Alsdorf, 2005), calculating stream
power in erosional models (Whipple and Tucker, 1999),
interpreting underlying geology (Schumm, 1986), identifying
knickpoints (Hayakawa and Oguchi, 2006), and characterizing
habitat fragmentation for freshwater fish (Dias et al., 2013).
In addition, water surface slope is a good predictor of physical
habitat classifications (Jowett, 1993), which have different
abundances and compositions of benthic taxa (Brown and
Brussock, 1991). In situ stream gauges provide high-accuracy
measurements of water elevations at discrete points but lack
spatial continuity. Even in the most heavily montiored parts of
the world, the gauge network is sparse and becoming sparser
(Hannah et al., 2011). This problem is worse in less developed
areas like the Arctic (Shiklomanov et al., 2002). Meanwhile,
existing global DEMs are insufficient over open water due to
missing data, large vertical errors, coarse spatial resolution,
or limited temporal resolution (Alsdorf et al., 2007).

Remotely sensed measurements of river surface elevation
have been made using a variety of methods that each have
their limitations (Schumann and Domeneghetti, 2016). GEOSAT,
a radar altimeter launched by the U.S. Navy in 1985, was
shown to have root mean square error (RMSE) of 0.7 m
compared to gauge stations on the Amazon River (Koblinsky
et al., 1993). The TOPEX/Poseidon altimeter was designed to
measure ocean topography but is also able to observe rivers
with widths larger than 1 km with RMSE of 1.1 m (Birkett
et al., 2002). The Jason-2 radar altimeter, part of the Jason series
succeeding TOPEX/Poseidon, has been shown to have standard
errors of 0.28 and 0.19 m over the Ganga and Brahmaputra
rivers, respectively, but, like its predecessors, works best in
rivers more than a kilometer wide (Papa et al., 2012). Satellite
altimeters can provide high-accuracy WSE measurements, but
with relatively poor spatial resolution compared to imaging
radars. On the other hand, airborne laser altimeters have been
used to map WSEs at high spatial resolution. For example, Biron
et al. (2013) found elevation errors with standard deviation
of 25 cm at 20 m spatial resolution compared to differential
GPS measurements. The Shuttle Radar Topography Mission
(SRTM) C-band DEM has an estimated standard deviation
of error of 5.5 m for open water and has extensive missing
data because radar returns depend on the surface roughness
(LeFavour and Alsdorf, 2005). TanDEM-X is a relatively new
12 m resolution global DEM from the German space agency
(DLR), but it performs poorly over water for similar reasons
to SRTM. As a result, the elevations for many northern
latitude water bodies in TanDEM-X are collected during winter
months when they are ice covered (Wendleder et al., 2013).
The Japanese space agency (JAXA) released the ASTER Global
DEM Version 2 in 2011, but water elevations are often
missing due to failure of the stereo matching technique method
over water (Tachikawa et al., 2011). ArcticDEM is a 2 m
resolution photogrammetry-derived digital surface model that
covers latitudes north of 60◦ plus the Kamchatka peninsula

and all of Alaska1. Despite the challenges of photogrammetry
over water, extracting elevations from the shoreline on the
Tanana River produced an elevation profile with height error
standard deviation of 0.30 m at 100 m resolution based on
ArcticDEM (Dai et al., 2018). More precise data are available
from national elevation products like the National Elevation
Dataset (NED) in the United States (Gesch et al., 2002), and
TINITALY in Italy (Tarquini et al., 2011), but their limited
spatial extent prevents global-scale studies. The Multi-Error-
Removed Improved-Terrain (MERIT) DEM is created from
SRTM, AW3D30, and the Viewfinder Panoramas DEM data,
and is processed to decrease random and systematic sources of
error (Yamazaki et al., 2017). The accuracy of MERIT over rivers
has not yet been evaluated, however, problems of the source
DEMs over open water are likely a persistent source of error in
this data product.

The Surface Water and Ocean Topography (SWOT) satellite
mission, planned to launch in 2021, will provide measurements
of elevation and inundation extent of surface waters between 78◦
north and south on average twice every 21 days (Biancamaria
et al., 2016). Over its planned 3 years lifetime, SWOT will
provide repeat measurements of each river wider than 50–100 m.
Any single observation of a river reach will have relatively
poor accuracy (∼0.5 m) at the 100–200 m scale required to
identify many along-stream topographic features. However, by
leveraging multitemporal SWOT data, it is possible to reduce
vertical errors and produce global river elevation datasets of
unprecedented accuracy in SWOT-observable rivers. Here we
use a truncated singular value decomposition to reduce the
measurement error in a set of simulated SWOT observations.
Subsequently, we use a constrained least-squares estimator to
ensure that elevations decrease in the direction of flow, and to
reduce individual WSE profiles to an average longitudinal profile.
We apply this new method to simulated SWOT WSE profiles
of the Po, Sacramento, and Tanana Rivers to evaluate the error
reduction. We also compare error statistics for average simulated
SWOT elevation profiles and profiles extracted from existing
DEMs. Last, we consider case studies in geomorphology and
ecology to highlight the scientific value of the more accurate
in-river DEMs expected from SWOT.

MATERIALS AND METHODS

Simulator Data
Ahead of the launch of the SWOT satellite, the NASA Jet
Propulsion Laboratory (JPL) created a software simulator that
approximates the sampling and error characteristics of SWOT
(Frasson et al., 2017; Domeneghetti et al., 2018). The SWOT
simulator requires a time series of WSEs, usually derived from a
hydrodynamic model, for inundated areas. Additionally, a static
DEM of the surrounding topography is used to simulate layover
errors. The simulator samples the modeled surface elevations
temporally and spatially according to the planned SWOT orbit
and adds errors from terrain layover, instrument thermal noise,

1http://arcticdem.org
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FIGURE 1 | Locations of the three study areas. River centerlines are in blue scale, colored by the number of simulated observations. Grayscale elevations are from
the MERIT DEM.

TABLE 1 | Physical and SWOT simulation characteristics of the sample rivers.

Simulated Length Mean Hydrodynamic model Node Simulated Mean observations Orbit

river (km) width (m) resolution (m) spacing (m) overpasses per node cycles

Po 130 478 1200 200 52 25 17

Sacramento 145 134 258 200 16 14 8

Tanana 60 493 25 100 12 8.6 4

and satellite positional uncertainties. Errors associated with
vegetation and the impact of specular reflections from the water
surface are not included in this study. The simulator outputs a
pixel cloud of elevation, inundation type, and other properties
that are then summarized to regularly spaced nodes along the
river centerline (Frasson et al., 2017). We use hydrodynamic
models and simulated SWOT overpasses of the Sacramento, Po,
and Tanana Rivers described in previous publications (Figure 1;
Altenau et al., 2017; Frasson et al., 2017; Domeneghetti et al.,
2018). The hydrodynamic model of the Sacramento is a one-
dimensional HEC-RAS model with an average cross sectional
spacing 1.9 river widths (Table 1; Frasson et al., 2017). The
Po River is modeled using a quasi-two-dimensional HEC-RAS
model based on bathymetric cross sections an average of 2.5
river widths apart, and combined lidar and SRTM DEMs outside
the main channel (Castellarin et al., 2011). The Tanana River
simulation uses a two-dimensional LISFLOOD-FP model over a
25 m interpolated bathymetric grid (Altenau et al., 2017).

The three river models vary in spatial and temporal extent, and
the frequency of simulated SWOT observations varies according
to overlap of the planned orbit and the river location. The Po
River is the largest set of data in this study, with a full year of

simulation, and the Tanana River is the smallest data set, spatially
and temporally (Figure 2 and Table 1). Additionally, the smaller
node spacing on the Tanana increases noise at the node level,
as fewer simulated point measurements are averaged for each
node. Similarly, the noise is relatively high for the Sacramento
River simulation as it is the narrowest river and fewer simulated
observations are available for each node. We removed one high
discharge observation from the Sacramento simulation, so that
the remaining profiles better represent the average elevation
profile. At high discharge, small-scale details of the elevation
profile can be lost, or muted, as larger hydraulic controls extend
their influence further upstream (Dingman, 2009). Input rasters
to the SWOT simulator are sampled in space and time and
summarized to nodes matching the simulator output, which
allows direct comparisons of the input and output nodes for error
analysis of SWOT.

DEM Data
We acquired existing DEMs in order to compare the anticipated
errors in SWOT river elevation profiles to current elevation
data, including SRTM, MERIT, ASTER, NED, ArcticDEM,
TanDEM-X, and TINITALY DEMs, where available. For the
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FIGURE 2 | Timing of the simulated overpasses for all three rivers. The observations have been aligned such that the first observation of each river is day 1.

Sacramento River, we acquired lidar data from the California
Valley Floodplain Evaluation and Delineation Program and
created a 10 m resolution raster from the last returns (California
Department of Water Resources, 2013). We have not included
any satellite altimeters in our analysis as the spatial scales of these
data are too coarse compared to the other DEMs. We sampled
elevations from the DEMs using hand-drawn river centerlines
densified to the raster resolution. Manually drawing centerlines
for each river ensures elevations are sampled from within the
channel, which can change location between data sources. Height
errors and missing data in the DEMs caused automated methods
of centerline delineation to fail in many cases, due to higher
elevations within the channel than outside. Centerlines were
manually identified based on changes in data quality over open
water and from referencing satellite imagery. The sampled DEM
elevations are projected onto average centerlines from the SWOT
simulations and transformed to flow distance and cross-channel
coordinates (Legleiter and Kyriakidis, 2008). This process allows
direct comparison of elevations originally sampled from different
centerlines using the common flow distance coordinate. Last, we
upscale the DEM profiles to the spacing of the SWOT simulated
nodes using a windowed mean and interpolate the DEM data at
the flow distance of each simulated node (left side of Figure 3).
The end result of this processing is a separate elevation profile
from each DEM projected on to a common coordinate system. To
analyze the errors, we compare the DEM profiles to the average
hydrodynamic model output for all three rivers, as well as boat-
mounted GPS profiles of the Sacramento and Tanana Rivers.
The GPS data collection is described by Minear and Wright
(2016) for the Sacramento River, and by Altenau et al. (2016) for
the Tanana River.

Profile Smoothing
There are many published methods to make noisy DEM
surfaces more suitable for hydrologic research, including filling
(Jenson and Domingue, 1988), carving (Soille et al., 2003),
spline regression (Harbor et al., 2005), and slope-constrained
quantile regression (Schwanghart and Scherler, 2017). One reach
definition method being considered for SWOT operations uses
a Gaussian smoothing filter to reduce noise on SWOT profiles.
The Gaussian weighting function used in the filter has two
formulations: one uses a static 2 km standard deviation, and
the other uses 1/5 of the reach length and a minimum of
1 km standard deviation. Both of these smoothing operations
result in very smooth profiles that accurately capture slopes at

10 km scales (Frasson et al., 2017), but the wide window of the
filter means small-scale topographic details such as riffle-pool
structures are often lost.

We present new methods to reduce noise from multitemporal
river elevation profiles that rely on the commonalities between
repeated measurements instead of spatial smoothing. To reduce
the noise in the simulated elevation profiles, we first decompose
the elevation data using the singular value decomposition and
analyze the resulting eigenvectors (full description in section Low
Rank Approximation). The data is then recreated using fewer
eigenvectors, reducing variability between observed profiles, and
highlighting the real variability of the profiles. We hypothesize
that repeated measurements of river elevation can be closely
approximated at lower rank. In other words, the elevation profiles
are linearly dependent on one another. The matrix becomes full
rank when the simulated SWOT noise is added. To reduce the
noise, we eliminate many of the eigenvectors to create a low-
rank approximation (LRA) of the simulated data. This LRA is
then further constrained using a least-squares estimator such
that node elevations decrease in the downstream direction (full
description in section Slope Constraint).

Low Rank Approximation
The nodes output by the SWOT simulator are arranged in a
matrix such that rows represent nodes along the river centerline,
columns represent overpasses, and the values are the simulated
elevations. Each simulated SWOT orbit track observes a different
set of nodes, which results in an inconsistent number of
observations for each node. For example, the middle reaches of
the Sacramento river are only observed by half of the simulated
overpasses (Figure 1). As a result, the matrix has missing values,
and the decomposition does not have a unique solution in this
case. To overcome this problem, the river is divided into sections
such that all nodes in a given section have the same number of
observations (similar to the sections defined by shades of blue
in Figure 1). Before the decomposition, we remove the mean
simulated elevation of each node, which allows us to analyze the
relationship between observations, instead of the overall slope
of the river. We decompose the data matrix A into two sets of
eigenvectors and corresponding singular values that represent the
weight of each vector pair as follows:

A = U ∗ S ∗ VT (1)

Where A is the data matrix, U is a set of eigenvectors that describe
relationships between river nodes, V is a set of eigenvectors
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FIGURE 3 | Flow chart of processing and smoothing methods of elevation data. Ovals represent data and rectangles represent processes.

that describe relationships between overpasses, and S is a
diagonal matrix of singular values that relate U and V . The first
eigenvector of U represents the most common representation of
all the profiles and subsequent eigenvectors describe variations
on that profile. The data is recombined from a subset of
these eigenvectors:

Ã = Uk ∗ Sk ∗ VT
k (2)

Where Ã is the best rank k approximation of A in a least-
squares sense, Uk and VT

k are the first k eigenvectors, and
Sk is a diagonal matrix containing the first k singular values
(Eckart and Young, 1936).

The LRA is dependent on the number and combination of
eigenvectors picked, and the addition of SWOT-like noise to our
data makes this decision more difficult. The magnitude of the
SWOT noise at this spatial scale means the singular values will

not taper off to zero but instead gradually decrease. To identify
a cutoff threshold for the singular values, we use parallel analysis
(Horn, 1965) followed by a test for significance between orbits in
the V matrix. We calculate an average singular value spectrum
from 1000 realizations of random, normally distributed data
using the sample standard deviation of the simulated SWOT
errors. Singular values from the simulated SWOT data that are
greater than the corresponding average singular value from the
random data are retained.

As a last step in the factor analysis, we test each eigenvector
in the V matrix to check if they distinguish between orbit
tracks. Different orbits will observe the same river nodes at
different ranges of the radar swath, resulting in different error
characteristics for each orbit (Fernandez, 2017). The V matrix
contains eigenvectors that scale the effect of the U eigenvectors
for each overpass. We test each eigenvector in the V matrix
to check for statistically significant distributions for each orbit
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track using a Wilcoxon rank sum test at 95% confidence. We
interpret any eigenvector in V that shows different distributions
when grouped by orbit as errors related to the viewing angle, and
not related to real changes in the water surface. The remaining
eigenvectors are interpreted to represent the real variability in the
elevation profiles as a result of discharge variability.

Slope Constraint
We also apply a second method of noise reduction: a
slope-constrained least-squares estimator, requiring each node
elevation to be less than or equal to the upstream node
elevation. The constrained profiles are calculated by solving the
following equations:

minimize ||G ∗ ẑ − z||2

such that: C ∗ ẑ ≤ b (3)

Where z is the observed heights, ẑ is the constrained heights, G is
a matrix that relates ẑ and z, b is a vector of zeros to represent
the maximum allowable difference between downstream and
upstream nodes, and C is a matrix that calculates the
difference between nodes when multiplied by ẑx. Solving for
ẑx gives the least-squares set of elevations that decrease in the
downstream direction.

The formulation of the constrained estimator can produce
unwanted results for long sections of observations that display
negative slopes. As defined in Equation (3), the solution for these
sections has zero slope, and is often followed by a steep slope
to compensate (Figure 4). For most rivers, this is not a realistic
representation of their slopes and would be problematic for some
analyses. We present a modification of Equation (3) to counteract
this effect:

minimize
∣∣∣∣∣∣∣∣ [ G

λ ∗ C

]
∗ ẑ −

[ z
d

] ∣∣∣∣∣∣∣∣
2

Such that: C ∗ ẑ ≤ b (4)

Where d̄ is the average change in elevation between observed
nodes, and λ is a regularization parameter that controls the
relative weight of the height and slope terms in the minimization
problem. A high λ value penalizes the extreme slopes that
can result from Equation (3), whereas a λ value of 0 makes
Equations (3) and (4) equivalent. By adding regularization to the
estimator, we can come closer to recreating the distribution of
slopes we see in the hydrodynamic model (Figure 4D), however,
the equation now requires careful parameterization. The example
in Figure 4D was parameterized using our knowledge of the
true profiles, and as such is optimistic. Using a λ value that is
too low has little effect and using one that is too high results
in an overly smooth profile with few details. This is the same
problem encountered with other smoothing and local regression
techniques: the user is forced to pick the smoothness of the
resulting profile. The advantage of Equation (3) over these
techniques is there is no decision to be made about smoothness,
or assumption of the variability of slopes. The height errors are
reduced only by the physical constraint that water flows downhill.

As such, we use the output of Equation (3) for the remainder
of our analysis.

We use the constrained least-squares estimator from Equation
(3) in two ways: to constrain the slope of individual profiles and
to estimate an average profile from many observations (Figure 3).
For our error analysis of the multitemporal simulated SWOT
profiles, the constrained least-squares estimator is solved for
each overpass separately. These profiles are referred to as the
Constrained LRA (CLRA) profiles. We also use the estimator to
create an average profile by including all simulated observations
in the vector z, and create G to relate all observations at one
node to one predicted height in x. This creates one constrained
profile from all observations, which we term the average SWOT
profile. Combining elevation profiles from different days, which
represent a range of discharges, is not a perfect solution to
reducing noise, as elevations at different nodes will respond
differently to variations in discharge. However, considering the
large vertical errors in the raw data, the error introduced at this
step are likely comparatively small.

RESULTS

The application of the CLRA method to our simulated SWOT
data sets decreased the mean absolute error (MAE) of every
simulated profile when compared to the raw SWOT node
elevations (Figure 5). Analyzing the errors at an intermediate
step shows that both the low rank approximation and the slope
constraint result in decreased height errors. Node-scale MAEs
were reduced by more than half for all three rivers (Table 2). The
Sacramento River showed the largest decrease in MAE, at more
than 70% reduction. RMSEs of the node heights show similar
improvement. The LRA component of the method reduces
error variability between days, which is apparent in Figure 5 as
less spread among the days for each river on the vertical axis
compared to the horizontal axis.

Decomposing the hydrodynamic model output shows us that
the first eigenvector from noise-free data always contains more
than 95% of the variance in the data for all three rivers, and
that the first four eigenvectors always contain more than 99% of
the variance. Our factor analysis method for simulated SWOT
data resulted in just one eigenvector being used to recreate the
data for all locations. Parallel analysis occasionally indicated two
eigenvectors should be used to approximate the data, but the test
for significant difference between orbits eliminated the second
eigenvector in every case.

We applied the constrained least-squares estimator to all the
DEM profiles in Figure 6 and for evaluation in Table 3, which
reduced errors in all cases. We calculate MAE and RMSE statistics
for the DEM-derived and average SWOT profiles for all three
rivers compared to the average hydrodynamic model elevation
profiles, and for Sacramento and Tanana Rivers compared to the
GPS profiles. Comparisons with the hydrodynamic model favor
the SWOT simulation, as any inaccuracies in the hydrodynamic
model will not affect the SWOT error estimates but will increase
errors for the DEMs. Comparisons to the GPS profiles increase
errors of the SWOT simulation profiles due to inaccuracies in
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FIGURE 4 | Profile view of a 10 km section of the Sacramento River (A) before and (B) after the simulator noise is added, and (C,D) after the CLRA method is
applied. One eigenvector is used in this section.

the hydrodynamic models. Even though there is no fully fair
direct comparison, we can see the difference between SWOT
and existing DEMs is quite large (Figure 6). The ASTER-derived
profiles are relatively coarse, despite the improvements from
the constrained least squares estimator. Estimating river surface
slopes from these ASTER profiles would require very large
reaches. The difference between SRTM and MERIT is small for
the Sacramento and Po Rivers, which is to be expected as MERIT
is derived from SRTM data in these areas (Yamazaki et al., 2017).
The error removal methods used to create MERIT offer some
improvement over SRTM for the Sacramento River, but errors
are still quite large compared to the SWOT and lidar profile.

APPLICATIONS

Physical Habitats
Riffle-pool sequences in rivers represent distinct physical habitats
that also vary ecologically with different invertebrate community
composition, density, and biomass (Brown and Brussock, 1991).
Yang (1971) defined riffles and pools according to their energy
gradient, which can be approximated by the water surface
slope, but others have based classifications on channel slope,
as it is independent of discharge (Richards, 1976). In practice,
classifications of riffle and pool habitats are often subjective, but
quantitative analysis of these classifications shows a threshold on
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FIGURE 5 | MAE before and after the CLRA method for each observed
profile. Points below the 1:1 line indicate the CLRA method decreased the
height errors.

TABLE 2 | Error statistics before and after the CLRA method.

MAE RMSE

MAE change RMSE change

River profile (cm) (%) (cm) (%)

PO

Simulated 13.04 18.42

Constrained LRA 5.38 −58.72 7.48 −59.40

SACRAMENTO

Simulated 29.21 39.30

Constrained LRA 8.63 −70.45 11.58 −70.54

TANANA

Simulated 30.47 42.53

Constrained LRA 12.55 −58.80 16.26 −61.77

surface slope can identify riffles and pools with accuracies of 70
and 79%, respectively (Jowett, 1993). We evaluate the ability of
SWOT to find locally steep sections of rivers in comparison to
existing elevation data.

We use relative steepness, originally used to identify
knickpoints, to identify sections of the simulated Sacramento
profiles that are potential riffles or runs. We selected the
Sacramento for this application because the upstream reaches
show cyclical low-high slope sections (e.g., Figure 4). We use
the relative steepness metric in place of a threshold on slope,
which would vary between rivers. Relative steepness is defined
as the trend in surface slope with increasing reach lengths
(Hayakawa and Oguchi, 2006). We use reach lengths from 400
to 20,000 m. High values of relative steepness indicate places
where the local slope is very different from the slope over greater

lengths; values near zero indicate little change in slope over
the range of reach lengths. Similar to Hayakawa and Oguchi
(2006), we use a threshold of one standard deviation greater than
the mean relative steepness value to classify steep sections. We
compare locations where relative steepness exceeds our threshold
for the average SWOT and DEM profiles compared to the
hydrodynamic model output.

Applying the relative steepness metric to both the hydro-
dynamic model and the average SWOT profile, we see that we
can correctly identify many sub-kilometer high-slope sections of
the Sacramento River (Figure 7). The hydrodynamic model for
the Sacramento has an average cross sectional spacing of 258 m,
so we are confident the 200 m spacing of the elevation nodes
will accurately represent the river morphology. A comparison
of the GPS and hydrodynamic model profiles confirms the
model’s accuracy (mean absolute difference: 13 cm). As such,
we evaluate the steepness of the DEMs by comparing them
to the hydrodynamic model. Of the 99 nodes we classified as
steep in the modeled profiles, we correctly identified 74 nodes
in the average SWOT profile. Twenty-five nodes were missed
in the classification of the average SWOT profile, and 18 were
incorrectly classified as steep. Generally, we identify all of the
steep sections of the river, despite having false negatives and
positives on the edges of the sections. Near 65 and 115 km flow
distance we have false positives far from a true steep point, but
the relative steepness of the true profile is near the threshold
(Figure 7). We also perform this test on the water surface DEM
profiles of the Sacramento River and calculate standard positive
predictive values, false negative rates, and false positive rates
(Table 4). The results of the steepness classification for the DEMs
mirror the height error results in Table 3. SWOT outperforms
the existing DEMs in all three metrics. SRTM, MERIT, and NED
perform similarly, correctly identifying 20, 16, and 17 nodes. lidar
captures the steep sections best of the existing DEMs, correctly
identifying 42 nodes.

The relative steepness metric we use on the Sacramento
River shows us that we can find the local steep sections of
rivers despite the level of noise anticipated from SWOT. While
slope is not a perfect predictor of physical habitat, it is a good
indicator as shown by Jowett (1993). More sophisticated habitat
models could be used as well, such as the in-stream habitat
classification models from Demarchi et al. (2016) that use lidar
and multispectral imagery. The centimeter-scale errors we report
for average SWOT profiles suggest SWOT could be used as a
coarse-resolution alternative to lidar for similar models, with the
advantage that it will be available over nearly the entire globe.

Tectonics
Fault movements and the growth of associated folds can disrupt
a river network in equilibrium, as rivers are sensitive to
topographic changes. Large displacements can cause rerouting
of river networks, whereas small displacements may result
in changes to hydraulic geometry variables such as channel
concavity, meander wavelength, and floodplain width as the river
adjusts to external topographic gradients imposed by a regional
tectonic deformation field in an effort to maintain, or reestablish
an equilibrium longitudinal profile (Schumm, 1986). In large

Frontiers in Earth Science | www.frontiersin.org 8 May 2019 | Volume 7 | Article 102

https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-07-00102 May 7, 2019 Time: 16:47 # 9

Langhorst et al. SWOT DEMs

FIGURE 6 | River profiles extracted from existing publicly available DEMs and the simulated SWOT-derived river profiles.

alluvial rivers that flow over areas of known tectonic activity, we
hypothesize that SWOT will be able to observe anomalies in the
elevation profile of rivers potentially related to buried fault and
fold structures that are unobservable in existing DEMs.

We test our hypothesis by examining the concavity of the
average SWOT elevation profile for the Po River, located in
northern Italy between the Apennines and southern Alps, as an
example of a low-relief fluvial plain (Po Plain) with no obvious
topographic expression of active tectonics, where such a signal
may be recorded in spatial variations in channel elevations.
The Po River flows eastward along the axis of the foreland
basin formed in front of the northward propagating Apennine
accretionary wedge (Castellarin, 2001). At the latitude of the
river, the frontal portion of the Apennine fold and thrust belt,
referred to as the Ferrara-Romagna arc in the eastern Po Plain,
is buried by several kilometers of Quaternary clastic sediment
and there are no obvious surface topographic expressions of
the underlying faults or folds; although the structures are well-
imaged by seismic refraction studies and have been intersected in
hydrocarbon exploration wells (e.g., Bigi et al., 1992). The buried

frontal portion of the Apennine accretionary wedge is seismically
active, as exemplified by two damaging earthquakes in May
of 2012, a Mw 6.1 followed 9 days later by a Mw 5.8, that
were sourced on blind, shallow (<10 km) thrust faults of the
Ferrara arc that project north and up-dip toward the Po River
(Burrato et al., 2012).

Previous investigators have identified and interpreted plan-
view anomalies in drainage patterns of the Po and its tributaries as
evidence for the subtle perturbation of surface topography above
blind thrust faults (Burrato et al., 2003), like the ones responsible
for the deadly 2012 earthquakes (Burrato et al., 2012). In our
analysis of the elevation of the Po River channel we first smooth
the average SWOT profile using a 10 km wide windowed mean
filter, and then calculate the second derivative of the elevation
profile over 20 km. We find there is a spatial coincidence between
the concavity of the average SWOT elevation profile of the
Po River and the underlying structural geology. The highest
calculated longitudinal profile concavity and convexity (negative
concavity) values along the study reach are centered around
80 and 65 km flow distance, respectively. Both of these profile
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TABLE 3 | Error statistic comparison of simulated SWOT profiles and profiles
extracted from existing DEMs.

Compared to Compared to

hydrodynamic model GPS data

Profile MAE (m) RMSE (m) MAE (m) RMSE (m)

PO

SWOT 0.04 0.06

SRTM 0.69 0.85

MERIT 0.75 0.96

ASTER 1.86 2.14

TINITALY 1.17 1.28

SACRAMENTO

SWOT 0.06 0.08 0.28 0.37

SRTM 1.46 1.63 1.67 1.86

MERIT 1.24 1.35 1.24 1.38

ASTER 4.28 4.62 4.26 4.65

NED 1.45 1.75 1.62 1.92

Lidar 0.44 0.52 0.69 0.74

TANANA

SWOT 0.11 0.15 0.22 0.26

MERIT 1.00 1.23 1.08 1.29

ASTER 2.43 2.83 2.37 2.76

ArcticDEM 0.49 0.62 0.46 0.58

TanDEM-X 0.30 0.35 0.30 0.36

Profiles are compared to the hydrodynamic models used in the SWOT simulation,
and GPS data where available.

inflections coincide with the intersection of the river and the
outermost buried thrust faults of the Ferrara arc portion of the
Apennine accretionary wedge (Figure 8). Away from the Ferrara
arc faults, the river profile shows less extreme concavity values.

Mapping the concavity of the Po River profile, calculated from
SWOT simulations, on top of the structural geology of the Po
Plain suggests that SWOT data can be a useful tool in tectonic
geomorphology. The high concavity section of the Po in Figure 8
is spatially coincident with an anomalous reach (anomaly #19)

TABLE 4 | Classification statistics for the relative steepness threshold.

Positive False False

predictive negative positive

value rate rate

SWOT 0.80 0.20 0.03

SRTM 0.22 0.44 0.12

MERIT 0.19 0.46 0.12

ASTER 0.12 0.49 0.07

NED 0.23 0.45 0.10

LiDAR 0.53 0.37 0.07

identified by Burrato et al. (2003) as evidence for active blind
thrust faulting beneath this portion of the Po Plain. Burrato et al.
(2003) did not find any other anomalies in our simulated section
of the Po, consistent with our interpretation of the SWOT-
derived concavity values. Figure 9 shows the concavity of the
available DEMs in addition to the hydrodynamic model and the
average SWOT profile for the Po River. Existing DEMs show
much higher concavity values than the hydrodynamic model,
and with no signature of the anomalous reach identified in the
average SWOT profile at a flow distance of 80 km (Figure 8)
and in Burrato et al. (2003). Looking at Figure 6, the absence
of a convincing concavity signature in the DEM profiles is not
surprising. The vertical error in the DEMs, even at scales of tens
of kilometers, obscures the effects of tectonics on the elevation
profile of the Po River. Ultimately, our conclusions are based
on the hydrodynamic model of the Po, but through the lens
of the SWOT simulator. The features we are evaluating in this
application are on the scale of tens of kilometers, so we expect
the bathymetric cross section spacing of 1.2 km to accurately
capture these features. The hydrodynamic model was corrupted
and subsampled by the SWOT simulator in order to evaluate
the potential for SWOT to see the same curvature features. Our
simulated Po River profile suggests that SWOT will be able to
resolve anomalous curvatures in similar rivers around the world
where existing DEMs cannot.

FIGURE 7 | Average truth profile for the Sacramento River with calculated relative steepness values and threshold (black dashed line). The colored bars on the
bottom compare the classification of the average truth and SWOT profiles.
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FIGURE 8 | (A) Smoothed average SWOT profile of the Po River colored by curvature. The elevation profile was smoothed using a 10 km mean window, and
curvature calculated using a 20 km window. (B) Po River centerline plotted on top of the structural geology of the Po Plain (http://portalesgi.isprambiente.it/) with the
same concavity color scale from (A). The epicenters of two large earthquakes in 2012 are plotted in red.

FIGURE 9 | Calculated concavity for all water surface profiles of the Po River.
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CONCLUSION

The CLRA method presented here greatly improves the
node-level errors of river elevation profiles from SWOT by
taking advantage of repeated measurements. The singular value
decomposition allows us to reduce variation between profiles,
largely caused by noise, while retaining some of the real variation
in slope due to partial controls. Partial controls are channel
features that have less effect on the surface slope with increasing
discharge (Dingman, 2009). The results presented in Figure 4
demonstrate that the CLRA profiles are able to capture changes
in slope with changing stage. The elevation drop around 20 km
flow distance in Figure 4 is less pronounced when the river is at
high stage, which is observable in both the simulated truth and
the final CLRA profiles.

The Po River has the lowest error of all three rivers analyzed,
both before and after the CLRA method. We believe the
relatively low error in the simulated SWOT profiles is due to
the Po being the widest river in our study, which means more
simulated measurements are averaged for each node along the
river centerline. While the final MAE is the lowest for the Po,
the reduction in MAE by the CLRA method is greatest for
the Sacramento at 70.45%. We would expect the 52 simulated
overpasses of the Po to make the LRA component of the methods
more effective than on the Tanana, where only 12 overpasses
were simulated, but the change in MAE is approximately the
same. It is reasonable to assume that some rivers can be
represented with fewer eigenvectors than other rivers, but it
is currently unclear what characteristics of the river, or of the
SWOT noise, controls performance of the CLRA method. Future
application to additional rivers will improve understanding of the
algorithm performance.

SWOT is anticipated to provide WSE measurements more
accurate than existing publicly available data. lidar data can
provide high-resolution, high-accuracy elevation measurements
over water surfaces, but is not available in most areas. Where lidar
is available, it is often only at one point in time, which limits
the study of many dynamic riverine processes. In comparison,
SWOT will observe rivers wider than 50–100 m between 78◦

north and south an average of twice per 21 days, or about 35
times per year (Biancamaria et al., 2016). We show that an
average of SWOT observations will have accuracies better than
available DEMs scaled to 100–200 m along-stream resolution.
The development of a new CLRA method reduces errors in the
multitemporal river profiles, without sacrificing spatial resolution
like many smoothing algorithms. Creating an average SWOT
profile reduces the errors even further and provides a static profile
that can be used in a similar manner to existing DEMs. We
show the ability of average SWOT profiles to capture changes
in slope, for example, that are ecologically important for the
identification of physical habitat variability for aquatic organisms.
We also demonstrate that changes in river curvature identifiable
in averaged SWOT profiles, may provide evidence for the subtle
deformation of the Earth’s surface by buried thrust faults beneath
an alluvial plain, promising to provide geomorphologists a new
dataset from which to decipher active tectonics.
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