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National Aeronautics and Space Administration’s (NASA’s) current atmospheric

correction (AC) algorithm for ocean color utilizes two bands and their ratio in the near

infrared (NIR) to estimate aerosol reflectance and aerosol type. The algorithm then

extrapolates the spectral dependence of aerosol reflectance to the visible wavelengths

based on modeled spectral dependence of the identified aerosol type. Future advanced

ocean color sensors, such as the Ocean Color Instrument (OCI) that will be carried on

the Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) satellite, will be capable of

measuring the hyperspectral radiance from 340 to 890 nm at 5-nm spectral resolution

and at seven discrete short-wave infrared (SWIR) channels: 940, 1,038, 1,250, 1,378,

1,615, 2,130, and 2,260 nm. To optimally employ this unprecedented instrument

capability, we propose an improved AC algorithm that utilizes all atmospheric-window

channels in the NIR to SWIR spectral range to reduce the uncertainty in the AC process.

A theoretical uncertainty analysis of this, namely, multiband AC (MBAC), indicates that the

algorithm can reduce the uncertainty in remote sensing reflectance (Rrs) retrievals of the

ocean caused by sensor random noise. Furthermore, in optically complex waters, where

the NIR signal is affected by contributions from highly reflective turbid waters, the MBAC

algorithm can be adaptively weighted to the strongly absorbing SWIR channels to enable

improved ocean color retrievals in coastal waters. We provide here a description of the

algorithm and demonstrate the improved performance in ocean color retrievals, relative to

the current NASA standard AC algorithm, through comparison with field measurements

and assessment of propagated uncertainties in applying the MBAC algorithm to MODIS

and simulated PACE OCI data.

Keywords: ocean color, atmospheric correction, PACE, aerosol, turbid waters

INTRODUCTION

Ocean color retrieval algorithms require an atmospheric correction (AC) process to separate
the radiometric contribution of the atmosphere from the ocean, given the radiance measured
at the top of atmosphere (TOA). The National Aeronautics and Space Administration (NASA)
standard approach to the AC is a two-step process: the atmosphere and surface contributions are
first removed using minimal assumptions about the water optical properties (Gordon and Wang,
1994; Franz et al., 2007; Ahmad et al., 2010; Bailey et al., 2010; Mobley et al., 2016), and the
resulting spectral water-leaving radiances are then used to infer water column optical properties and
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constituent concentrations (e.g., Gordon et al., 1988; O’Reilly
et al., 1998; Morel and Maritorena, 2001; Hu et al., 2012;
Werdell et al., 2013). AC involves finding a solution to a set of
deterministic models, enabling the removal of atmospheric path
and surface effects from the TOA signal. The primary challenge
is determining the contribution of aerosols (a primary source of
uncertainty in the AC) to the atmospheric path radiance, which
is highly variable and, thus, must be inferred from observation.
This approach takes advantage of the strong absorption of
water in the Near Infrared to Shortwave Infrared (NIR-SWIR)
(longward of 700 nm) to separate the atmospheric and oceanic
signals (Gordon and Wang, 1994; Wang et al., 2009; Ahmad
et al., 2010). This AC process aims for retrievals that meet
ocean color requirements (i.e., 5% uncertainty on water-leaving
radiance at 443 nm) over the open ocean and in the absence of
strongly absorbing aerosols (i.e., dust, organic, and black carbon)
(Gordon and Wang, 1994; Mobley et al., 2016). In coastal and
optically complex waters, the water-leaving radiance retrievals
often fail in meeting that requirement due to non-negligible
water-leaving radiance in the NIR bands used for the AC, with
water-leaving radiance often underestimated or even negative in
value. Iterative AC techniques have been developed to model
the ocean reflectance in the NIR, which mitigate the problem
effectively in moderately turbid and productive waters (Siegel
et al., 2000; Bailey et al., 2010). Although this iterative approach
has been used in the NASA standard processing (Bailey et al.,
2010), it has been shown that such methods can fail in highly
turbid waters (Wang et al., 2012; Goyens et al., 2013). Other
methods, based on the SWIR bands, have been shown effective
in separating the aerosol signal from the TOA signal over highly
turbid waters, due to the increased water absorption at these
longer wavelengths (Shi and Wang, 2007; Wang and Shi, 2007,
2012; Jiang and Wang, 2014; Vanhellemont and Ruddick, 2015;
Pahlevan et al., 2017). The SWIR-based methods has limitations,
however, for two reasons: (1) the signal-to-noise ratio (SNR)
on SWIR bands is low for current ocean color sensors [i.e.,
MODIS (Moderate Resolution Imaging Spectroradiometer) and
VIIRS (Visible Infrared Imaging Radiometer Suite)] and (2) the
approach generally requires discrete switching from the NIR
AC bands to SWIR bands over coastal waters, thus producing
spatial inconsistency or artifacts in the retrievals. For example,
Shi and Wang (2007) utilized 1,240 and 2,130 nm for MODIS
to perform the AC using the 2-band Gordon and Wang (1994)
AC approach. The algorithm switches from NIR to SWIR based
on a turbidity index threshold (Shi and Wang, 2007; Wang and
Shi, 2007; Wang et al., 2009). Werdell et al. (2010) have shown
the effectiveness of the 2-band SWIR AC approach, but with
increased uncertainties in the ocean color retrievals due to low
SWIR SNR of MODIS-Aqua. Still, other studies have shown
failure in the NIR-SWIR switching method due to the NIR sensor
saturation at moderate to high turbidity (i.e., >35 g m−3) where
the NIR bands on MODIS-Aqua saturate at TOA radiances
>2.8–3.45 mW cm−2 µm−1 sr−1 for 748 nm and >1.9–2.45
mW cm−2 µm−1 sr−1 for 869 nm and improper cloud masking
(Aurin et al., 2013). A recent study by Liu et al. (2019) indicated
that the turbidity index, responsible for the switching, varies
with the aerosol size distribution, optical depth, and observing

geometry, thus rendering the effectiveness of the NIR-SWIR
switching questionable.

One way for reducing the uncertainty in ocean color retrievals
using the SWIR bands is to use more spectral information to
reduce sensor random noise impact produced by low SNR. Gao
et al. (2000, 2007) used a spectral matching technique to fit the
measured TOA signal with an aerosol lookup table (LUT) for
bands >860 nm and demonstrated improved retrieval of ocean
reflectance in turbid and shallow waters from MODIS-Aqua
and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).
They also showed a sensitivity study indicating that SWIR bands
are sensitive to variations in aerosol size distributions including
some fine-mode dominant types, although the sensitivity is
weaker than that of the visible–NIR spectral regime. Other
methods that utilize more spectral information for the AC,
such as machine learning techniques (i.e., neural network) and
coupled atmosphere–ocean simultaneous retrievals, have shown
promising results (Gordon et al., 1997; Chomko and Gordon,
1998, 2001; Chomko et al., 2003; Stamnes et al., 2003; Jamet
et al., 2005; Brajard et al., 2006; Schroeder et al., 2007; Spurr
et al., 2007; Kuchinke et al., 2009; Steinmetz et al., 2011; He
et al., 2012; Frouin and Gross-Colzy, 2016; Fan et al., 2017;
Gossn et al., 2019). Some of these algorithms were more
successful over the open ocean, while others were specifically
tuned for coastal cases, and they often require the use of a bio-
optical ocean model with inherent assumptions about the marine
optical properties.

Cloud detection and masking in turbid waters can also be
challenging. Extremely turbid waters are masked as clouds when
a simple NIR threshold technique is used, as is the case for the
standard NASA processing. Wang and Shi (2006) proposed an
improved cloudmasking in coastal regions using SWIR channels.
Other cloud masking methods that utilize more spectral bands
have shown improved discrimination between clouds and water
in highly turbid conditions (Nordkvist et al., 2009).

NASA is planning to launch the Plankton, Aerosol, Cloud, and
ocean Ecosystem (PACE) satellite in 2022. The PACE satellite
will host a state-of-the-art hyperspectral ocean color sensor
(the Ocean Color Instrument, OCI). OCI will measure the
hyperspectral radiance at the TOA from 340 to 890 nm at 5-nm
spectral resolution and at seven discrete channels in the SWIR:
940, 1,038, 1,250, 1,378, 1,615, 2,130, and 2,260 nm, of which two
are water vapor bands (940 and 1,378 nm) and five are window
bands (i.e., no major gas absorption features). In fact, OCI will
host the first instrument with a set of SWIR bands primarily
designed for the ocean AC. The SWIR bands will have sufficient
radiometric performance (i.e., high SNR with low systematic
bias) to enable their use for AC over open oceans as well as coastal
water conditions (Ibrahim and McKinna, 2018). The analysis
throughout the manuscript assumed the following SNRs for OCI
(420 at 1,038 nm, 280 at 1,250 nm, 220 at 1,615 nm, and 76 at
2,260 nm, excluding 2,130 nm as cloud band), for the typical
ocean scene, which are based on current best estimates since the
design is currently subject to slight changes. The AC algorithm
proposed here attempts to exploit the unprecedented capabilities
of OCI to improve the quality of ocean color retrievals from the
PACE mission.
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MULTIBAND AC ALGORITHM

The heritage aerosol correction algorithm utilizes two bands
either in the NIR or SWIR spectral range by calculating a band
ratio of the Rayleigh (+ surface) and gas corrected reflectance,
namely, epsilon, as follows:

ε =
ρa(λs)

ρa(λl)
, (1)

where λs and λl correspond to the short and long wavelength
either in the NIR or SWIR range (e.g., for MODIS, λs = 748 nm
and λl = 869 nm) and ρa (λ) is the aerosol reflectance defined as:

ρa (λ) =
π × [La (λ) + Lra (λ)]

F0 × µ0
, (2)

F0 is the extraterrestrial solar irradiance and µ0 is the cosine
of the solar zenith angle. Since the aerosol radiance term is a
strong function of the viewing/illumination geometry, the LUT
is generated as a function of the solar and sensor zenith angle
and relative azimuth angle. NASA’s current approach to estimate
the aerosol reflectance term is by finding the best match of
the observed single scattering epsilon value to the model single
scattering epsilon value. Since the LUT is calculated for a set of
deterministic aerosol models based on Ahmad et al. (2010), the
algorithm interpolates the single scattering aerosol reflectance
from the LUT to match the observed reflectance. Accounting
for multiple scattering interactions between the aerosol and
molecules, is crucial when extrapolating the reflectance to
shorter wavelengths. Given the aerosol type estimated from
the single scattering epsilon in the longer wavelengths, the
multiple scattered aerosol radiance is then estimated through
a polynomial relationship derived through vector radiative
transfer simulations (Gordon and Wang, 1994), and this multi-
scattering estimate of aerosol path reflectance is then used in the
aerosol correction.

The process of deriving single scattering epsilon and then
converting it into multiple scattering radiance is unnecessary
since currently computationally feasible multiple scattering
tables can be easily generated and irreversible since there is
no 1–1 relationship between multiple and single scattering
when different aerosol types are mixed. Ahmad and Franz
(2018) proposed an alternative approach, where the aerosol
model and optical properties determination is done in multiple
scattering space. It is based on the Ahmad et al. (2010) aerosol
models, for which the TOA reflectance due to aerosols can be
described by three parameters: relative humidity (RH), Angstrom
exponent (α), or the analogous fine-mode fraction (f ), and
optical thickness of the aerosols (τ ) in the model atmosphere.
Briefly, for any relative humidity suite, the dependence of

multiple-scattering epsilon ε (λ) =
ρ(λ)

ρ(869)
on ρ(869) would

look like the x–y plot shown in Figure 1. Here, ρ refers to
TOA aerosol reflectance and the subscript numbers refer to
wavelength bands.

In Figure 1, the aerosol optical depth (τ ) varies along
the “horizontal” axis, and the Angstrom exponent (α) and

FIGURE 1 | A graph of multiple-scattering epsilon (ε748 = ρ748/ρ869) vs.

ρ869 for solar zenith, θ0 = 36◦, view zenith, θ = 30◦, relative azimuth angle,

ϕ = 120◦, and relative humidity (RH) = 80% from MODIS LUT (Ahmad and

Franz, 2018).

extinction coefficients (ξ ) vary along the “vertical” axis. This
parametrization of the LUT allows one to readily calculate the
aerosol reflectance at any grid point. One advantage of this
approach over the current NASA standard algorithm is that it
provides a mathematical framework for the aerosol reflectance
determination that facilitates the application of standard error
propagation techniques.

The multiband AC (MBAC) algorithm is based on this multi-
scattering epsilon approach by Ahmad and Franz (2018), but
it utilizes all the spectral window channels (i.e., not affected
by strongly absorbing gases such as water vapor, oxygen, and
carbon dioxide) available at which the water absorption is high to
separate the aerosol signal (i.e., black-pixel). MBAC determines
the best aerosol model by fitting the magnitude and the spectrum
of the aerosol reflectance at all window NIR to SWIR bands
(e.g., excluding 940- and 1,378-nm channels for OCI). The
aerosol reflectance at each wavelength is stored in a LUT as a
polynomial function of the geometry (not shown in Equation
3 for simplicity), aerosol optical depth, relative humidity, and
fine-mode fraction:

ρa
(

λ, τa,RH, f
)

= a
(

λ,RH, f
)

+ b
(

λ,RH, f
)

× τa

+ c
(

λ,RH, f
)

× τa
2, (3)

where a, b, and c are the fitting coefficients stored in the
aerosol LUT. For any spectral band in the NIR-SWIR range at
which the water-leaving radiance can be assumed negligible, the
atmospheric path radiance can be derived from the observed
TOA radiance. Assuming a proper correction for absorbing gases
(discussed in the section Correction for Absorbing Gases) and
Rayleigh scattering has been done, aerosol reflectance can be
determined and the aerosol optical depth can then be estimated
by solving the quadratic equation, as
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τa
(

λ = 869 nm, RH, f
)

=
−b

(

λ869,RH, f
)

+

√

b
(

λ869,RH, f
)2

− 4× c
(

λ869,RH, f
)

×
(

a
(

λ869,RH, f
)

− ρobs
a (λ869)

)

2× c
(

λ869,RH, f
) , (4)

For consistency with the system vicarious calibration procedure,
which is performed relative to one wavelength in the NIR
(e.g., 869 nm for MODIS), the optical depth is estimated at
that wavelength.

For an observed aerosol reflectance, the optical depth can
be calculated for each aerosol model set (RH, f ) as shown
in Figure 2.

The algorithm then calculates the aerosol optical depth and
reflectance spectrally for all aerosol models as:

τa
(

λ,RH, f
)

=
ξ

(

λ,RH, f
)

ξ
(

λ869,RH, f
) × τa

(

λ869,RH, f
)

, (5)

where ξ
(

λ,RH, f
)

is the aerosol extinction coefficient for
each aerosol model. Then, the spectral aerosol reflectance
for each aerosol model set (RH, f ) is recalculated from the
polynomial equation.

The MBAC algorithm fits the aerosol reflectance in the NIR
and SWIR for all models calculated in the previous step. However,
since multiple solutions can exist, especially at low optical depth
over the open ocean, we constrain themodel selection to consider
only those models with the two relative humidities bracketing the
observed RH (as obtained from ancillary meteorological data).
The maximum likelihood method is used to find the closest
solution by minimizing the cost function:

χ
2
(

RH, f
)

=
1

DOF
×

λl
∑

λ=λs

[

ρobs (λ) − ρa
(

λ,RH, f
)]2

σ 2(λ)
× SW(λ), (6)

where ρobs (λ) is the observed aerosol reflectance and
ρa

(

λ,RH, f
)

is the aerosol reflectance from the LUT for each

FIGURE 2 | The aerosol reflectance as a function of the aerosol optical depth

at 869 nm for aerosol models with relative humidity RH = 75% and 80% and

for fine-mode fraction f = 30% and 50%.

relative humidity and fine-mode fraction. Note that the geometry
is omitted from Equation 6 for simplicity; however, it depends
on the solar and viewing zenith and relative azimuth angles.
DOF is the degree of freedom of the observed signal. Assuming
each band in the NIR and SWIR is an independent observations,
DOF is the number of bands from the shortest band in the NIR,
λs, to the longest band in the SWIR, λl. σ 2(λ) is the squared
measurement uncertainty (variance assuming gaussian random
noise) of the sensor, as determined from the sensor-specific noise
model for a given radiance level.

SW(λ) is a spectral weight (SW) that is set to change the
relative weighting in the cost function for the spectral bands in
different environmental conditions. For example, setting SW (λ)

to 1 in all bands will minimize the cost function to fit the aerosol
reflectance to all NIR/SWIR bands. The method will then be
skewed to bands with better radiometric performance (i.e., the
NIR). And when the weight is set 0 for NIR bands, the cost
function will be skewed toward longer wavelengths in the SWIR,
where the ocean signal is still negligible. In this implementation,
we vary the SW, adaptively, as a function of the number of
iterations in the iterative scheme of Bailey et al. (2010), which is
currently used in the standard NASA AC algorithm to estimate
any non-negligible water-leaving reflectance contribution in
the NIR bands. The Bailey algorithm works by modeling the
ocean reflectance in the NIR based on a bio-optical model for
productive waters. The algorithm is initiated by a first guess of
the NIR ocean reflectance [i.e., Rrs(NIR) = 0], where the AC
is performed, and then the Rrs(NIR) is estimated based on a
bio-optical model that is propagated to the TOA to perform
another AC and this process is repeated until the changes in
the retrieved ocean reflectance is <2%. Similarly, the MBAC
algorithm performs the AC at every iteration while bio-optical
model parameters and the SW are tuned until the convergence
criterion of 2% change in ocean reflectance is met. Thus, more
iterations indicate more difficulty in fitting the bio-optical model
possibly due to a higher optical complexity in turbid waters. The

SW is then calculated as SW (λ) = exp(−β̃ (λ) ×
[i−2]

[imax−2] ),

where i is the number of iterations in the current step and imax

is the maximum number of iterations set in the Bailey algorithm
(operationally imax = 11). Note that the actual number of
iterations is reduced by 2 since the algorithm always performs
at least two iterations in the AC: the first one with Rayleigh
correction only (to estimate glint), and the second one for the
aerosol correction. β̃ (λ) is an empirically estimated value that
determines the slope of the exponential function for a given
sensor by processing various scenes to inspect for image artifacts.
We adopted an exponential function for the SW to ensure a
quick transition toward the SWIR bands once non-negligible NIR
ocean signal is detected since the SWIR bands will have an effect
only when the weight on the NIR bands is largely reduced. This is
because measurement uncertainty on the NIR is nearly an order
of magnitude lower than the SWIR bands (at least for MODIS
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and VIIRS sensors). Higher value of the slope β̃ (λ) > 10 leads to
a quick switching to the SWIR bands in coastal waters, including
for low/moderate turbidity, while smaller values <5 give more
dependence on the NIR AC in the same water conditions. For
MODISA, β̃ (λ) = 7 for NIR bands and 0 for SWIR bands, as this
provides for a smooth transition from open ocean AC, where we
want an equal SW on all bands to a smaller weight on the NIR in
more turbid waters. In the open ocean, NIR bands will dominate
the cost function; thus, the AC will be similar to the standard
approach, while in turbid waters, the AC will dependmore on the
SWIR bands. The slope β̃ (λ) will primarily impact the number
of iterations required in the convergence; thus, it is not critically
important to have an exact optimal value. What really matters
is the bio-optical model used in the Rrs convergence in the first
few iterations where the AC is affected by the modeled NIR
reflectance. After three or four iterations, the bio-optical model
becomes irrelevant since the cost function will be mostly skewed
toward the SWIR bands.With every iteration, a new cost function
will be calculated with new aerosol models, and the NIR-SWIR
ocean radiance will be estimated until the convergence criteria
in Bailey et al. (2010) is met. If the bio-optical model does not
converge in sediment-dominant waters, the SW in those cases
will skew all of the cost function toward the SWIR bands, thus
improving the AC.

At each iteration of the AC, the following steps are performed.
Assuming a smooth unimodal shape to the cost function

χ2
(

RH, f
)

, the minimum of the function at which the best
solution exists can be calculated as:

∇χ
2
(

RH, f
)

= 0 (7)

For the sake of simplicity in the operational code
implementation, the 2-d partial derivate can be converted
into 1-d minimization problem by finding the minimum of the
cost function for a given RH set (i.e., RH1) fromNational Centers
for Environmental Prediction (NCEP). However, ideally, the cost
function minimization could be done for optical depth, fine-
mode fraction, and relative humidity [i.e., ∇χ2

(

τ ,RH, f
)

= 0].
The cost function will be minimized for a set of fine-mode
fractions of aerosols. The smallest two χ2 values in the set will be:

χ2
min 1

(

f
)

= min :{χ2
(

f
)

} (8)

χ2
min 2

(

f
)

= min :{χ2
(

f
)

∼ (χ2
min 1 ∈ χ2)} (9)

The observed aerosol reflectance typically falls in-between
the two closest aerosol reflectance, ρa

(

λ,RH1, fmin 1

)

and
ρa

(

λ,RH1, fmin 2

)

from the model set, and are chosen based on
the χ2

min 1

(

f
)

and χ2
min 2

(

f
)

, similar to the current operational
algorithm. Since the fine-mode fractions in the table are discrete
values with a relatively coarse step, an interpolation or a
smoothing scheme of the aerosol reflectance is necessary. One
way of doing this is to weight all of the aerosol models within
the set for all fine-mode fractions with the χ2.

ρa
(

λ,RH1, fmix

)

=

∑max
n=1 1/χ

2
n × ρa

(

λ,RH1, fn
)

∑max
n=1 1/χ

2
n

, (10)

where n is the number of models to be mixed such that n starts
from minimum χ2 and ends with the maximum χ2. However,
there is no strong justification to mix all models since a mixture
of all the models is not what happens in the atmosphere. A more
physical description is to find themost immediate models around
the observations, of which χ2

min 1 and χ2
min 2 can be used as a

weight to the aerosol reflectance, where n is 2.
This process is repeated for the second set of RH in the case

that the ancillary RH falls between two values in the aerosol LUT
to estimate ρa

(

λ,RH2, fmix

)

. Finally, a linear interpolation of the
two estimated aerosol reflectance is calculated as follows:

ρa
(

λ,RHobs, fmix

)

= (1− wRH)× ρa

(

λ,RH1, fmix

)

+ wRH × ρa

(

λ,RH2, fmix

)

(11)

The final ρa
(

λ,RHobs, fmix

)

should fit through the observed
aerosol reflectance in the NIR and SWIR channels, while the
extrapolated reflectance to the visible channels based on the
model mixtures are used for the aerosol correction.

To demonstrate how the fitting of the spectral information
improves the determination of the aerosol spectral dependence,
we show in Figure 3 an example of two retrievals of the
aerosol reflectance for a 50% fine-mode fraction case and coarse-
mode dominant aerosol case, 10% fine-mode fraction, at 77.5%
RH, using the 2-band and the 6-band MBAC algorithms. The
analysis is done by propagating an assumed ocean reflectance for
Chlor-a = 0.03mg m−3, from The International Ocean-Color
Coordinating Group (IOCCG) report 10 for MODIS bands, to
the TOA and adding the Rayleigh (+ glint) and the aerosol
reflectance at one geometry (solar zenith θ0 = 25◦, view zenith,
θ = 26◦, relative azimuth angle, ϕ = 90◦) (IOCCG, 2010). We
assume an optical depth of 0.2 at 869 nm for the two aerosol cases.
The summation of all these signals at TOA is the total radiance
(reflectance), of which we add sensor random + systematic
noise (as described in the section Error Assessment). This would
simulate the expected measurement uncertainty for these specific
observations. The Rayleigh (+ glint) reflectance is then removed
from the total signal, and the resultant signal is the noised
observed TOA reflectance (blue curve), which is the summation
of the water and aerosol reflectance at TOAneeded for the aerosol
correction algorithms. We also show the true (input) aerosol
reflectance that we aim to retrieve, shown as the black curve. The
red and green curves show the retrieved aerosol reflectance from
the observed (noised) reflectance, for the 2-band standard AC
and the 6-band MBAC algorithm, respectively.

Since the 2-band algorithm aims to match the spectral
dependence of the aerosol as a two-band ratio in the NIR,
extrapolating that information to the visible (and SWIR) will
depend on the radiometric quality of these two NIR bands and
the linear mixing of the aerosol types in the LUT necessary for
the visible correction. As can be seen from Figure 3, the spectral
dependence of the retrieved aerosol reflectance using the 2-band
algorithm (red curve) is similar to the observed reflectance (blue
curve) within the NIR range, which is expected. However, that
does not necessarily retrieve the correct reflectance in the visible
and SWIR, of which the retrieval departs from the input reference
reflectance (black curve) in both fine-mode fraction cases. On the
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FIGURE 3 | Example to demonstrate the aerosol reflectance retrievals for MODISA using the 2-band (red curve) and 6-band (green curve) algorithms. The input model

reflectance (black curve) is before adding noise; meanwhile, the observed reflectance (blue curve) is the noised reflectance after removing the Rayleigh + glint

reflectance (i.e., the observed reflectance is the aerosol + water signal). The left panel is for aerosol with 50% fine-mode fraction and the right panel is for 10%

fine-mode fraction, and in both cases for 0.2 optical depth at 869 nm. Solar zenith θ0 = 25◦, view zenith, θ = 26◦, relative azimuth angle, ϕ = 90◦.

other hand, the 6-band algorithm fits the spectral information for
the whole NIR-SWIR range and thus is less affected by the sensor
noise as more spectral information improves the chance to fit the
right model. This is also demonstrated as the 6-band algorithm
retrievals (green curve) overlap with the input reference model
reflectance (black curve) throughout the whole spectrum. This
demonstration, however, is qualitative; thus, a more thorough
analysis is shown in the section Error Assessment, including the
method to add noise to the reflectance.

CORRECTION FOR ABSORBING GASES

Ocean color bands are designed to avoid detection in spectral
regions contaminated by strongly absorbing gases such as
water vapor, oxygen, methane, and carbon dioxide. However,
due to the imperfect spectral response of the detectors (i.e.,
broad bandwidth and out-of-band response), the measured TOA
radiance is modulated by strongly absorbing gases. AC requires
a correction for strongly absorbing gases as well as broadly
absorbing gases, such as ozone and nitrogen dioxide that mostly
absorb in the visible. The current NASA algorithm uses the
method of Gordon (1995) that was implemented for SeaWiFS
and then extended to all ocean color sensors. The method
corrects for strongly absorbing gases, primarily for water vapor,
by correcting the epsilon ratio using an empirical polynomial
function for a given column gas (water vapor) concentration and
air mass. To avoid this step in our proposed AC algorithm, we
generate a LUT of transmittances of all strongly absorbing gases
that include oxygen, water vapor, methane, and carbon dioxide
using HITRAN 2012 LBL absorption database (Rothman et al.,
2013; Ibrahim et al., 2018). The water vapor LUT is a function
of column water vapor following the ATREM method of Gao
et al. (2000). The other gases are corrected based on ancillary
or climatology column concentrations, while the transmittance
is adjusted for air mass per pixel. MODIS and VIIRS sensors
have strong out-of-band effects from absorbing gases in the SWIR
range; thus, the LUT correction method allows for a proper
correction to utilize all window SWIR bands (i.e., excluding water
vapor bands) in the MBAC algorithm.

ERROR ASSESSMENT

Algorithm
The aerosol LUT in the MBAC algorithm is pre-computed
at discretized optical properties of the aerosols; thus, the
interpolation step between different fine-mode fractions and
relative humidity increases the uncertainty in the retrieval of
the remote sensing reflectance. To assess the algorithm error, we
introduce a set of aerosol optical properties that are not part of the
discretized LUT. We do so by simulating the aerosol reflectance
set for an RH of 77.5%, which falls between the 75% and 80% RH
in the operational LUT. The aerosol properties and reflectance
are then calculated using the model set of Ahmad et al. (2010)
(i.e., 10 fine-mode fractions), but with an RH of 77.5%. To define
the uncertainty in the AC, we estimate the root mean squared
error (RMSE) in 1ρw for the normalized water-leaving radiance.
We do so by assuming a reference ocean reflectance from IOCCG
report 10 for case I clear waters with chlorophyll concentration,
Chlor-a, 0.03mg m−3 (IOCCG, 2010). That reference reflectance
is then propagated to the TOA assuming different aerosol types
and optical thicknesses for different geometries to perform the
uncertainty analysis. The aerosol models are based on Ahmad
et al. (2010) operational LUTs. Figure 4 shows the polar plot of
1ρw at 443 nm for all view geometries in the LUT, where 0◦

relative azimuth is specular reflection plane, and for three solar
angles, 10, 20, 30, and 60◦.

The aerosol models encompass all aerosol types, as defined in
Ahmad et al. (2010), from fine-mode to coarse-mode dominant
cases with equal weights, and the aerosol reflectances were
calculated for optical depth ranging from 0.05 to 0.35 at
869 nm. The uncertainty level in the retrievals is generally
smaller than the scale midpoint at 0.0015 and increases with
increasing solar angle from 10 to 60◦. There are some hotspots
in the geometry plot that indicated a higher uncertainty in
the retrievals. These regions could be due to the decreased
sensitivity of the aerosol models, where the algorithm finds
it difficult to determine the type due to the ambiguity in
the phase function of aerosols at certain scattering angles, or
geometry midpoint interpolation errors, but further analysis is
needed. The uncertainty in the aerosol reflectance at 443 nm,
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FIGURE 4 | (A–D) are the algorithm uncertainty in water reflectance, 1ρw, at 443 nm as a function of the viewing geometry for solar zenith angles of 10, 20, 30, and

60◦, respectively. The simulations are done for all aerosol models with relative humidity RH = 77.5% at optical depth at 869 nm from 0.05 to 0.35, and the retrieval is

done using models with RH = 75% and 80%.

FIGURE 5 | The normalized density histogram of the percentage difference for the aerosol reflectance and optical depth retrievals at 443 and 869 nm, respectively,

and the Angstrom coefficient for all cases of different aerosol types, optical depths, and geometries.

optical depth retrievals at 869 nm, and the Angstrom coefficient
expressed as a percent difference are shown in Figure 5

for all simulated cases of 1,037,400 (i.e., 12 solar angle ×

35 sensor angle × 19 azimuth angle × 10 models × 13
optical depth).

The mean bias in the aerosol reflectance at 443 nm is −0.04%
and the standard deviation is 3.5%, while optical depth retrieval
is 0.05% with a standard deviation of 1.35%, and the Angstrom

coefficient retrieval shows a mean bias of −1.9% with a standard
deviation of 15%. The small bias and standard deviation indicate
that the algorithm can well-retrieve the optical depth; however,
there is amore significant uncertainty in the Angstrom coefficient
retrievals with tendency to retrieve coarser aerosol types than
the input data. This could be an inherent error due to the
definition of the Angstrom coefficient that assumes a power
law relationship of the aerosol spectral dependence from 443 to
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869 nm. Since we are including all cases of aerosol types with
equal representation, the uncertainty is overestimated. In the
cases at the extreme ends of the aerosol’s LUT, there could be large
errors in the retrievals because of the necessity to extrapolate to
models that are not in the table. However, these extreme ends of
the LUT are intentionally added to reduce that necessity for the
extrapolation since these aerosol conditions are rarely observed
based on AERONET data (Ahmad et al., 2010). Finally, note
that the uncertainty increases at the highest two values of fine-
mode fractions (i.e., f = 0.95 and f = 0.80). Since most of
the aerosol absorption is in the fine-mode aerosols, these two
models are more absorbing than others; thus, the difference in
the single scattering albedo is >0.05 in the blue wavelengths,
which can induce more than 3% errors in the aerosol reflectance
at TOA by linear mixing (Abdou et al., 1997; Ahmad et al., 2010).
Additionally, NIR and SWIR bands used in the cost function are
less sensitive to fine-mode aerosols; thus, fine-mode dominant
cases will be erroneously observed as coarser aerosols, which
is the case for the operational algorithm. The only method to
reduce that uncertainty is by inferring the aerosol properties at
shorter wavelengths while minimizing the impact of the marine
reflectance. For example, observations in the UV could improve
the MBAC algorithm when non-absorbing fine-mode aerosols
are present over coastal (absorbing) waters where the UV signal
is negligible. OCI will measure in the UV, which will be a subject
of future work.

Random Noise
The uncertainty in the TOA radiance measurements due to
sensor random noise will impact the retrieval uncertainty of
the ocean reflectance through influence on the AC process. The
uncertainty propagation of the sensor noise is simulated here
using the Monte Carlo method, where the sensor noise at a given
SNR value is generated for 300 iterations for all aerosol model sets
mentioned above. We performed the sensitivity analysis using
the NIR 2-band AC (standard approach) and a 6-band MBAC
(i.e., for MODIS 748, 859, 869, 1,240, 1,640, and 2,130 nm). The
theoretical analysis for MODIS-Aqua is done for the six bands;
however, we drop 1,640 nm in our real retrievals because of
defective detectors at that band. The noise model here is based
on the MODIS model with the noise-equivalent radiance of:

NE1L (λ) = [C0 (λ) + C1 (λ) × Lt (λ)]× S (λ) , (12)

where C0(λ) and C1(λ) are linear fit coefficients of the noise
model from Xiong et al. (2010), and S(λ) is the spectral-

dependent spatial weight to bring all bands to a common spatial
resolution since MODIS land bands have finer spatial resolution

than ocean bands. We also performed an analysis at PACE-OCI
radiometric performance levels, where the MODIS noise model
was scaled to OCI noise levels such that the noise equivalent
radiance, NE1L, response to the dynamic range is consistent for
both instruments.

The random noise for each iteration is generated as follows:

σ =
NE1L(λ)

Lt(λ)
, (13)

and the Gaussian random noise is generated as:

Lnoise = N (0, σ) , (14)

The result of the analysis shown in Figures 6A,B indicates that
the geometrically averaged uncertainty in reflectance, 1ρw, is
closer to 0.0016 levels for the 6-band MBAC algorithm, while
it is slightly higher near 0.0021 levels for the 2-band AC for
MODIS-Aqua noise levels. The improvement in the uncertainty
between the two algorithms is shown in Figure 6C as the ratio of
1ρw(6− band) to the 1ρw(2− band) AC. The average reduction
in uncertainty is nearly 24% using the 6-band MBAC for the
MODIS-Aqua sensor; however, when the same analysis for the
6-band MBAC is done using the expected OCI performance,
the average reduction in the uncertainty approaches 29% as
shown in Figure 6D. The relatively modest improvement for
MODIS-Aqua using the MBAC algorithm is attributed to the
reduced performance of the SWIR radiometric detection. The
high NEL(λ) for MODIS SWIR channels reduces the weight
in the cost function in determining the best aerosol models,
relative to the higher radiometric quality of the NIR bands. The
MBAC algorithm, however, shows more improvement for the
OCI type of radiometric performance due to the increased SNR
of the SWIR detectors relative to its NIR channels, although
the visible performance is kept the same as MODIS for relative
comparison. It is apparent that the merit of the MBAC algorithm
will prevail when the estimated aerosol reflectance at the NIR
bands is compromised. In fact, that is the case for nearly 10%
of the global ocean, where the non-negligible reflectance from
the turbid/coastal ocean leads to systematic underestimation and
often negative reflectance retrievals due to overcorrection for
aerosols. More details will be discussed in the section Application
to Ocean Color Instrument.

Systematic Errors
To have a complete understanding of the potential sources of
uncertainty for the MBAC algorithm, we also performed an
analysis to understand the impact of systematic uncertainty
on the retrievals. Systematic errors in measurements are very
difficult to characterize post-launch due to the lack of an accurate
absolute calibration apparatus on-orbit. Typically, a solar diffuser
is used as a calibration reference; however, due to the immediate
degradation of the diffuser, the absolute calibration with a high
degree of certainty cannot generally be achieved. Thus, the ocean
color community depends on a system vicarious calibration,
which aims to remove any systematic bias due to the sensor
or algorithm errors. For all ocean color sensors processed
by NASA GSFC, we use the vicarious calibration method by
Franz et al. (2007) using the MOBY in situ measurements as
ground truth. The vicarious calibration procedure reduces the
systematic uncertainty to 0.5% for all bands relative to the 869-
nm band for MODIS sensors. However, the absolute calibration
at 869 nm and SWIR bands is assumed to be 2%. Typically,
systematic errors will depend on the environment and geometry
at which the instrument is observing the Earth. Systematic bias
can be influenced by various observing conditions and sensor
characteristics, such as the operating temperature, instrument
polarization sensitivity, stray light, and optical or electronic
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FIGURE 6 | (A,B) are the algorithm + random uncertainty in water reflectance, 1ρw, at 443 nm as a function of the viewing geometry for solar zenith angles of 30◦,

using six bands MBAC and two NIR bands AC, respectively. (C,D) are the ratio between the reflectance uncertainty using six bands AC with MODIS-Aqua noise

levels, and PACE OCI noise levels. The simulations are done for all aerosol models with relative humidity RH = 77.5% at optical depth at 869 nm from 0.05 to 0.35,

and the retrieval is done using models with RH = 75 and 80%.

cross-talk. The behavior of the errors on a per-pixel basis cannot
be easily predicted; thus, it remains unknown; however, the
bias can be reduced through prelaunch characterization and
derived correction algorithms (e.g., polarization correction of the
instrument, correction for out-of-band response, estimation, and
correction for straylight). The spectral correlation of systematic
bias can play an important role in determining the uncertainty
of the retrievals. For example, the spectral correlation of the
two-band ratio algorithm will suffer when the systematic bias is
random and independent at the two bands. Since such a spectral
covariance in bias cannot be directly measured on-orbit, we
assume a conservative scenario in our analysis by assuming a
10% correlation inter-bands, although the spectral correlation
between bands could increase/decrease depending on the spectral
distance. We ran the MC analysis assuming a random bias at
the levels mentioned above for MODIS-Aqua observations. The
covariance matrix, Cov (λn, λm), of the system errors is equal
to 0.1 for off-diagonal elements and 1 for diagonal ones. The
correlated random bias is then calculated as follows:

Bias (iterations, λ) = U(−1, 1) · L (λn, λm) (15)

The bias is generated for the number of iterations in the
MC analysis for each band. U(−1, 1) is uniform distribution
of random numbers from −1 to 1, while L (λn, λm) is Lower
Cholesky factorization of the covariance matrix such that:

Cov (λn, λm) = L (λn, λm) D (λn, λm) L
∗

(λn, λm) (16)

L
∗ (λn, λm) is the conjugate value of the matrix and D(λn, λm) is

the diagonal matrix. The Cholesky matrix allows the generation
of random errors with inter-bands correlation specified in the
covariance matrix. The bias levels are then re-adjusted to match
the level of the instrument.

In Figures 7A,B, the uncertainty, 1ρw, at 443 nm is due to
algorithm + random + systematic errors for the 6-band MBAC
and NIR 2-band AC, respectively. The average uncertainty for
the 2-band AC is 0.0036, while for the 6-band MBAC algorithm,
the average uncertainty is 0.0024, with an improvement of 33%
over the 2-band standard algorithm as shown in Figure 7C.
For the OCI configuration, at higher SNRs, the improvement
is only slight at 37% relative to the MODIS-Aqua configuration
in Figure 7D. This can be attributed to the dominant impact of
systematic uncertainty over random noise; however, in practice,
OCI is expected to have lower systematic errors at 1.6% levels,
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FIGURE 7 | (A,B) are the algorithm + random + systematic uncertainty in water reflectance, 1ρw, at 443 nm as a function of the viewing geometry for solar zenith

angles of 30◦, using six bands MBAC and NIR two bands AC, respectively. (C,D) are the ratio between the reflectance uncertainty using 6-bands AC with

MODIS-Aqua noise levels and PACE OCI noise levels. The simulations are done for all aerosol models with relative humidity RH = 77.5% at optical depth at 869 nm

from 0.05 to 0.35, and the retrieval is done using models with RH = 75 and 80%.

which is not simulated here. Additionally, the high SNR on OCI’s
SWIR will have a more significant impact when retrieving in
coastal waters, when the NIR signal is contaminated by non-
negligible water-leaving radiance.

APPLICATION TO OCEAN COLOR
INSTRUMENT

Unlike MODIS or VIIRS, the SWIR detection assembly on OCI
will include channels specifically tuned for good radiometric
performance over the relatively dark ocean. This significant
advancement will provide an opportunity to improve ocean
color observations in complex water environments (i.e., coastal
ocean) due to the increased sensitivity to the aerosols and less
to the water signal. With the MBAC algorithm, the combined
utilization of all SWIR channels (excluding water vapor bands)
and NIR channels will offer an improved AC over coastal waters
and open ocean by utilizing more spectral bands to reduce
the effect of sensor noise and with adaptive weighting toward
the bands that are less influenced by non-negligible water-
leaving radiance.

Figure 8 shows the spectral uncertainty, 1ρw, for proxy OCI
wavelengths from the UV to red wavelengths for open ocean

and coastal turbid waters (with high total suspended material,
TSM). The open ocean reflectance was simulated withHydrolight
assuming Chlor-a = 0.03 mg/m3 and TSM = 0 g m−3 while
turbid waters assume TSM = 10 g m−3 that has been propagated
to the TOA for each atmospheric composition and geometry
[more details are in Ibrahim and McKinna (2018)]. The retrieval
was done with the 2-band NIR-only algorithm and the SWIR-
only MBAC algorithm. The uncertainty is calculated for the
aerosol set as in the section Error Assessment except for one
specific geometry in the operational LUTs (i.e., solar zenith,
θ0 = 25◦, view zenith, θ = 26◦, relative azimuth angle, ϕ = 90◦).
For an OCI-like instrument, the SWIR MBAC algorithm shows
a slight reduction in the uncertainty as compared to the 2-
band NIR AC over open ocean conditions. In contrast, over
turbid waters, the non-negligible water-leaving radiance at the
NIR bands shows a large uncertainty (systematic bias) in
the reflectance retrievals from the 2-band NIR AC, which is
substantially reduced using the SWIR MBAC algorithm. As
previously discussed, the SW, SW(λ), in the cost function is based
on the NIR iteration scheme of Bailey et al. (2010) to reduce the
impact of contaminated NIR bands in the AC over productive
waters. The algorithm sequentially iterates over a bio-optical
model until a convergence criterion is met. The SW is directly
dependent on the convergence process such that the weight on
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FIGURE 8 | The spectral uncertainty, 1ρw, for a proxy OCI wavelengths from the UV to red wavelengths for open ocean and coastal turbid waters. The uncertainty is

calculated at one specific geometry (i.e., solar zenith θ0 = 25◦, view zenith, θ = 26◦, relative azimuth angle, ϕ = 90◦). The analysis assumes a 2% systematic bias at

NIR and SWIR bands.

the contaminated NIR bands is quickly (exponentially) reduced
with increasing difficulty in the bio-optical model fit. The SW
is proportional to the number of iterations; thus, it translates
linearly. At the maximum of the iterations range, the SW is set
to zero on the NIR bands; thus, the algorithm transitions into
a full SWIR MBAC. This adaptive weight allows for a smooth
transition in the processing between clear waters and productive
waters; thus, it does not require switching between two or more
algorithms. This allows for producing more consistent products,
while maximizing the information content from all observations
at all bands.

APPLICATION TO MODIS RETRIEVALS

The MBAC algorithm has been implemented into NASA’s
L2gen processing code. L2gen (Level-2 generator) within the
SeaDAS software package is the multi-sensor Level-1 to Level-
2 processing code developed and maintained by NASA’s Ocean
Biology Processing Group (OBPG) that is capable of retrieving
ocean color products from TOA radiances for a host of sensors.
L2gen supports multiple AC methods and variations that can be
applied to a variety of ocean color sensors (Gordon and Wang,
1994; Ruddick et al., 2000; Wang et al., 2009; Ahmad et al., 2010;
Bailey et al., 2010; Ibrahim et al., 2018).

Figure 9 shows the Chlor-a retrieval from MODISA
observations for both the operational algorithm and the MBAC
algorithm (748, 859, 869, 1,240, and 2,130 nm, excluding
1,640 nm for Aqua because of bad detectors), the average percent
difference (APD), and the SW at NIR over the East Coast of
the United States. Qualitatively, there is general agreement
between the two algorithms for the Chlor-a product and through
the APD histogram. This agreement confirms the feasibility of
implementation in an operational environment. Differences are
evident, however, in coastal waters such as the turbid Chesapeake
Bay (39.5◦-37◦ N, 75.5◦-76◦ W) or the shallow Pamlico Sound
(35◦ N, 76◦ W) as shown in the APD figure. There are some
apparent artifacts in the upper part of the scene from the MBAC
retrievals that could be due to strong NIR/SWIR calibration
artifacts at the edge of the scan; however, a further assessment of

SWIR calibration for MODIS is necessary for reliable retrievals.
The SW map shows lower values (i.e., closer to 0) near the coast
where the Bailey NIR iterative algorithm was triggered, thus
relying more on the SWIR bands with each increased iteration.
The SW is, however, higher over more clear water over the
open Atlantic waters; thus, the algorithm relies on both the
NIR and SWIR bands. We believe that the MBAC algorithm
should be validated in the more common moderate turbid
waters and highly productive waters. That scene includes regions
with high turbidity such as the upper bay regions and inland
rivers as well as shallow water regions such as Pamlico Sound,
highly productive waters such as middle Chesapeake Bay region,
highly absorbing waters such as Long Island Sound, and the less
productive to more clear waters in the open Atlantic waters.
Testing the MBAC algorithm over a large dynamic range of
water conditions and more complex atmospheric conditions
(i.e., including the large range of Angstrom coefficients from
coarse to fine aerosols) provides more insight.

We also show in Figure 10 the aerosol’s Angstrom coefficient
retrieval over these coastal regions for both the operational and
the MBAC algorithm.

The operational algorithm shows an increased Angstrom
over turbid or shallow regions near the coast that can be
attributed to the failure in the NIR iterative algorithm to mitigate
the non-negligible water-leaving radiance in the NIR bands.
This artifact in the aerosol properties typically leads to the
overcorrection of aerosol radiance and the potential retrieval
of negative radiances. However, using the adaptive SW in the
MBAC algorithm, it quickly damps that NIR contamination by
decreasing the weight of the NIR bands in the cost function,
and thus, the Angstrom coefficient is reduced to a range that
agrees better with the surrounding pixels. Notice that the
southwesternmost part of the scene shows an increase in the
Angstrom coefficient with the MBAC algorithm, which could
be a more realistic retrieval or an artifact due to a bias in the
SWIR calibration. However, this could indicate that the MBAC
algorithm is sensitive to fine-mode as much as coarse-mode
aerosols. Better quantitative evidence is further discussed in the
next section.
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FIGURE 9 | MODISA chlor-a retrieval of a scene over the east coast of the US using the operational 2-bands and the MBAC algorithm, the average percent difference

(APD), and the NIR Spectral Weight (SW) map used in the MBAC retrievals.

VALIDATION

Using NASA’s SeaBASS dataset of in situ Rrs measurements, we
performed match-up to MODIS retrievals at eight bands in the
visible spectral range near 412, 443, 488, 531, 547, 555, 667,
and 678 nm, using both the 2-band operation algorithm and the
MBAC algorithm for MODIS-Aqua. Many of the SeaBASS data
points are coastal, however less frequent than AERONET-OC

data. Table 1 below shows the spectral uncertainty, 1Rrs(λ),
R2, and the mean bias in the retrievals compared to in situ
observations for MODISA for both the operational and the
MBAC algorithm. The retrieval uncertainty, 1Rrs(λ), for the 6-
bandMBAC algorithm is reduced as compared to the operational
algorithm, especially in the green wavelengths at 531, 547, and
555 nm, where the uncertainty is reduced by 52, 55, and 29%,
respectively. There is a slight increase in uncertainty at 678 nm,
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FIGURE 10 | MODISA retrieval of the aerosols’ Angstrom coefficient of a scene over the east coast of the US using the operational 2-band and the MBAC algorithm.

TABLE 1 | A summary of statistical indicators to match-ups of MODISA retrievals with in situ Rrs from the SeaBASS dataset.

Wavelength

(nm)

N In situ Rrs range

(sr−1)

Operational Algorithm MBAC Algorithm

1Rrs (sr−1) R2 Mean Bias (sr−1) 1Rrs

(sr−1)

R2 Mean Bias (sr−1)

412 331 0.00078–0.01783 0.0020 0.74 −0.00089 0.0020 0.71 −0.000012

443 486 0.00126–0.02289 0.0014 0.73 −0.00044 0.0014 0.71 0.000029

488 506 0.00146–0.02587 0.0013 0.74 −0.00053 0.0011 0.76 −0.00017

531 95 0.00137–0.02759 0.0021 0.77 −0.00050 0.0011 0.91 −0.00013

547 51 0.00102–0.02799 0.0029 0.68 −0.00079 0.0013 0.90 −0.00018

555 353 0.00002–0.01196 0.0014 0.76 −0.00058 0.0010 0.83 −0.00040

667 380 0.00013–0.00286 0.0005 0.72 −0.00007 0.0003 0.85 −0.00008

678 12 0.00078–0.01783 0.0004 0.78 −0.00004 0.0005 0.69 −0.00006

which could be due to the lack of high-quality in situ observations
at longer wavelengths. The coefficient of determination, however,
is slightly lower for 412 and 443 for the MBAC algorithm
relative to the operational one. There is a more significant
correlation for the green channels, 531, 547, and 555, using the
MBAC algorithm. Overall, the uncertainty is reduced using the
MBAC algorithm due to the decreased mean bias in retrievals.
Because of the extrapolation of the aerosol information from the
NIR/SWIR to the visible, at shorter wavelengths, the retrievals
uncertainty will increase specifically in coastal waters where

the ocean blue reflectance is small. Thus, retrievals in the
blue bands are slightly noisier due to the impact of low-SNR
SWIR bands due to the spectral extrapolation of the selected
aerosol models.

A further investigation into a proper estimation of systematic
uncertainty and its spectral correlation is necessary to provide
uncertainties that are similar to in situ validation. It is important
to note that the validation analysis has been done with an initial
SWIR vicarious calibration following Franz et al. (2007). The
reduction of systematic bias is essential to provide reliable MBAC
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retrievals, which will require a thorough assessment of the SWIR
calibration in a future study.

CONCLUSION

TheMBAC algorithm shows several potential merits over NASA’s
current operational Gordon and Wang (1994) 2-band ratio
aerosols correction algorithm. The utilization ofmultibands from
the NIR to SWIR in the AC reduces the uncertainty in the
retrieval of ocean color reflectance due to sensor random and
systematic noise. The adaptive SW reduces the weight on the
NIR bands over turbid or highly productive waters; thus, the
contamination from bright ocean signal in the NIR is reduced.
This algorithm enables the production of spatially consistent
ocean color data in turbid and open ocean conditions. The
limitations of the algorithm are mainly tied to the radiometric
performance in the SWIR bands. A significantly decreased
performance in the SWIR for some sensors leads to noisy
retrievals in the coastal regions. For the OCI on PACE, the
SWIR bands are expected to have a much higher SNR compared
to MODISA within the radiance range observed over oceans;
thus, a significant improvement using the MBAC algorithm is
expected, especially in coastal regions. The sensitivity analysis
shows an overall reduction in the reflectance uncertainty by 33%
over open ocean conditions and over 300% over turbid water
conditions in the blue spectral region. In addition, the SeaBASS in
situ match-ups show an improvement in the retrievals using the

MBAC algorithm relative to the 2-band algorithm, especially in
the green spectral range where the reduction in the uncertainty is

nearly 50% at 531 nm. An improvement in the system vicarious
calibration of the SWIR bands for current ocean color sensors
shall increase the value of the MBAC algorithm in producing
more consistent products.
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