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A habit of basing convictions upon evidence and giving them only that degree of certainty which the
evidence warrants, would, if it became general, cure most of the ills from which the world is suffering.

-Bertrand Russel

1. INTRODUCTION

Uncertainty is a central and unavoidable feature of decision problems that people face both in
everyday life, as well as in virtually every field of science. Hydrogeology is no exception to that. In
fact, the relevance of uncertainty to hydrogeology is particularly high, due to the high variability of
many subsurface properties combined with a general scarcity of data. These factors have led to the
development of stochastic hydrogeology where the subsurface properties are modeled as random
variables (Gelhar, 1993; Rubin, 2003). Despite the wealth of research on stochastic modeling, a
systematic investigation into the quantification of uncertainty and its impact on decision problems
has remained limited. For example, Dagan (2002) noted that uncertainty “is a topic that has
received little attention” and more recently, Kitanidis (2015) again pointed out that “it is somewhat
surprising that this topic has not received more attention”. Instead, most discussions evolve around
the specific topic of stochastic concepts, which is a closely related but ultimately an independent
topic. For example, in a discussion forum, Zhang and Zhang (2004) solicited contributions discuss
the perceived lack of applications that stochastic concepts have seen in hydrogeology. Of these
contributions, only Ginn (2004) and Rubin (2004) discussed uncertainty briefly in the context of
probability assessments. This lack may be explainable by the limited scope of that discussion forum,
where only a fixed number of questions were to be answered by the contributors. However, more
recently, Sanchez-Vila and Fernandez-Garcia (2016) organized a Special Issue that covered that
same question but allowed for more space and personal involvement from the participants. While
the topic of uncertainty was touched upon in all solicited contributions, none of them discussed
its nature or aims. This neglect contrasts the closely related fields of hydrology (Mantovan and
Todini, 2006; Vrugt et al., 2009; Clark et al., 2011) as well as geology (Wellmann and Regenauer-
Lieb, 2012; Bond, 2015; de la Varga andWellmann, 2016) which have and continue to have a broad
and deep discussion about the nature, sources, aims and direction of uncertainty analysis. One of
the main impediments for further progress in the field of uncertainty characterization, that has
been identified, is the lack of a coherent terminology and framework (Montanari, 2007; Montanari
et al., 2009).
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A significant challenge for the establishment of a consistent
framework of uncertainty analysis in hydrogeology is caused
by the most prevalent workflow of inverse theory, or, inversion
for short (Neuman, 2004; Tarantola, 2005; Carrera et al., 2005;
Franssen Hendricks et al., 2009; Biegler et al., 2010; Menke,
2012; Linde et al., 2015; Zhdanov, 2015). This workflow, known
as point estimation in inference, is based on a (regularized)
data fitting or optimization approach which tries to identify
a unique solution to the inverse problem. Typical examples
in hydrogeology are goodness-of-fit criteria, i.e., the task of
finding a single set of parameters such that the distance between
predictions and observations is minimized (Indelman et al.,
1996; Sánchez-Vila et al., 1999; Firmani et al., 2006; Schneider
and Attinger, 2008; Riva et al., 2009; Copty et al., 2011;
Pechstein et al., 2016; Zech et al., 2016). Even when point-
estimators are not applied during calibration and a probabilistic
sampling of the parameter distribution is advised instead, often
the analysis is performed again, by deriving single solutions
through, e.g., averaging (Neuman, 2014). There seems to be a
deep distrust of the generally non-unique nature of scientific
inference. Strangely, no rationale for this distrust is ever asked for
nor provided.

Since this workflow of inversion was not designed to
account for uncertainties in the inference, it consequently
exhibits a number of problems from that perspective. First,
aiming for a single best estimate neglects all other parameter
sets that are possible but may be less plausible. Neglecting
possible states can be problematic for inference alone (Good,
2009a). For uncertainty analysis, point estimation is even more
problematic since the use of a single best estimate implies
absolute certainty. Second, these studies usually use the observed
data only, without any reference to available background data
and are therefore liable to the base rate fallacy (Barhillel, 1980;
Kahneman et al., 1982).

Responses to this have been mixed and often inconsistent
(Nearing et al., 2016). Arguably, the most obvious concern is
centered around the so-called problem of equifinality (Beven,
2006), i.e., the observation that many, often diverging, parameter
sets may provide nearly identical goodness-of-fit values. One
response to this insight has been the development and application
of the generalized likelihood uncertainty estimation (GLUE)
framework (Beven and Binley, 1992). Although often described
as an (informal) Bayesian method, it has been strongly criticized
in the literature (Mantovan and Todini, 2006; Stedinger et al.,
2008). Another seminal response has been the development of the
differential evolution adaptive metropolis framework (DREAM,
Vrugt et al., 2009; Laloy and Vrugt, 2012; Laloy et al., 2013).
Unlike GLUE, DREAM is a fully Bayesian inference method
and uncertainty estimator and has seen many applications in
hydrology since its publication. Although DREAM has seen
applications in hydrogeology too (Mariethoz et al., 2010; Hansen
et al., 2012; Shi et al., 2014; Xu et al., 2017; Laloy et al., 2016;
Hayek et al., 2018), no universally accepted Bayesian framework
for uncertainty analysis currently exists. A rising number of
Bayesian inversion methods for inference have been published
over the years (see e.g., Cardiff and Kitanidis, 2009; Rubin et al.,
2010; Shi et al., 2014; Elsheikh et al., 2014; Saley et al., 2016),

yet, the overall adoption of such methods has remained limited.
This lackluster adoption rate can, e.g., be seen by the almost total
absence of Bayesian methods in the aforementioned special issue
on stochastic hydrogeology. Only Cirpka and Valocchi (2016)
even care to mention this topic and only in the context of
Bayesian model selection.

One problem that all the above-mentioned uncertainty
frameworks share, is the lack of formalized prior derivation.
Hydrogeology itself has only produced a small number of studies
on this topic (Kitanidis, 2012; Li et al., 2017; Cucchi et al., 2019),
which is sadly in line with the situation in many other fields.
Since specifying the prior is the first step in any Bayesian analysis,
high emphasis should be put on this step. However, coming
up with universal and objective guidelines for every conceivable
situation has proven to be elusive, so far (Earman, 1992; Scales
and Tenorio, 2001). In fact, detractors of Bayesian inference are
often criticizing the need to define a prior, claiming this step to be
necessarily subjective and arbitrary (Kass and Wasserman, 1996;
Ulrych et al., 2001; Kass, 2011). On the other hand, proponents
of Bayesian inference cite the ability to include background
knowledge in the form of prior probabilities as one of its major
strengths (Jaynes, 1968).

To this date, the single most used inference framework in
hydrogeology is arguably the Model-Independent Parameter
Estimation andUncertainty Analysis framework (PEST, Doherty,
2004). PEST itself constitutes a diverse set of optimization and
estimation tools to calibrate a wide range of environmental
models. The uncertainty framework allows users to estimate the
predictive uncertainty of the model output using a somewhat
inconsistent mixture of Bayesian and calibration techniques
(Doherty, 2010). Such an eclectic approach to inference and
uncertainty characterization may look intriguing. However, as
Kitanidis (2015) pointed out, combining elements from two
internally consistent systems is very risky.

In this manuscript, we will instead make the case for a single
coherent data-driven framework for uncertainty characterization
in hydrogeology. As we will argue below, this framework ought
to be the Bayesian interpretation of probability, i.e., the system
of probabilistic reasoning as developed by Ramsey (1931), Finetti
(1975), Savage (1954), and others.Whenmaking this case, we will
follow the reasoning of Pearl (1988b), who, while talking about
Bayesian probability in the context of artificial intelligence, said
the following:

Obviously, there are applications where strict adherence to
the dictates of probability theory would be computationally
infeasible, and their compromises will have to be made. Still, we
find it more comfortable to compromise an ideal theory that is
well-understood than to search for a surrogate theory, with only
gut feeling for guidance. The merits of a theory-based approach
are threefold:

1. The theory can be consulted to ensure that compromises are
made only when necessary and that their damage is kept to
a minimum.

2. When system performance does not match expectations,
knowing which compromises were made helps identify the
adjustments needed.
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3. Compromised theories facilitate scientific communication;
one need specifies only the compromisemade, treating the rest
of the theory as common knowledge.

To follow the advice of Pearl (1988b), we will start by describing
such an ideal theory, outline the present challenges for its
application and explain how to address them. In section 2, we
will make the case for Bayesian probability by contrasting it to
potential competitors. Next, in section 3, we will conceptualize
the different forms of uncertainty using the Bayesian framework
and identify the most relevant forms for hydrogeology. Finally
in section 4, we will make a number of practical propositions
by outlining what is currently missing, what compromises need
to be made to make the Bayesian paradigm viable and what the
relevant steps are that may help to reduce or even eliminate some
of these compromises.

2. REASONING WITH UNCERTAINTY

A discussion about uncertainty should begin with a clear
understanding of what is meant by this term. In a slightly
ironic twist, the term uncertainty is far from being well-
defined, both in everyday use as well as in the sciences. In fact,
when scanning the hydrogeological literature, a wide range of,
often conflicting, definitions, and conceptualizations are used
(Hoffman and Hammonds, 1994; Hofer, 1996; Walker et al.,
2003; Brown, 2004; Carrera et al., 2005; Refsgaard et al., 2007,
2012; Tartakovsky, 2013; Bond, 2015; Enemark et al., 2019). We
will therefore start by providing an overview of different models
that have been developed to conceptualize this term and facilitate
both qualitative and quantitative reasoning. To avoid the often
ad-hoc or gut driven nature of uncertainty analysis that is found
in the literature, we will start by presenting frameworks that were
developed in the field of epistemology, i.e., the field of philosophy
concerned with the character of knowledge.

In general, uncertainty should be understood as a measure
that describes the distance or gap between a current state of an
agent and the one representing absolute certainty. The latter is
formalized by the True and False statements found in classic
logic, whereas the former extends this concept. Consequently,
we will begin by describing models for such partial certainty
as found in modern epistemic logic. As argued above, we will
make the case for Bayesianism, i.e., the idea that certainty equals
probability and vice versa. Only in the next step we will discuss
a concept of uncertainty and make the case for the Kullback-
Leibler divergence as the distance measure between current and
absolute certainty.

2.1. Models for Reasoning With Certainty
and the Case for Probabilities
In modern epistemology, certainty is defined over possible states
of reality, collectively known as the set of possible worlds �

(Halpern, 2003; Fagin et al., 2004). In Bayesianism, the equivalent
term would be possibility space (Kruschke, 2010), whereas the
equally labeled sample space � from probability theory may or
may not have the same meaning depending on its interpretation
(see below). This possibility space is now meant to contain,

next to the true state of affairs, all other possibilities that are
compatible with a given set of constraints and data available to
an epistemic agent. Such an epistemic agent may be a human,
but with the advent of artificial intelligence, computational agents
have increasingly become the focus of modern research (Russell
and Norvig, 2009). The epistemic state of such an agent is then
defined by a function that assigns weights to each possible world
ω. This function is known as a certainty or credence distribution.

Despite its relatively short history, the field of modern
epistemology has already developed a number of different
measures to describe that certainty distribution. These measures
differ both mathematically as well as conceptually. The latter
difference can best be understood by viewing these different
measures as extensions of classical logic. In logic, a simple
True or False relationship exists between a statement and
the reality that this statement is trying to describe. In these
extensions, discussed below, this simple relationship becomes
more flexible and allows for different kinds of degrees of certainty
(Darwiche and Pearl, 1997).

The most common approach is to conceptualize such a
gradual degree of certainty as stemming from uncertain or
incomplete knowledge. This means that, similar to classical logic,
a given statement is objectively either true or false in reality.
However, due to the agent’s limited knowledge, she cannot fully
determine its veracity and has to assign a limited certainty to
it. This is known as a degree of belief and it is described by a
number between 0 and 1, corresponding to False and True in
classic logic. It can be shown that such degrees of belief follow the
rules of probability theory, i.e., the certainty of an agent is to be
described by a probability measure (Savage, 1954; Lindley, 1987).
To illustrate this model; consider a statement about the mean
conductivity of a given sample being above a given threshold,
say, 10−3m/s. The certainty of this statement could then be
ascertained if we would have access to a well-calibrated histogram
of conductivity values of samples from the aquifer the sample was
taken from.

An extension of this model is derived by the additional
inclusion of uncertainty stemming from ignorance. Using the
now (in)famous epistemology of the former US Secretary of
Defense Donald Rumsfeld (2002), probability describes the
known unknowns whereas ignorance is about the unknown
unknowns. To illustrate this concept, let us consider a revised
version of the above problem: Suppose that our knowledge base is
now less certain such that the sample is only with 90% probability
from the aforementioned aquifer, but with 10% probability
of some unknown provenience. This leaves a 10% certainty
gap in our reasoning system. The seminal work of Dempster
(1968) demonstrated a way of handling this gap, whereas the
later extensions of Shafer (1976) made this calculus into a
full reasoning and inference system. The resulting reasoning
framework is the Dempster-Shafer theory, evidence theory or
theory of belief functions. Like in the example above, Dempster–
Shafer theory is often praised for being able to combine evidence
from different sources with different kinds of uncertainty
attached to it. Its applicability has, however, been limited due to a
number of criticisms (Pearl, 1988b,a, 1990). Note that other fields
use similar concepts, with sometimes very different notations.
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In economy, for instance, uncertainties from lack of knowledge
are called risk, whereas uncertainties from ignorance are called
Knightian uncertainties or simply uncertainties (Knight, 1921).
On the other hand, political science and decision theory often
describe uncertainties as a lack of knowledge and ignorance,
shallow, and deep uncertainty, respectively (Walker et al., 2013).

An alternative approach is to model uncertainty stemming
from uncertain truth. This means that the veracity of a given
statement may never be fully determined, even in cases of
complete knowledge. Using the above example, this could be
the case if the statement is altered such that conductivity of
the sample is said to be large. Even if all relevant data on this
sample are gathered, e.g., some laboratory testing may determine
the conductivity being 10−3m/s, no definitive certainty can be
determined. A statement that the conductivity of the sample is
large given that the conductivity is 10−3m/s may be considered
as sort-of-true. The point is that our limited degree of certainty
is not caused by limited knowledge but by some vagueness
or fuzziness in the statement itself. Measures that are able
to describe such situations are confusingly called possibility
measures, although no particular connection to above possibility
space exists, and the related mathematical framework is, more
appropriately, called fuzzy logic (Zadeh, 1978; Dubois and Prade,
1988). Reasoning systems that employ fuzzy logic have seen
wide-ranging applications in engineering, modern logic, artificial
intelligence systems etc., which testifies to their versatility
and usefulness.

Despite the existence of these comparably sophisticated
systems for reasoning under uncertainty, the simplest approach
of probabilistic reasoning has seen a strong resurgence in the
last decades with the introduction of Bayesian networks (Pearl,
1988b; Neapolitan, 1990). These networks are probabilistic
graphical models that represent the, typically causal, relationship
between different physical processes.

Using the above statements, we would assert that probabilistic
reasoning is the most-suited framework for reasoning under
uncertainty in hydrogeology. Probability represents a simple,
yet very flexible tool that is able to capture most of the
problems encountered in this field. Fuzzy logic, although often
employed in engineering, does not offer much additional benefit
since most evidence being used is numerical in nature and
therefore has virtually no fuzziness associated with it. Contrary
to that, Dempster-Shafer theory does offer relevant benefits as an
uncertainty framework, which do however, need to be considered
in context. The first benefit is simply due to the fact that many
situations of subsurface analysis do include an element of deep
uncertainty, in particular the topic of structural uncertainty.
To address that, we will deal with this problem exhaustively
below and describe a way how to turn this deep into shallow
uncertainty. In this way we are making the topic of structural
uncertainty fully amendable to probabilistic analysis. Second,
as pointed out by Rubin et al. (2018), the Dempster-Shafer
theory can be helpful in accounting for unknown unknowns
that result from the interaction of hydrogeological problems with
societal developments in general (Walker et al., 2013; Maier
et al., 2016). This second benefit is very important but does not
necessarily conflict with our notion of probability as a default

system for uncertain reasoning. Since Dempster-Shafer theory is
a full generalization of probability theory, it is easy to embed a
fully probabilistic analysis within a larger framework. In addition
to these benefits, the Dempster-Shafer theory has a number of
drawbacks that make reasoning with it counter intuitive and
hamper its applicability for real-world problems. In particular,
it is not possible to employ it on top of existing techniques
compared to probability theory or even fuzzy logic and its
applicability to decision theory remains controversial. Although
the number of applications in earth sciences is rising, it is still a
niche theory with only few practical applications (Malpica et al.,
2007). In summary, we propose to use probabilistic reasoning
as the main tool of uncertainty analysis, while being aware of
its limitations, and being prepared to account for other types of
uncertainty by embedding probability measures within a larger
analysis possibly using the Dempster-Shafer theory.

2.2. On the Interpretation of Probability
Owing to the seminal work of Kolmogorov (1933), modern
probability theory is fully grounded in set theory and as
such, it is as well founded and defined as any other field
of mathematics (Kallenberg, 2002). Yet, unlike many other
mathematical disciplines, there is no clear consensus about where
to locate probability in real-world situations.

Roughly speaking, two different interpretations of probability
can be distinguished; physical as well as epistemic probability
(Figure 1). The first interpretation regards probability as an
actual property of physical systems comparable to, e.g., mass,
energy and momentum (Figure 1, upper right corner). This is
best captured in its most widely applied form; frequentism, where
the probability of an event is equated with the relative frequency
of this event in an often-repeated random experiment (Neyman
and Pearson, 1928, 1933). This definition has garnered wide
support in the sciences, due to its clear and lucid formulation
(vonMises, 1982). On the other side, the epistemic interpretation
regards probability as an intrinsic property of epistemic agents
(Figure 1, upper left corner). This means that, unlike mass,
energy or momentum; probability is not a property of a
physical system but of the epistemic state of an agent that is
trying to reason about said system (Finetti, 1975; Savage, 1954;
Jeffrey, 1992).

2.2.1. The Case for Bayesianism
The discussion about the best or most appropriate interpretation
for any given situation is still ongoing and we do not want to
uncritically favor any side. For our topic, however, the epistemic
interpretation, called Bayesian interpretation, of probability
seems to be the only appropriate one. The main rationales for
its use shall be discussed in the following.

First, the epistemic interpretation is simply the more
comprehensive interpretation of the two. In fact, it is a full
generalization of the physical interpretation, since it is able
to cover all cases described by the latter and then some.
This is not the case for the frequentist interpretation since its
application is constrained to cases where physical frequencies are
available. This inclusiveness of Bayesianism is often obfuscated
by calling it the subjective interpretation of probability, as
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FIGURE 1 | Illustration from Descartes (1662) visualizing the difference

between physical objects (upper right corner) and their epistemic

representations (upper left corner).

opposed to the objective interpretation of frequentism. But such
a characterization is misguided since epistemic probabilities can
be subjective, objective and everything in between (Berger, 2006;
Williamson, 2010).

Second, the concept of a long-running sequence of random
experiments is ill defined in the context of hydrogeology. This
is not to deny the relationship that relative frequencies of, say,
conductivity values from other sites have on the characterization
of a given site. As described above, most Bayesians would
agree that such frequencies should always be used when
available (Rubin, 1984). The difference to frequentism is not the
importance of observed frequencies but the role they play in
defining probability. Within the context of hydrogeological site
characterization, we would argue that equating those frequencies
with probability, and the use of frequentist methods therefore as
well, is rather contrived (Renard, 2007).

Third, uncertainty is a property of knowledge and therefore
fundamentally epistemic. This fact is often obfuscated by
the practice of separating uncertainty into so called aleatoric
and epistemic uncertainty, somewhat mimicking the above
distinction between physical and epistemic probability (Hoffman
and Hammonds, 1994; Helton and Burmaster, 1996; O’Hagan
et al., 2006; Gong et al., 2013). Generally speaking, epistemic
uncertainty is said to be reducible by collecting more data
whereas aleatoric uncertainty is caused by intrinsic randomness

which cannot be further reduced by data. Typically, the latter
is illustrated by referring to activities like throwing a die or
tossing a coin. The problem with such examples is that both these
activities are demonstrably deterministic without any intrinsic
randomness (Diaconis et al., 2007). It may be argued that the
physical world itself exhibits pure randomness on the quantum
level of reality. This notion, associated with the Copenhagen
interpretation of quantum mechanics was dominant for the
better part of the 20th century but has become marginalized
more recently in favor of the Everett (Deutsch, 1999; Sebens
and Carroll, 2016) and Bayesian (Schack et al., 2001; Fuchs
and Schack, 2013) interpretations. Whatever the case may be,
within the context of the macroscopic physical laws relevant
to hydrogeophysics, these debates are completely immaterial.
On the macroscopic level, the laws of classical physics exhibit
no randomness, which can therefore not suddenly manifest
in situations that are fully determined by these laws.

The last major reason, for why frequentism does not provide
an adequate framework for uncertainty analysis concerns the
nature of frequentist inference itself. Following Royall (1997),
any statistical inference, as well as any other form of evidential
assessment, can be thought of as addressing a series of three
questions; (i) What does the evidence say?; (ii) What should I
believe?; and (iii) What should I do? Uncertainty itself concerns
the second question, i.e., the question of belief but frequentist
inference actually does not address this question at all (see
Table 1). To explain why, let us start at question (i); the question
of evidence. Evidence is central to the field of inference but
surprisingly difficult to pin down (Feldman and Conee, 1985;
Achinstein, 2003; Dougherty, 2011). In general, the evidence of
some observations are those aspects of it which justify or lend
credence to a hypothesis under question. The most important
theoretical advance for the quantification of this notion came
in the form of the Likelihood Principle (LP, Barnard et al.,
1962), stating that all the evidence of the data is contained
in their likelihood. Although some criticism exists, the LP is
broadly accepted in the field of epistemology, due to being
derived from extremely simple axioms (Barnett, 1999; Good,
2009b; Bandyopadhyay and Forster, 2011; Grossman, 2011). This
first step alone, therefore, puts some pressure on frequentist
hypothesis testing since it does not meet this criterion. In contrast
to that, frequentist estimation, like calibration, parameterization,
regression etc.; does not necessarily conflict with this principle.
Here, the problem comes in the second step, i.e., using the
evidence to justify belief. Frequentism does not deal with belief
but uses the evidence, or some proxy thereof, to jump directly
to decisions. As outlined above, decisions are made by deriving
point estimates, for instance by applying a significance criterion
to a p-value or an optimality criterion to some estimation
procedure (Table 1). Some optimality criteria can be derived
on evidential grounds, like the Maximum Likelihood (ML)
estimator. While ML estimators are widely used, many other
estimators exist, which typically divert from ML by trying to
reproduce only certain features of the data or contain some
application-specific reasoning (Krause et al., 2005; Pushpalatha
et al., 2012; Bennett et al., 2013; Moriasi et al., 2015). This work
flow, which forms the blueprint of most inference techniques
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TABLE 1 | Comparison of the different concepts used in frequentism and Bayesianism.

Given the data, Given the evidence, Given the belief,

what is the evidence? what is the belief? what is the decision?

Frequentism Hypothesis testing Sampling distribution Significance criteria

Estimation Likelihood Optimality criteria

Bayesianism Likelihood Bayes’ theorem Utility function

in hydrogeology, is in contrast to the principles of Bayesian
inference. First, Bayesian inference meets the LP by using only
the likelihood to assess the evidential support of the data.
As mentioned above, adherence to the LP is not unique to
Bayesianism, but a necessary prerequisite. The most important
difference comes in the next step, when Bayesian inference uses
Bayes’ theorem to compute the belief that follows from the
evidence. This step is simply a conclusion from the axioms
of probability theory and a number of more recent studies
have demonstrated how updating through Bayes’ theorem does
indeed maximize the epistemic accuracy of an agent (Greaves
and Wallace, 2006; Leitgeb and Pettigrew, 2010; Easwaran,
2013). However, the application of Bayes’ theorem requires the
derivation of the prior probability, which is regularly criticized.
We will deal with this question in more detail below and
continue for now with the above schematic. Having determined
the belief given the evidence concludes the inferential part of
the statistical analysis. This, however, leaves open the last step
of the analysis, which is to make an informed decision. In above
terms, this canmean to decide which parameter θ to use or which
hypothesis to accept. In Bayesianism, decision making is done
by maximizing the expected utility. Like the two other steps,
the decision making through maximizing the expected utility is
derived from simple axioms making it the most well-subscribed
paradigm in decision making. What is important for us is that
this last step is independent of the other two and the specification
of the utility function is therefore left to the decision maker. This
clear separation of inference and decision makes Bayesianism so
relevant to uncertainty analysis.

Combined, reasons like this have led to the strong rise
Bayesian methods have seen in many fields like physics
(von Toussaint, 2011), biology (Huelsenbeck et al., 2001),
environmental science (Clark, 2005), clinical research (Berry,
2006), genetics (Beaumont and Rannala, 2004), psychology
(Wagenmakers, 2007), cognitive science (Clark, 2015), and
many more. In addition, these reasons have made Bayesianism
the leading paradigm in the field of philosophy of science
(Howson and Urbach, 2005; Bandyopadhyay and Forster, 2011;
Easwaran, 2011a).

2.3. Bayesian Uncertainty Analysis
Having established Bayesianism as the most appropriate
framework for uncertainty analysis, we will quickly restate the
basic properties of Bayesian inference and prediction. In addition
to that, we will demonstrate how the Bayesian framework
provides an axiomatically based definition of uncertainty
and therefore allows a quantitative assessment of uncertainty
reduction as provided by the inference.

2.3.1. Inference
Inference is defined as the process of characterizing a probability
function using data. In Bayesian inference, this probability is
defined over the possibility space � (Kruschke, 2010). As the
name implies, � is supposed to contain all states that are possible
for a given situation, i.e., states whose probability cannot be set
a priori to zero. To avoid the curse of dimensionality, this space
is typically approximated by a parsimonious parametric model,
which is fully determined by the specification of its parameters θ .
The initial certainty for these parameters θ , is the aforementioned
prior p(θ). The likelihood of each parameter set θ is determined
by the data generating process, which in hydrogeology is usually
defined through partial differential equations. Combining prior
and likelihood, Bayes’ theorem can now be used to determine the
probability conditioned on the data z called the posterior

p(θ |z) =
p(z|θ)

p(z)
p(θ). (1)

The only missing element in Equation (1) is the probability
of the data p(z) often called the marginal likelihood or the
evidence. However, for most scenarios, this probability is only a
normalization constant. It can therefore be omitted and Equation
(1) can be computed by normalizing p(z|θ)p(θ). This latter form
is often used in the literature, since modern sampling methods
are versions of the Markov-Chain-Monte-Carlo method, which
guarantees this normalization by design.

Looking at this workflow, it becomes clear how Bayesian
inference is the general probabilistic framework for the inverse
problem with the likelihood being the Bayesian representation of
the relevant forward problem.

2.3.2. Prediction
Using the conditioned, i.e., posterior, probability p(θ |z), the
predictive probability for new unobserved data, i.e., predictions,
z∗ is given by

p(z∗|z) =
∫

2

p(z∗|θ)p(θ |z)dθ . (2)

Bayesian prediction of new data z∗ given the old data z is
therefore achieved by marginalizing the posterior probability
p(θ |z) times the predictive probability p(z∗|θ) of the model as
defined by θ .

This influence of the parameterized space of possible worlds2

on both Bayesian inference and prediction also provides a formal
description of two closely related epistemological problems in
science; namely the Theory-ladenness of Science and the Duhem-
Quine Hypothesis. The former roughly states that scientific
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inference is always affected by, usually implicitly held, beliefs
of the investigator and is strongly associated with the works
of Kuhn (1962) and Feyerabend (1975). The latter is more
general and states that scientific inference is always under-
determined by our observations and additional assumptions are
needed to make sensible conclusions. Next to Duhem (1906)
and Quine (1951), important contributions to the development
of this notion came, e.g., from Van Fraassen (1980), Laudan
(1990), and Stanford (2001). Note that the Bayesian framework
does not solve this problem but does make the impact of 2

on the findings transparent. This means that all theoretical
presuppositions are contained in the definition of 2 and only
influence inference and prediction by virtue of its choice and
through the aforementioned equations.

2.3.3. Uncertainty
In addition to properly describing the change of beliefs due
to new evidence, Bayes’ theorem provides a mathematically
rigorous way to characterize the uncertainty represented in a
probability distribution as well as the uncertainty reduction
achieved during the inference. This is possible due to the
intricate relationship between the concept of information in
information theory and the way probabilities are updated in
Bayesian inference (Ebrahimi et al., 2010). According to Shannon
(1948), the information of a particular value of θi is given
by I(θi) = − log2(p(θi)), with log2 being the logarithm of
base 2. Due to this choice, information is usually measured
in bits, with other bases simply leading to other units. To
characterize the information content of a probability function of
a discrete variable, Shannon (1948) introduced the expected value
of information

H =

∫

p(θ)I(θ)dθ = −

∫

p(θ) log2(p(θ))dθ . (3)

As recounted by Tribus and McIrvine (1971), Shannon initially
called this quantity uncertainty but was unfortunately convinced
by John vonNeuman to use the term entropy instead. In addition,
the Shannon entropy only describes the uncertainty with respect
to a state of complete ignorance which is implicitly defined in
his first and second axioms. Due to this limitation, the Shannon
entropy is not suited for Bayesian inference, where updating
from arbitrary priors to posteriors is possible. To that end,
Equation (3) needs to be amended such that the uncertainty
with respect to other degrees of certainty can be described.
This extended concept is known as the Kullback-Leibler (KL)
divergence (Kullback and Leibler, 1951) but should be more
appropriately called relative entropy/uncertainty or information

DKL =

∫

p(θ) log2

(

p(θ)

q(θ)

)

dθ . (4)

Due to its positive sign, the KL divergence is the negative relative
entropy of p with respect to q. It therefore belongs to the class
of entropy measures meaning that uncertainty is the entropy of
a probability function. Such measures have several advantages
compared to, say, variance-basedmeasures like Sobol indices that
are often used in the literature (Ebrahimi et al., 2010). Compared
to the Shannon entropy, this quantity is more fundamental in

several ways. First, DKL can be easily extended to continuous
as well as multidimensional variables. Second, DKL describes
the uncertainty as expressed in one distribution with respect to
another and therefore reduces to the Shannon entropy in the
marginal case of a flat q. Finally, DKL connects the concept of
information with the updating from the prior to the posterior in
Bayesian inference. If p and q are identified with the posterior
and prior distribution, respectively, then DKL is a measure for
the information and therefore the uncertainty reduction achieved
during the inference (Hou, 2005; Tang et al., 2016).

2.4. Challenges of Bayesianism
Although Bayesianism has become such a popular position in
the sciences, it has also received its fair share of criticism
(Gelman, 2008; Easwaran, 2011b). These criticisms often include
rather formal issues like the problem of logical omniscience and
the problem of old evidence (Garber, 1983). Others, however,
are more relevant to its applicability and should therefore be
discussed in the following. Looking at Equation (1), we see
that Bayesian inference consists of determining three expression
only. Next to the likelihood, which is also often used outside
of Bayesian inference, two expressions are peculiar to it and
therefore need to be looked at in detail.

First, let us look at the marginal likelihood in Equation
(1), which poses the biggest computational problem. Since
a direct computation of this expression generally involves
multi-dimensional integrals, Bayesian inference was, for a long
time, confined to a comparably small number of simple cases.
Nowadays, Markov-Chain-Monte-Carlo (MCMC) methods are
used (Gelfand and Smith, 1990; Tierney, 1994; Chib and
Greenberg, 1995), which circumvent the computation of these
often-intractable integrals by sampling directly from the non-
normalized posterior. Implementations of MCMC samplers
exist as either standalone versions (Lunn et al., 2009; Gelman
et al., 2015; Depaoli et al., 2016) or they are implemented for
popular languages like R (Martin et al., 2011; Lindgren and
Rue, 2015; Denwood, 2016) and Python (Patil et al., 2010;
Foreman-Mackey et al., 2013).

Second, let us turn to the prior in Equation (1), which is
both a theoretical and computational problem. The theoretical
problem, known as the problem of the priors (Osherson et al.,
1993), is caused by the limited number of restrictions that
Bayesianism puts on a reasoning system to be rational. Taken
to the extreme, an agent would be free to believe anything as
long as there is no contradiction to the axioms of probability
(Romeijn, 2017). In reality, however, common sense dictates
that a sound opinion is constrained by additional sources of
evidence. Responses from Bayesians to this obvious clash have
been mixed, with roughly two extreme camps existing; subjective
Bayesianism and objective Bayesianism. Subjective Bayesians
stick to the purely theoretical principles and try to mitigate
the conflict through expert elicitation, i.e., the application of
formal rules to elicit expert opinions on a given topic and
turn them into prior distributions (O’Hagan et al., 2006; Albert
et al., 2012). On the other end, we find objective Bayesians who
claim that additional conditions on rational beliefs, in particular
prior beliefs, are necessary. These additional conditions revolve
around the principle of equivocation, which means that, if no
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evidence favors one possibility, a rational agent should initially
equivocate between all possibilities (Williamson, 2010). A more
sophisticated version of this idea is the Maximum Entropy (ME)
method (Jaynes, 1957a,b), where non-flat priors are possible if
some additional, often physically based, constraints or symmetry
arguments make some possibilities less credible from the start.
In practice, most statisticians, scientist and engineers strive for
objectivity but use primarily tried-and-tested approaches, which
strike a balance between objectivity and applicability. While
the ME method has found some application in hydrogeology
(Woodbury and Ulrych, 1993), most studies rely on using flat
or extremely wide distributions over some parameter range
derived from the literature (Woodbury and Ulrych, 1996, 2000;
Marchant and Lark, 2007; Diggle and Ribeiro, 2007; Murakami
et al., 2010; Laloy et al., 2013; Shi et al., 2014; Geiges et al.,
2015; Mara et al., 2017; Hayek et al., 2018). Unfortunately, this
procedure is not as harmless as often perceived, since neither
are ranges particularly objective nor are flat priors necessarily
uninformative (a property which is often used as a proxy for
objectivity) (Gelman et al., 2017). In general, current use of
objective and uninformative priors in hydrogeology is seriously
lacking compared to the standards established in statistics. To
give an example of the latter, let us consider so called reference
priors. These priors are based on the idea to systematically
minimize the impact on the inference. If properly done, the
results would then be dominated by the data alone (Bernardo,
1997). Another example is the use of the data themselves to
determine the best prior. This method is called empirical Bayes
(Carlin and Louis, 2000; Malinverno and Briggs, 2004), since it
uses only the empirically available data for the inference. These
methods have been very successful in statistics due to their ease
of application and apparent objectivity (Valakas andModis, 2016)
but have been heavily criticized on theoretical grounds. The main
critique is that by using the data for both the likelihood and the
prior, empirical priors–and to a lesser extend reference priors as
well—use the data twice. This is a clear violation of the LP, which
is generally seen as a necessary element of Bayesianism (Lindley,
1987; Good, 2009b).

A final point concerns Bayesian decision theory. Including
this topic under challenges may seem strange given that the
Bayesian framework enjoys the best integration with decision
theory of any inferential framework. Beginning with the seminal
works of von Neumann and Morgenstern (1944) and Savage
(1954), Bayesianism has become the de-facto standard in modern
decision theory (Berger, 1985; Jeffrey, 1992; Bernardo and
Smith, 2000; Robert, 2001; Koehler and Harvey, 2004; Baron,
2004; Parmigiani and Inoue, 2009; Gilboa, 2009). It should
consequently be one of its biggest assets. Alas, that is not what
we see. Instead, very little effort has been devoted to connecting
Bayesian inference with any of the established models from
decision theory. To substantiate this pessimism, we simply refer
here to the review of Tartakovsky (2013), who gives an excellent
overview of this topic yet still fails to find more than a handful of
studies, which apply Bayesian decision theory to hydrogeology.
As explained above, this lack is of little consequence for the
specific topic of uncertainty analysis. It is, however, clearly a
challenge for Bayesian inference in general. Looking at Table 1,

current practice means to only implement the first and second
step out of all three. While not the focus of this manuscript, we
opine that a full appreciation of the Bayesian framework will only
become a reality once all its elements are common knowledge and
regularly applied.

3. WHAT KIND OF UNCERTAINTIES ARE
WE TALKING ABOUT

To organize the different forms and sources of uncertainties, a
wide range of often conflicting notations is used in the literature
(Hoffman and Hammonds, 1994; Hofer, 1996; Walker et al.,
2003; Brown, 2004; Carrera et al., 2005; Refsgaard et al., 2007;
Kwakkel et al., 2010; Biegler et al., 2010; Refsgaard et al., 2012;
Guillaume et al., 2012; Tartakovsky, 2013; Caers et al., 2014;
Bond, 2015; Enemark et al., 2019). In the following, we are going
to describe and contextualize these notations using the formalism
established above.

3.1. Understanding Uncertainties Using the
Framework of Bayesianism
A common approach is to separate uncertainties into epistemic
and aleatoric uncertainties (Kiureghian and Ditlevsen, 2009;
Beven and Young, 2013; Bond, 2015). As already explained above,
all uncertainties in Bayesianism are necessarily epistemic and
aleatoric uncertainties simply do not exist in this framework.
In our opinion, this distinction can make sense for practical
applications because, due to often highly non-linear processes,
reality always has a tipping point—sometimes sudden, sometimes
more gradual—beyond which the additional collection of data
becomes too costly to be reasonably entertained. Identifying
such tipping points is important for any engineering task in
order to estimate sensible directions for the additional data
gathering. This notion is often implicitly confirmed by authors
who otherwise seem to argue for the physical presence of aleatoric
uncertainty within macroscopic phenomena. Fox and Ülkümen
(2011) for example admit as much when saying "Aleatory
uncertainty is attributed to outcomes that for practical purposes
cannot be predicted and are therefore treated as stochastic".
Another situation, where the use of aleatoric uncertainty seems
justified, is in the presence of so-called statistical uncertainty
(Beven and Young, 2013). Thismeans that the statistical variation
of a given population, say, the conductivity values of an aquifer,
puts an “inherent” limit on how much the uncertainty can be
reduced. From a Bayesian perspective, such reasoning is simply
false. Kiureghian and Ditlevsen (2009), for instance, articulate
this problem when stating that “The distinction between aleatory
and epistemic uncertainties is determined by our modeling
choices.” To illustrate this point and get at the root of this
prevailing misunderstanding, let us look at the already used
example of conductivity values of an aquifer. Using, e.g., the
whole aquifer as the population, there is indeed an intrinsic limit
of how much the uncertainty can be reduced through sheer data
collection. It would, therefore, seem that this uncertainty fits the
above definition of being aleatoric. However, as Kiureghian and
Ditlevsen (2009) pointed out, there is no metaphysical reason
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to model the whole aquifer as a single statistical population. If
enough data are collected, the aquifer can easily be split up into,
say, its hydrofacies, each of which would now have a much-
reduced statistical uncertainty. This process of fine graining our
statistical model, depending on the amount of data, can be
repeated ad infinitum, which shows that no statistical variation
is ever intrinsic to reality but only determined by our model.
The last class of examples, which are often used to demonstrate
aleatoric uncertainty are actually cases of deep or Knightian
uncertainty (Fox and Ülkümen, 2011; Beven and Young, 2013).
Deep uncertainty is certainly an important and even dominant
form of uncertainty in everyday situations. However, as explained
above, it should be modeled by the Dempster-Shafer framework
and treating it within a probabilistic context is necessarily
error prone. In summary, aleatoric uncertainty, as used in the
literature, is an inconsistent mixture of several distinct concepts,
with varying levels of usefulness.

The second differentiation is to separate uncertainties into
inferential and predictive uncertainties. Within Bayesianism,
these uncertainties are simply defined via Equations (1) and
(2), respectively. This means that the inferential uncertainty
is the DKL of the posterior vs. the prior distribution, whereas
the predictive uncertainty is given as the DKL of the predictive
distribution with the data vs. without them.

Another important differentiation is to separate uncertainties
into input and parametric uncertainties (Refsgaard et al., 2012;
Tartakovsky, 2013). Within the context of Bayesianism, input
uncertainty is simply the uncertainty that is passed down from
receiving nodes in a Bayesian network. This means, the input
uncertainty of a given node is the combined uncertainty of
its parent nodes. On the other hand, parametric uncertainty is
uncertainty in the parameters θ of the used parametric model
and is therefore identical to the inferential uncertainty given by
Equation (1).

The last concept to be discussed is the topic of structural and
conceptual uncertainty. Both these terms are used in sometimes
overlapping and sometimes conflicting ways (Refsgaard et al.,
2012; Tartakovsky, 2013; Enemark et al., 2019). In general,
it is not even clear whether these two terms do differ in
meaningful ways. From a Bayesian perspective, both refer to the
necessary approximation of the possibility space � by a lower-
dimensional parametric subspace 2. Since describing �, e.g., the
conductivity field of a real-world aquifer, in full detail is both
impossible, due to the scarcity of data, as well as numerically
intractable, such approximations will always be necessary. From
our perspective, it can be beneficial to use two different terms in
order to distinguish between the uncertainty expressed between
the different parametric models, called structural models in
the following, and the uncertainty being expressed within any
such given structural model. In the following, we will focus on
the latter and use the term structural uncertainty to describe
this category.

Having used the Bayesian framework to put the different
forms of uncertainty into a proper context, we will finish
this section by ranking these different forms according to
their relevance for hydrogeological modeling. Since such a
ranking is strongly dependent on the context, we will shortly

discuss each form individually. First, parametric uncertainty is
doubtless one of the dominant forms regardless of the situation.
Bayesian inference is perfectly suited to handle it, provided
that proper priors are provided. Structural uncertainty is also
very important, due to the often-pronounced spatial pattern of
many aquifers. Handling this form of uncertainty as well as
structural modeling in general is comparably underdeveloped.
Instead, structural uncertainty is often recast as a form of process
uncertainty, in particular in the case of transport processes
(Neuman and Tartakovsky, 2009). While such alternative process
models may be important for pure modeling purposes, we
are very skeptical about their use in uncertainty analysis. In
addition to this, the parameters of such models are often pure
convenience parameters and they are difficult or impossible
to condition on point measurements. As mentioned above,
conceptual uncertainty is not going to be the focus of this paper.
Instead, we are going to describe in the following the range of
structural models, which are used in hydrogeology and try to
identify the most relevant paradigms. Finally, input uncertainty
is technically not part of hydrogeology since the uncertainty is
passed down from the parent nodes of the Bayesian network.
This is quite apparent in case of groundwater recharge, where
the input uncertainty is the accumulated uncertainty of the
meteorological, land surface, and soil compartments of a complex
hydrological model.

3.2. On the Role of the Structural Model
At this point, we have identified structural and parametric
uncertainty as the most relevant categories of hydrogeological
uncertainty. While in theory both are of similar importance,
the way to handle them in practice is very different. Parametric
uncertainty can be reduced by collecting more data and is
primarily a question of data acquisition. On the other hand,
structural uncertainty is connected to the model for the
subsurface heterogeneity itself. It is therefore much harder to
quantify, which has wide ranging ramifications for uncertainty
analysis. To investigate this problem in more detail, we will first
present and discuss the most common paradigms for generating
subsurface structures.

The most famous of these paradigms is the Gaussian process
(GP) model, also known as Multivariate Gaussian or a Gaussian
random field (Rasmussen and Williams, 2006). In its basic form,
a GP is a very parsimonious model and can therefore be applied
in situations where only few data are available, as often the case
in hydrogeology. In addition, a GP is hierarchical by nature
and therefore scales well with the amount of data available, i.e.,
the dimensionality of 2 can be arbitrarily matched with the
amount of data available for the inference (Gelfand and Schliep,
2016). However, employing a GP as the structural model for a
conductivity field makes a number of strong assumptions about
the properties and characteristics of the conductivity field, some
of which have been strongly criticized (Gómez-Hernández and
Wen, 1998; Zinn and Harvey, 2003; de Marsily et al., 2005;
Linde et al., 2015). The most important of these criticisms
concerns the inability of GPs to reproduce long-ranging high-
conductivity structures, which are reported to exist in many real-
world aquifers (Abelin et al., 1991; Zheng and Gorelick, 2003;
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Kerrou et al., 2008). As a result, using a GP as the structural model
for an aquifer will lead to a failure to (i) detect the presence of
such features as well as (ii) to predict certain behaviors of, say,
break-through curves (Heße et al., 2015; Savoy et al., 2017).

To improve on some of the limitations of GPs, truncated
pluri-Gaussian models have been developed (Le Loc’h and
Galli, 1997; Galli et al., 1994; Emery, 2004; Armstrong et al.,
2011). These methods can be seen as an extension of the
Gaussian paradigm by embedding Gaussian SRFs within a
larger hierarchical framework. Here, hierarchy means that the
Gaussian SRFs are used to create a larger spatial structure. This
larger structure is typically representing distinct hydrogeolocial
units, like hydrofacies or lithofacies. Despite some success in
recent years (Emery, 2007; Mariethoz et al., 2009; Serrano
et al., 2014), their overall geological realism has remained
limited, and alternative paradigms have continued to attract
considerable attention.

Surface-based modeling is one of these other paradigms
(Caumon et al., 2009), often implemented in terms of implicit
surfaces (Calcagno et al., 2008; Chilés et al., 2004). Although not
particularly suited for modeling intricate structures and low scale
heterogeneity, this paradigm provides a realistic representation
of the main geological structures and allows to integrate a good
range of information, including geological data (contact points,
surface orientations, faults) but also information coming from
geophysical surveys.

Geological structures can also be represented as geometrical
objects using object-based models (Koltermann and Gorelick,
1996). Object-based method are mainly based on geometrical
considerations about the expected shapes.

Process-based methods on the other hand arguably provide
the most realistic representation of real word structures
(Koltermann and Gorelick, 1996). Software implementations of
this paradigm are available both as commercial and academic
releases, and for unconditional simulations the computational
costs are acceptable. Nevertheless, as is the case for object-based
methods, process-based methods have difficulty in honoring
all the observed conditioning data, which puts some limit on
their applicability.

The last, modeling paradigms discussed here are the
multiple-point statistic (MPS) based techniques (Guardiano and
Srivastava, 1993; Strebelle, 2002; Mariethoz and Caers, 2014). In
contrast to geostatistical methods based on two-point statistics,
these methods allow to reproduce more realistic structures,
which better represent important features observed in real
world aquifers like connectivity. Computational costs remain
relatively high compared to other paradigms. Nevertheless,
MPS simulation algorithms intrinsically honor all the observed
conditioning data, and the flexibility of the technique allows for
the incorporation of information coming from different sources,
in a straightforward way.

Together, these paradigms form the basis of most of
the models used for generating subsurface heterogeneity.
In addition to the properties already mentioned, they also
differ in how much they are amendable to a Bayesian
framework (Table 2). The Gaussian paradigm is very well-suited,
since most of its parameters are simple statistics of typical

hydrogeological variables (e.g., conductivity, porosity, storativity
etc.). Consequently, there exists a direct way to derive these
parameters from real-world measurements. The truncated pluri-
Gaussian paradigms scores lower in this regard since a crucial
feature of this method is the derivation and application of the
truncation rule. These rules usually ought to come from expert
elicitation but little to no guidelines exist on how to formalize
this process. The surface-based paradigm fares much better in
this regard since the inference of subsurface structures is able
to draw on observable features of the subsurface. In fact, the
possibility to frame these paradigmswithin a Bayesian framework
was already explored by Wellmann et al. (2018) and de la Varga
et al. (2018). Next is the object-based paradigm, where quite often
objects are drawn based on purely geometrical considerations.
It is therefore not straightforward to use this paradigm in a
Bayesian framework. Nevertheless, object-based methods can
profit from the statistics about the morphological attributes of
real-world geological objects (Gibling, 2006; Colombera et al.,
2012). Process-based models, on the other hand, are built on
a plausible physical model by mimicking the geological genesis
of the subsurface. However, the parameter of these models are
usually pure convenience parameters making the derivation of
prior PDFs subjective. The last paradigm discussed above are
MPS, which is not without problems from a Bayesian perspective.
However, its overall aptitude is arguably higher than the two
former paradigms. First of all, realizations of MPS models
are easy to condition on point measurements, which is an
important feature. Looking at the generating mechanism itself,
we see that its parameters are simple convenient parameters that
are not directly connected to physical principles. Despite this
clear drawback, MPS realizations are based in training images,
which means the method is based on observable features of
the subsurface.

In conclusion, we would argue that two of the above presented
paradigms stand out as the most viable candidates for Bayesian
uncertainty analysis. First, the Gaussian paradigm, which scores
high on almost every metric except geological realism (see
Table 2). While this is only one point of many, it is arguably the
most important one. At the same time, GPs score so high on the
other metrics, in particular its wide use, that it should not be
excluded. Furthermore, GPs are good candidates for subdomain
models within a larger hierarchical modeling framework and
can consequently form an important component of a larger
and more realistic framework. The second relevant paradigm is
MPS, which, in some sense, can be placed on the other end of
the spectrum of the paradigms presented here. This is to say
that models based on MPS have a high degree of geological
realism but suffer from a lack of ready-made software tools, that
they are comparably unknown to practitioners and that they are
computationally demanding. However, both paradigms have the
ability to incorporate a variety of data sources and the generation
of heterogeneous structures is based on observable characteristics
of the subsurface. In addition, if the MPS framework is used to
generate only the categorical SRF of the different hydrogeological
units, it can be seamlessly integrated with the Gaussian paradigm.
With these two candidate paradigms in mind, we will continue
our discussion on Bayesian uncertainty analysis.
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TABLE 2 | Overview of the different paradigms for sub-surface structure generation applied in hydrogeology.

Gaussian Truncated Surface-based Object-based Process-based Multi-point

process pluri-Gaussian models models models statistics

Software tools Very high Low Low Low Low Low

Realism Very low Low Moderate High Very high Very high

Comp. costs Low Moderate Moderate High High Very high

Math. theory Very high Moderate Moderate Very low Very low Very low

Versatile data High High Very high Very low Low High

Bayesian High Moderate High Low Low Moderate

4. TOWARD A DATA-DRIVEN
UNCERTAINTY CHARACTERIZATION

As we have discussed earlier, Bayesianism is not free of
practical and theoretical problems. Of these, the question of
prior derivation was presented as the most pressing, with no
universally accepted guideline for prior derivation existing in the
literature. In this last part of the manuscript, we are going to
lay out the current challenges and explain a possible solution by
using data-driven priors.

4.1. Putting Prior Derivation on Solid
Grounds
In this paper, we want to make the case for combining aspects
of objective Bayesianism with frequentist reasoning (Rubin,
1984; Bayarri and Berger, 2004; Little, 2006). While we fully
agree that objectivity is an important goal in any scientific
or engineering enterprise, we do not think that this needs to
be achieved by minimizing the impact of the prior as often
argued. On the contrary! Priors can have both a strong impact
on the analysis and being objective. This can be achieved if
these priors are derived from well-defined empirical frequencies
(see, e.g., Li et al., 2017 for a rare example for hydrogeology).
Hydrogeological variables like conductivity and porosity are
physical properties or can at least be soundly derived from them
(Di Palma et al., 2017). As a result, their parametric and structural
uncertainties can be calibrated against observed frequencies. This
feature, that the parameters of stochastic hydrogeology relate
to physical quantities, makes this mixture of Bayesian analysis
and frequentist reasoning the natural choice for prior derivation.
This notion has, e.g., been voiced by Gelman (2008) when saying
that a hardcore Bayesian is someone “who would apply Bayesian
methods to all problems” whereas a reasonable person “would
apply Bayesian inference in situations where prior distributions
have a physical basis or a plausible scientific model.”

Such basis should be a formalized knowledge base, i.e., a
database DB = (Xi,Zi)i≤n, containing all investigated and
cataloged cases. In the field of hydrogeology, these cases should
be identified with investigated and cataloged sites. Furthermore,
n is the number of these sites, Zi are the measurements of
the target variable at each site i and Xi = (X1

i , . . . ,X
m
i ) is

a vector containing the m cataloged characteristics/features of
each site. In hydrogeology, such characteristics may include
latitude, longitude, climatic properties, rock type, environment
type, physiographic properties etc.

4.1.1. Prior Derivation Using Machine Learning
To derive prior distributions from an established database DB,
a large variety of techniques can be used, including machine
learning. Here, for brevity, we illustrate only a single example of
these techniques, namely supervised feature learning (Figure 2).
As described above, the used database DB contains, next to the
measurements, the features associated with each site. Feature
learning would allow to determine the most predictive features
as well as the functional dependency for any give site. The result
would be a function that maps the observable features of a
site to the distribution of its conductivity values (or any other
target variable). Common machine learning methods that can
tackle such tasks include Random Forests (Breiman, 2001; Segal
and Xiao, 2011), Gradient Boosting Trees (Elith et al., 2008),
or Bayesian Additive Regression Trees (Chipman et al., 2010;
Pratola et al., 2014; Kapelner and Bleich, 2016).

4.1.2. Prior Derivation Using Similarity-Weighted

Frequencies
Machine learning tools like neural networks are well-established
in data science. However, they can be extremely computationally
expensive, need large amounts of data and the resulting models
are notoriously hard to interpret.

Recent developments in the field of epistemology have
provided a sound mathematical procedure to formalize the
intuitive notion about how different cases can be made amenable
to frequentist reasoning and therefore provide the basis for
combining aspects of frequentism and Bayesianism (Billot et al.,
2005; Gilboa et al., 2006, 2010). The basic idea behind it can be
easily illustrated (Figure 3). Given a similarity function s, more
on this later, the probability of the target variable at a new site
n+ 1 can be expressed as

p(Zs
n+1) =

∑

i≤n s(Xi,Xn+1)p(Zi)
∑

i≤n s(Xi,Xn+1)
. (5)

Since Equation (5) strongly depends on the specification of the
similarity function s(Zi,Zj), Gilboa et al. (2010) propose a simple
best fit approach to find such a function, as the sopt(Zi,Zj)
that best explains the given database. To handle the curse of
dimensionality, a parametric model should be used. Following
again Gilboa et al. (2010), we use an exponential model here for
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FIGURE 2 | Schematic of prior derivation machine learning tools.

FIGURE 3 | Schematic of prior derivation using similarity-weighted frequencies.

demonstration

s(Xi,Yj) = exp



−

√

∑

j≤m

wj(xj − x
′j)2



 . (6)

At this point, the task of finding the prior distribution for a target
variable has first been transformed into finding s, and then—
by virtue of a parametric model—transformed into finding the
appropriate weights w = (w1, . . . ,wm). Gilboa et al. (2010)
propose a simple best-fit approach, i.e., finding wopt such that
the sum of squared errors between all elements in the database is
minimized. The principle behind this similarity function and the
way it is used to estimate probability is identical to kernel density
estimation but extended to the feature space of our database.
The choice of the name similarity function, instead of kernel,
was motivated by Gilboa et al. (2010) to emphasize the epistemic
nature of the procedure.

4.1.3. Prior Derivation Using Bayesian Hierarchical

Modeling
Although the above procedure is axiomatically elegant, it is not
without flaws. One problem is that the used databasemight be too
small to contain a relevant number of observations. Basing the
prior on such a database would lead to attribute a zero probability
to structures that have not yet been cataloged. Another problem
is the incorporation of data on different scales like summary
statistics of certain sites.

Such challenges can be handled by Bayesian hierarchical
modeling, which provides a natural way to partially pool data
from different sites by incorporating the structural dependencies
between the data points. In hydrogeology, it is not immediately
clear how data from different sites can be combined and jointly
used for the inference. Hierarchical models facilitate a partial
pooling by first assimilating data from each site independently
and, in a next step, modeling each site as elements of a population
of sites (Figure 4). Bayesian statistics is easy to adapt to such
schemes by modeling the parameters of each site as being
conditional on the statistics of the upper levels.

One drawback of Bayesian hierarchical modeling, compared
to a similarity weighted approach, is that the prior distribution
of a new, as of yet, unexplored site, is simply a random sample
from all possible sites and therefore has a comparably large
uncertainty. Narrowing down the uncertainties could be done
by narrowing down the number of used sited by restricting the
analysis to similar sites, only. Yet, this would necessitate the
existence of a huge database, which we currently do not have
(Cucchi et al., 2019).

4.2. Hydrogeological Data Science in the
Context of Bayesian Uncertainty Analysis
At this point, it should become clear that, irrespective of the
details of the aforementioned approaches, the performance of
data-drivenmethods is not only determined by the sophistication
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FIGURE 4 | Schematic of prior derivation using a Bayesian hierarchical model.

of the used method but is equally dependent on the amount
and kind of data being used (Halevy et al., 2009). This means
that a simple algorithm, having a lot of data, can easily
outperform a highly complex one, with only a modest amount
of data. Increasing the amount of available data is consequently
of similar importance compared to the development of ever
better algorithms.

In general, data generation in hydrogeology is quite costly
compared to, say, hydrology, meteorology or land-surface
modeling. To counter such challenges, much has been invested
in the development and deployment of cost-effective methods
for subsurface characterization. As a result, the total amount of
data being collected every year is quite substantial. However,
collecting these data and making them available to practitioners
remains difficult. To demonstrate why this a problem, we can
use, e.g., the schematic proposed by Rogati (2017). Using the
well-known hierarchy of human motivation (Maslow, 1943),
Rogati (2017) promotes a hierarchy of needs in data science.
According to this schematic, hydrogeology has focused most of
its effort only on the first level of this hierarchy, where she puts
data collection, data storage and data transformation. However,
already at the second level, where she puts routines, protocols and
infrastructure for moving and storing the data, hydrogeology is
comparably underdeveloped. Given that the hierarchy proposed
by Rogati (2017) has 6 levels in total, we can confidently state
that hydrogeology has a long way to go before having a viable
ecosystem for modern data-driven analysis.

This is not to say that there have not been efforts
to provide standardized procedures for sharing and storing
data in hydrogeology (Boisvert and Brodaric, 2011; Brodaric
et al., 2018; Wojda et al., 2010). However, these data
collection initiatives focus almost exclusively on indirect
measurements like hydraulic heads or are restricted to some
specific measurement sites. In contrast, the efforts to collect
direct hydrogeological measurements have been so far been
rather modest. For example, the largest open-access databases
on the topic of hydraulic conductivity is the World-Wide
HYdrogeological Parameter DAtabase (WWHYPDA, Comunian
and Renard, 2009), which contains a little bit over 20.000
measurements from approximately 50 different sites. This
does only reflect a tiny fraction of the total amount of

data that has been collected on this topic and is not
even close to what anyone would label as big data. This
situation means that the field of hydrogeology is currently
seriously under equipped for the deployment of any data-driven
method in general and the derivation of data-driven priors
in particular.

Focusing on the topic of data-driven priors, we can state
that only a minimum number of tools currently exists.
The WWHYPDA provides a modicum of data on hydraulic
conductivity, which can be used to determine parametric
uncertainty for a given site (Cucchi et al., 2019). However,
the amount of data for other variables (e.g., porosity) is
much lower and currently not sufficient for use in a Bayesian
context. Concerning structural uncertainty, the situation is
even less promising. Since the measurements cataloged in
the WWHYPDA do currently not contain spatial coordinates,
it is not possible to determine simple two-point statistics
like a variogram or covariance function. This means that
even for a simple paradigm like Gaussian SRFs, there are
no databases from which prior distributions for, say, the
parameters of a variogram function can be derived. It should
come as no surprise, that the situation for more complex
structural models is no better. In this last portion of the
paper, we would therefore like to present a list of challenges
as well as possible solutions for the field of Bayesian
uncertainty analysis.

4.2.1. Parametric Uncertainty
Currently, the amount of data contained in WWHYPDA
barely allows one to tackle the challenges of parametric
uncertainty. The modest amount of data represented in
WWHYPDA is probably caused by the lack of user contributions
and/or policies that encourage the systematic and central
publication of hydrogeological measurements. Probably, the
best way to quickly populate databases like WWHYPDA
with a sufficient amount of data would be to incorporate
data spread in regional/national repositories, but also strongly
interact with boards of the main scientific journals and set
up a tighter interaction between authors and open data
collection initiatives.
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4.2.2. Structural Uncertainty (Gaussian Process

Paradigm)
A Gaussian process is the simplest paradigm that can be used to
describe structural uncertainty, with spatial structures defined by
two-point statistics through variograms or covariance functions.

To the best of the authors’ knowledge, there is no widely
available open-source database, which provides practitioners
with a catalog of either estimated variogram functions or
measurements that allows one to estimate them.

The abilities of the WWHYPDA could be expanded to
that purpose with only a modest amount of effort. Compared
to its current implementation, only the coordinates of the
measurements need to be added as a feature.

4.2.3. Structural Uncertainty (Multiple-Point Statistics

Paradigm)
In the text above, multiple-point statistics was identified as
the overall most promising paradigm to realistically represent
structural uncertainty. Some efforts have been made to share
repositories of training images [see for example (2014),
companion site of the book Mariethoz and Caers, 2014], in
some cases focusing on some specific environments (Pushpalatha
et al., 2008). In addition, other efforts were made to create
database of analogs, with initiatives mainly sponsored by
oil companies like the SafariDB (2019a), the Sedimentary
Analogs Database and Research Consortium (2019b), the Fluvial
Architecture Knowledge Transfer System (Colombera et al.,
2012), CarbDB (Jung and Aigner, 2012), and WODAD (Kenter
and Harris, 2006). In these cases, the access to the full
functionalities of the database is very often restricted to the
partner institution/companies. Therefore, when talking about
open-access databases, the available resources are quite limited.
In practice, a set of TIs that can even be remotely called
representative of earths subsurface structures simply does not
exists, and the efforts made by consortium sponsored or
private companies are often governed by very restrictive access
policies. As a result, the task of building up an open-access
knowledge base for Bayesian structural uncertainty analysis,
or any other data-driven modeling efforts, has to start from
scratch. Within the scope of this manuscript, we can neither
detail the specific architecture of such a knowledge base nor
explain the necessary steps to create one. We will, however,
try to formulate a set of desiderata that such a data base
should meet.

First, the data base should contain a representative sample of
the structures encountered in the subsurface. Such a desideratum
may sound obvious w.r.t. any statistical analysis. It does, however,
need special attention due to being somewhat vague and elusive.
For example, particularly in the case of three-dimensional case
studies, TIs could come from high-resolution reconstructions
of aquifer analogs (Bayer et al., 2011; Comunian et al., 2011;
Bayer et al., 2015), but also be the result of a more or
less complex simulation with object-based or process-based
methods. Therefore TIs, in particular within a Bayesian context,
can represent very different entities depending on how they
were created.

Second, to derive prior distributions, the most predictive
features of the cataloged sites must be reported as well.
This desideratum is again somewhat weak, since it is not a
priori clear what features of a site are most predictive of its
subsurface structure.

In case a database meeting these desiderata becomes
successful, the algorithm for prior derivation has to be adapted
to the specifics of the MPS paradigm. As already discussed
above, recasting this paradigm in a Bayesian framework is not
straightforward, since the parameters for generating random
realizations are derived ad-hoc and cannot, in general, be
exchanged between different workflows. So, instead of deriving
prior distributions over some parameters, the prior distribution
should be defined over the TIs themselves. In this framework,
one could provide a given prior distribution to each TI, for
example based on the ranking procedure proposed by Pérez
et al. (2014) computed using a portion of the available data.
Then, uncertainty could be assessed by distributing the number
of realizations for each TI proportionally to the prior computed
in the previous step.

Probably, embedding or strongly connecting a database
of TIs within a structure like WWHYPDA, as argued by
Comunian and Renard (2009), would improve its usefulness,
because facies codes of categorical TIs could be directly
linked to parameter distributions. Moreover, if included in
the WWHYPDA structure, TIs could be also organized in a
more efficient and flexible way within the provided catalog of
hydrogeological environments.

5. CONCLUSIONS

In this manuscript, we made the case for a unified data-driven
framework for hydrogeological uncertainty analysis. Following
Pearl (1988b), we attempted this by first identifying the most
suitable theory for such a framework, motivating its use,
explaining its properties, identifying the current challenges,
showing what kind of approximations needed to bemade tomake
the framework viable, and finally detailing a road map to fill the
gaps which currently exist.

As the ideal theory for such a unified framework, we have
argued for Bayesianism. This was done by contrasting the
Bayesian framework with its most relevant competitors. In
the realm of uncertain reasoning, these competitors include
fuzzy as well as Dempster-Shafer reasoning, whereas in the
realm of probabilistic reasoning, the main competitor is the
frequentist framework. While all of these frameworks have their
merits, the Bayesian framework is the only one combining
a sound epistemology with wide-spread use and application.
We then explained the main features, as well as challenges, of
this framework and how it relates to the specifics of the field
of hydrogeology.

With this foundation, we proceeded to contextualize the
different forms of uncertainty, used in the literature. Of these
forms, we identified structural and parametric uncertainty as the
two most relevant. Parametric uncertainty is mainly a question
of data collection, data preparation, and data dissemination. In
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contrast, structural uncertainty is equally a conceptual challenge,
i.e., the hydrogeological community is still lacking a paradigm
for generating subsurface structures, which is widely accepted
and used. To make this point, we reviewed the most common
of these paradigms and discussed their most salient features.
Special attention was put on their compatibility with a Bayesian
framework. We tentatively identified two paradigms as the most
relevant: Gaussian multivariate random fields as well as multiple-
point statistics. While the Gaussian paradigm is mathematically
elegant, it suffers from a lack of geological realism. On the
other hand, the multiple-point statistics paradigm is very
promising due to its conceptual clarity. To provide the data
for the needed prior distribution, training images are the
natural choice.

Finally, we make the point that the field of hydrogeology
needs to increase its efforts in order to provide a large open-
access databases with direct hydrogeological measurements. The
examples given here are derived from specific applications,
i.e., Bayesian uncertainty analysis, but the general point is
independent of such concerns. As long as virtually all efforts
are focused on the measurements themselves, we remain stuck
on the first level of the hierarchy described by Rogati (2017).
Without investing at least, a modicum of work into reaching
the second level, all the advances of modern data science will
remain restricted to extremely myopic and small data sets, at best,

and completely out of reach, at worst. From our perspective, the
reasons for the inability of our community to “move up” remains
somewhat of a mystery. After all, managing and maintaining
a database is easy compared to the sophisticated network of
measurement operations that are managed worldwide, and a
minor redirection of resources from Level 1 to Level 2 of the
schematic depicted by Rogati (2017) would make a big difference.
In fact, we can hardly think of a more impactful way of how
to spend one’s money when trying to improve hydrogeological
data science. We therefore close this paper with a call for such
an initiative.
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