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Spectroradiometric satellite observations of the ocean are commonly referred to as

“ocean color” remote sensing. NASA has continuously collected, processed, and

distributed ocean color datasets since the launch of the Sea-viewing Wide-field-of-view

Sensor (SeaWiFS) in 1997. While numerous ocean color algorithms have been developed

in the past two decades that derive geophysical data products from sensor-observed

radiometry, few papers have clearly demonstrated how to estimate measurement

uncertainty in derived data products. As the uptake of ocean color data products

continues to grow with the launch of new and advanced sensors, it is critical that

pixel-by-pixel data product uncertainties are estimated during routine data processing.

Knowledge of uncertainties can be used when studying long-term climate records, or

to assist in the development and performance appraisal of bio-optical algorithms. In this

methods paper we provide a comprehensive overview of how to formulate first-order

first-moment (FOFM) calculus for propagating radiometric uncertainties through a

selection of bio-optical models. We demonstrate FOFM uncertainty formulations for the

following NASA ocean color data products: chlorophyll-a pigment concentration (Chl),

the diffuse attenuation coefficient at 490 nm (Kd,490), particulate organic carbon (POC),

normalized fluorescent line height (nflh), and inherent optical properties (IOPs). Using

a quality-controlled in situ hyperspectral remote sensing reflectance (Rrs,i) dataset, we

show how computationally inexpensive, yet algebraically complex, FOFM calculations

may be evaluated for correctness using the more computationally expensive Monte

Carlo approach. We compare bio-optical product uncertainties derived using our test

Rrs dataset assuming spectrally-flat, uncorrelated relative uncertainties of 1, 5, and 10%.

We also consider spectrally dependent, uncorrelated relative uncertainties in Rrs. The

importance of considering spectral covariances in Rrs, where practicable, in the FOFM

methodology is highlighted with an example SeaWiFS image. We also present a brief

case study of two POC algorithms to illustrate how FOFM formulations may be used

to construct measurement uncertainty budgets for ecologically-relevant data products.

Such knowledge, even if rudimentary, may provide useful information to end-users when

selecting data products or when developing their own algorithms.
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INTRODUCTION

NASA has continually collected, processed, archived, and
distributed global ocean color data since the launch of the Sea-
viewing Wide Field-of-View Sensor (SeaWiFS) in 1997. This
two decades-long multi-sensor data climatology continues to
provide unprecedented synoptic-scale insight into near-surface
oceanographic processes. Some of the satellite-derived variables,
such as chlorophyll-a pigment concentration Chl (mg m−3), are
considered as Essential Climate Variables (ECV) and are widely
used by the oceanographic community to study phytoplankton
ecology, marine biogeochemistry, and ecosystem responses to
climate change (IOCCG, 2008; McClain, 2009; Franz et al., 2017).

Following formal definitions outlined in the Guide to
Uncertainty in Measurement (JCGM, 2008), we can outline
the objective of ocean color remote sensing as, to measure
oceanographic quantities or measurands. We note that the
measurement procedure involves a number of mathematical
steps and assumptions that derive the measurand from sensor-
observed top-of-atmosphere radiances. Thus, a derived ocean
color data product is a result of measurement and should
always be treated as an estimate of the measurand which has
inherent uncertainty.

Quantifying uncertainty in derived ocean color data products
(i.e., measurands) is highly valuable, allowing end-users to: assess
if datasets are fit-for-purpose, assess if observed temporal change
is greater than uncertainty, assimilate uncertainties into climate
models, and assess consistency among sensors (Maritorena et al.,
2010; Gould et al., 2014). Additionally, a thorough understanding
of uncertainty sources within a model may help guide the
decisions of scientists when developing new satellite algorithms.

Themeasurement uncertainty (umeasurement), in an ocean color
data product, y, can be expressed as the following:

umeasurement(y) =
√

u2
data

(y)+ u2
model

(y), (1)

where umodel(y) represents uncertainties in y due to inherent
inaccuracies/limitations in the algorithm (e.g., model
coefficients), and udata(y) represents uncertainties in y due
to uncertainties in sensor-observed radiometry (data). In
this paper we focus on udata(y), that is, the propagation of
radiometric uncertainties through bio-optical algorithms. For
brevity, we shorten udata(y) to u(y) throughout this paper unless
otherwise stated.

For the ocean color community, much of our understanding
of measurement uncertainty in derived data products is sourced
from validation exercises using in situ datasets (Bailey and
Werdell, 2006; Antoine et al., 2008; Melin, 2010; Mélin et al.,
2016) or from Monte Carlo-type simulations (Wang et al.,
2005). We note that advanced statistical methodologies have
also emerged for predicting uncertainties in derived ocean color
products (Moore et al., 2009; Salama et al., 2009; Jay et al.,
2018). While validation studies remain critical for appraising
the absolute skill of an ocean color algorithm, such datasets
themselves have their own measurement uncertainty associated
with in situ observations (including uncertainties associated with
subpixel temporal/spatial/environmental variability). Monte

Carlo-type analyses are particularly useful for understanding
measurement uncertainty, however, these approaches can be
computationally expensive and are impracticable to implement
within pixel-by-pixel ocean color processing.

More recently, analytical first-order first moment (FOFM)
methods have been proposed that can directly propagate
radiometric uncertainty through an ocean color algorithm to
estimate derived data product uncertainty (Neukermans et al.,
2009; Salama et al., 2009, 2011; Lee et al., 2010; Maritorena et al.,
2010; Lamquin et al., 2013; Qi et al., 2017). These approaches
are based on the law of propagation of uncertainty according
to JCGM (2008). A FOFM methodology benefits from being
computationally efficient, thereby allowing it to be implemented
in pixel-by-pixel ocean color data processing software (Lamquin
et al., 2013). In addition, FOFM calculations can be used to
estimate the relative contribution of individual sources to total
measurement uncertainty.

Work presented here is the first comprehensive examination
of methods that can be used to estimate uncertainties in
NASA’s standard bio-optical data products. In this study we
aim to demonstrate the feasibility of using a FOFM uncertainty
framework to approximate ocean color data uncertainty in
derived data products. The FOFM method, which itself is an
analytical approximation, is first appraised by comparing FOFM-
derived uncertainties with Monte Carlo-derived uncertainties.
We demonstrate how this approach can be used as a method
to check the correctness of FOFM calculations. Second, using
FOFM propagation theory, we estimate uncertainty in derived
ocean color products given spectrally-flat, uncorrelated relative
uncertainties of 1, 5, and 10% in spectral remote-sensing
reflectances, Rrs,i (sr

−1). We also consider spectrally-dependent,
uncorrelated relative uncertainties in Rrs,i published by Hu
et al. (2013). Third, we consider how inclusion of covariances
affect uncertainty estimates. A sample SeaWiFS scene of the
Hawaiian Islands is used in this case study. Finally, we
demonstrate how the FOFM approach may be used to estimate
measurement uncertainty budgets. In our case study we consider
two algorithms for estimating particulate organic carbon (POC;
mg m−3), a key metric used to understand oceanic biomass and
the carbon cycle.

In this work, we utilize a high quality in situ hyperspectral Rrs,i
dataset that can be spectrally subsampled to match the spectral
characteristics of most existing and future ocean color sensors.
This includes NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem
(PACE) mission that is currently under development and will
carry the first dedicated hyperspectral ocean color sensor.

DATA AND METHODS

Bio-optical Algorithms and Data Products
The NASA Ocean Biology Data Archive and Active Distribution
Center (OB.DAAC) distribute a number of derived marine
data products in two separate data suites: (i) the standard
ocean color (OC) data product suite and, (ii) the inherent
optical properties (IOP) product suite. The OC suite comprises
established (legacy) ocean color data products that were
developed during the SeaWiFS (1997–2010) and Moderate
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TABLE 1 | Bio-optical ocean color data products.

Product name Product suite Symbol Units References

Chlorophyll-a pigment concentration* OC Chl mg m−3 O’Reilly et al., 1998; Hu et al., 2012b

Chlorophyll-a derived from band ratio – ChlBR mg m−3 O’Reilly et al., 1998

Chlorophyll-a derived from line height – ChlLH mg m−3 Hu et al., 2012b

Diffuse attenuation coefficient at 490 nm OC Kd ,490 m−1 Mueller, 2000

Particulate organic carbon OC POC mg m−3 Stramski et al., 2008a

Normalized fluorescent line height OC nflh mW cm−2
µm−1 sr−1 Behrenfeld et al., 2009

Absorption coefficient of total non-water components 443 nm IOP anw,443 m−1 Werdell et al., 2013

Absorption coefficient of phytoplankton at 443 nm IOP aφ,443 m−1 Werdell et al., 2013

Absorption coefficient of colored dissolved and detrital matter at 443 nm IOP adg,443 m−1 Werdell et al., 2013

Particulate backscattering coefficient at 443 nm IOP bbp,443 m−1 Werdell et al., 2013

*Note that NASA’s standard Chl product is a dynamic blend of ChlBR and ChlLH.

Resolution Imaging Spectroradiometer aboard Aqua (MODISA
2002–present) missions. The IOP suite comprises spectral
component absorption and backscattering coefficients derived
using the default configuration of the Generalized Inherent
Optical Properties (GIOP) algorithm framework (Werdell et al.,
2013). A selection of the OC suite and IOP suite products
were used in this study (Table 1). More comprehensive detail
of the bio-optical algorithms used to derive these data products
and their associated uncertainties are given in Appendices A–E
(Supplementary Material). We note that in this study the GIOP
used a spectral subset of our Rrs evaluation dataset (described in
section Evaluation Rrs Dataset) spanning 412–655 nm.

Modeling Bio-Optical Data
Product Uncertainty
In this study we used the analytical law of propagation of
uncertainty (JCGM, 2008) to propagate radiometric uncertainties
through models used to derive bio-optical quantities. We follow
the notation conventions outlined by JCGM (2008) where the
uncertainty of a measured quantity, y, is denoted as u(y) and is
the positive square root of the variance, u2(y). We note that y
is derived from a model, f, of N input quantities, xi. Following
(JCGM, 2008), for uncorrelated input quantities, u2(y) can be
calculated as:

u2(y) =

N
∑

i=1

(

∂f

∂xi

)2

u2(xi) (2)

where, u(xi) is the 1-σ uncertainty in the input quantity xi.
For our notation of spectral properties used in ocean color
remote sensing, subscripts i correspond to wavelength. In this
study, partial derivatives of target parameters were calculated
analytically, however, these could also be computed numerically.
For the situation where uncertainties of input quantities are
correlated, Equation 2 is extended to:

u2(y) =

N
∑

i=1

(

∂f

∂xi

)2

u2(xi)+ 2

N−1
∑

i=1

N
∑

j=i+1

∂f

xi

∂f

xj
u(xi, xj) (3)

where u(xi, xj)= u(xj, xi) denotes the estimated error covariance
associated with the quantities xi and xj. Comprehensive details
of partial derivative calculations for each bio-optical algorithm in
Table 1 are given in Appendices A–E (Supplementary Material).

Monte Carlo (MC) methods are routinely used to perform
sensitivity analyses as well as quantify model output uncertainties
(Refsgaard et al., 2007). In this study, we have utilized a
MC approach to appraise FOFM calculations. As the partial
derivative calculus within FOFM uncertainty estimates can be
complex, we have used MC-to-FOFM comparisons as a means
of checking calculations.

The MC estimates of uncertainties in this study were
computed as follows:

(i) A given bio-optical model, f, that derives an output y,
that is considered a function of n spectral remote sensing
reflectance bands, Rrs,i, is run 5,000 times.

(ii) Upon each iteration, each Rrs,i is perturbed by a factor 1r,i
which is randomly sampled from a Gaussian distribution
1r,i ∼N(0,u(Rrs,i)), in which the mean is zero and the
standard deviation, u(Rrs,i), is known or assumed. No
spectral correlations are assumed.

(iii) The MC simulation then generates a probability density
function (PDF) for y. From the PDF, the mean value, ŷ and
the standard deviation, σy, can be computed.

We note that the MC method captures non-linear effects and
thus we cannot always expect direct agreement between σ 2

y

and FOFM-derived u2(y). Indeed, even if a bio-optical model
contains weak non-linearities and MCmodel input uncertainties
are normally distributed, the number of MC iterations still needs
to be suitably large for σ 2

y to agree with u2(y).

Evaluation Rrs Dataset
To evaluate our FOFM uncertainty method, we used a
dataset of high quality hyperspectral Rrs,i spectra (N = 1124).
Hyperspectral radiometric measurements were collected in situ
during three different expeditions, representing a range of
oligotrophic to mesotrophic waters: the SABOR experiment
in the Gulf of Maine/North Atlantic/Mid-Atlantic coast (July–
August 2014); AE1319 in the North Atlantic and Labrador
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Sea (August–September 2013); and NH1418 in the Equatorial
Pacific (September–October 2014). A HyperOCR system (Sea-
Bird Scientific) deployed on a tethered profiler in “buoy mode”
was used to collect upwelling radiance, Lu,i (W m−2

µm−1

sr−1), and downwelling irradiance, Ed,i (W m−2), spectra during
deployments lasting ∼5min. During sample collection, the
instrument was allowed to drift far enough from the boat to avoid
the ship’s shadow.

The spectra were dark and tilt-corrected, and the upper and
lower 25th percentile of the Ed,i spectra were removed from both
Ed,i and Lu,i. The mean of the remaining spectra was used in
subsequent analysis, providing one spectrum per deployment,
and with uncertainties calculated as the standard deviation of
the same spectra used to calculate the mean (N.B. uncertainties
here represent only the experimental portion of the uncertainties,
and calibration bias has not been accounted for). The Lu,i
measurements were extrapolated to and across the air-water
interface to obtain the water-leaving radiance, Lw,i (Wm−2 sr−1),
which were then used to calculate remote-sensing reflectance
(Rrs,i), defined as:

Rrs,i =
Lw,i

Ed,i
(4)

The spectra were additionally corrected for Raman scattering
following methods in Westberry et al. (2013), which was
necessary to compensate for the scattering that water molecules
themselves can contribute to Lw,i, especially at the blue
wavelengths in very clear waters (McKinna et al., 2016). Finally,
the Rrs spectra were normalized to remove the angular effect of
the sun position in the sky relative to nadir, following methods
in Lee et al. (2011). For a more detailed description of the Rrs,i
calculations and processing, see Data and Methods section in
Chase et al. (2017). All hyperspectral Rrs,i used in this study are
shown in Figure 1.

Finally, each hyperspectral Rrs spectrum was spectrally sub-
sampled. The resulting multiband Rrs,i dataset had sixteen 10
nm-wide spectral bands centered on: 412, 425, 443, 460, 475, 490,

FIGURE 1 | Hyperspectral remote-sensing reflectances (N = 1124) used in

this study.

510, 532, 555, 583, 617, 640, 655, 665, 678, and 710 nm. This
multispectral subset spanned the visible domain and included
bands from both past and present NASA sensors (e.g., SeaWiFS
and MODIS).

Radiometric Uncertainties
Spectrally Flat Rrs Uncertainties
For NASA ocean color bio-optical algorithms, model input
quantities are typically remote sensing reflectances, Rrs,i (sr

−1),
which are derived from measured top-of-atmosphere radiances,
Lt,i (W m−2

µm−1 sr−1), via atmospheric correction (AC)
algorithms. Historically, a desirable science requirements for
NASA ocean color missions has been Rrs,i with relative
uncertainty of 5% (spectrally flat) or less (Hooker et al., 1992;
Hooker and McClain, 2000; McClain et al., 2004; PACE Science
Definition Team, 2018). Whilst not directly representative of a
true sensor (see section Spectrally-Dependent Rrs Uncertainties),
treating relative uncertainties in Rrs,i as spectrally flat is still
useful under circumstances where detailed knowledge of sensor
performance characteristics is limited, such as during pre-launch
scoping studies, to provide rudimentary uncertainty estimates.
In this study we first consider 5% relative uncertainty in Rrs,i
to compare FOFM-to-MC calculations. We next use the FOFM
method consider how spectrally flat relative uncertainties in Rrs
of 1, 5, and 10% impact estimated OC and IOP uncertainties.
Note, we treat spectrally flat relative uncertainties in Rrs of 1, 5,
and 10% as spectrally uncorrelated.

Spectrally-Dependent Rrs Uncertainties
We note that on-orbit uncertainties in Lt,i and Rrs,i have
previously been quantified for NASA’s SeaWiFS and MODISA
missions (Eplee et al., 2007; Hu et al., 2012a, 2013; Angal et al.,
2015). Whilst historically 5% has been the desired accuracy goal
for Rrs in the blue-green spectral range, work by Hu et al.
(2013) reported that relative uncertainties of Rrs,i for SeaWiFS
and MODISA increase monotonically with wavelength, and that
Rrs,i relative uncertainty also varies as a function of Chl, or
water-column optical complexity. To extend this study beyond
spectrally flat relative uncertainties, we utilized the relative
uncertainties for MODISA Rrs,i estimated for the North Atlantic
Ocean (see Table 2 of Hu et al., 2013). To estimate relative
uncertainty for a given Rrs,i spectra, we followed three steps: (i)
linearly interpolate tabulated relative uncertainties to match the
spectral resolution of our in situ Rrs,i dataset, (ii) estimate Chl
concentration using NASA’s standard OC algorithm, and (iii)
linearly interpolate the spectrally tabulated relative uncertainties
to estimate relative uncertainty for observed Rrs,i based on
the respective Chl concentration. Note, where estimated Chl
exceeded 0.2mg m−3 [beyond values reported by Hu et al.
(2013)] we linearly extrapolated tabulated relative uncertainties.
Figure 2 shows the spectral relative uncertainties in Rrs,i [sensu
Hu et al. (2013)] used in this study and how they vary
with Chl concentration. Note, spectrally-dependent relative
uncertainties in Rrs computed as a function of Chl were treated
as spectrally uncorrelated.
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FIGURE 2 | Relative uncertainties of Rrs varying with Chl concentration.

Original data taken from Hu et al. (2013) and interpolated to the multispectral

resolution used in this study.

Spectrally-Correlated Rrs Uncertainties
Our initial analyses treated Rrs spectral uncertainties as
uncorrelated, which in practice is an oversimplification. Indeed,
AC algorithms utilize near-infrared bands to make assumptions
about the contribution of atmospheric aerosols to Lt (Gordon
and Wang, 1994; Bailey et al., 2010). Thus, Rrs,i uncertainties
are inherently spectrally correlated. While much work has been
done to characterize radiometric uncertainties of NASA sensors
used for ocean color (Eplee et al., 2007; Hu et al., 2012a, 2013),
few studies have quantified off-diagonal elements of the variance-
covariance matrices for top-of-atmosphere radiance, VLt , and
remote sensing reflectances, VRrs, respectively. We note that
while beyond the scope of this work, parallel efforts are underway
by the research community to derive pixel-by-pixel estimates of
u(Rrs,i) by propagating radiometric uncertainties through ocean
color atmospheric correction algorithms (Gillis et al., 2018).

Recently, Lamquin et al. (2013) demonstrated a methodology
to estimate VLt for MERIS data and propagate these through
ESA’s clear water branch AC algorithm and into bio-optical data
products. Critically, Lamquin et al. (2013) demonstrated that
ignoring covariances can lead to overestimated data product
uncertainties. In this study, using a similar methodology to
Lamquin et al. (2013), we estimate VLt for SeaWiFS and
then using a numerical approximation estimate VRrs. A full
description of this method can be found in Appendix F
(Supplementary Material). We note that while our estimates
of VRrs are somewhat rudimentary, they are still useful for
demonstrating the importance of including covariance terms in
FOFM-based uncertainty estimates.

Satellite Data Processing
A SeaWiFS image of Hawaii captured on 1 December 2000
was used to demonstrate the FOFM methodology when

applied to ocean color imagery. SeaWiFS Level-1 data was
downloaded from NASA’s Ocean Biology Distributed Active
Archive Center (NASA OB.DAAC) Level 1 and 2 Browser
website (https://oceancolor.gsfc.nasa.gov/)1. Data were then
processed from Level 1 to Level 2 using NASA Ocean
Color Science Software (OCSSW). These processing steps
include radiometric calibration, geolocation, and atmospheric
correction. A prototype version of OCSSW code was used
to compute u(Chl) using FOFM methodology where u(Rrs,i)
was estimated using an empirical methodology described in
Appendix F (Supplementary Material).

RESULTS

Appraisal of Methodology
The MC methodology, while computationally expensive, was
expected to give robust estimates of measurand uncertainties.
Thus, MC outputs provided a benchmark to which the FOFM
uncertainty estimates could be compared with for correctness.
Direct calculations of FOFM uncertainties, u(y), were compared
with MC output uncertainties, σy. To compare MC and FOFM
calculations we used 5% spectrally flat relative uncertainty in Rrs
and computed the following comparison statistics: bias and Type
II linear regression slope. When computing these statistics for
the purpose of FOFM-to-MC comparisons, we assume that MC-
estimated uncertainties were quasi-truth. We note that variables
were log-transformed for these calculations following Seegers
et al. (2018). Bias was computed as:

bias = 10∧

{

N
∑

k=1

log10(MCk)− log10(FOFMk)

N

}

, (5)

where N = 1124 is the number of input spectra. Given that
bias was computed using log-transformed variables, it becomes
interpretable as multiplicative metrics (Seegers et al., 2018). We
note that our bias calculations assume estimated OC and IOP
uncertainties follow log-normal distributions; a property that is
demonstrated later in the paper (e.g., Figures 4, 5).

The MC and FOFM estimation of derived product
uncertainties were in good agreement for the following OC
products: Kd,490, POC, and nflh. This was indicated by slope
and bias and statistics (Table 2) having values of, or near to, 1.0.
However, regression statistics indicated Chl uncertainties derived
using the FOFM method did not completely agree with the
MC method (Table 2). To assess this discrepancy more closely,
uncertainties in each component of the Chl algorithm were
inspected, namely the band ratio (BR), line height (LH), and
blended components. Regression statistics indicated that FOFM
estimates of Chlblend product uncertainties did not agree well
with MC values and were typically biased low by 27%, visualized
further by the color-coded scatter plot in Figure 3A.

Derived uncertainties for IOP products generally agreed with
MC simulations. Specifically, Table 2 shows FOFM estimates of

1NASAGoddard Space Flight Center, Ocean Ecology Laboratory, &Ocean Biology

Processing Group. Sea-viewing Wide Field-of-view Sensor (SeaWiFS) L1 Data

(data/10.5067/ORBVIEW-2/SEAWIFS/L1/DATA/1).
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uncertainties with respect to MC estimates for anw,443, aφ,443,
adg,443, and bbp,443 were biased low by 1%, low by 2%, low by 2%
and, high by 2%, respectively. Slight disagreement between MC
and FOFM estimates of u(bbp,443) can be visualized in Figure 3

when u(bbp,443) > 2.0 × 10−3 m−1. In addition, MC and FOFM
estimates of u(aφ,443) showed slight disagreement when u(aφ,443)
> 1.0× 10−2 m−1.

TABLE 2 | Log-normal statistics comparing Monte Carlo (MC) and first-order

first-moment (FOFM) uncertainty calculations for Rrs with spectrally flat,

uncorrelated 5% relative uncertainty.

Derived product uncertainty

Product Bias Slope

Chl (all) 0.95 0.96

ChlBR 1.00 1.00

ChlLH 0.99 1.00

Chlblended* 0.73 0.72

Kd,490 0.99 1.00

POC 0.99 1.00

nflh 0.99 1.00

anw,443 0.99 1.00

aφ,443 0.98 1.00

adg,443 0.98 1.00

bbp,443 0.99 0.98

*Blended LH and BR Chl product span 0.134–0.165 mg m-3.

These results demonstrate that while FOFM uncertainty
calculations are computationally inexpensive, they serve as
approximations only, especially in the case of Chl. Indeed, while
FOFM-derived uncertainties can be expected to agree with MC-
derived values for simple functions that vary linearly, it may not
be unusual for FOFM-derived uncertainties to differ from MC-
derived values; particularly when analyzing complicated non-
linear problems (Putko et al., 2001; Mekid and Vaja, 2008).
For example, with the IOPs we found slight differences in the
order of 1% between MC and FOFM uncertainty estimates.
For such mathematical functions, higher order methods such
as Second Order First Moment (SOFM) methods may be
useful, however, the added mathematical complexity may
be prohibitive.

Uncertainties Estimated From in situ

Radiometric Data
OC Product Uncertainties
Using the multispectral Rrs evaluation dataset, uncertainties in
derived OC products associated with 5% spectrally-flat relative,
uncorrelated uncertainty in Rrs were computed. Figure 4 shows
histograms of derived OC products, absolute uncertainties, and
relative uncertainties. MC computations are summarized in
Table 3, while FOFM computations are provided for comparative
purposes in Table 4.

The range of derived Chl confirmed that the dataset spans
oligotrophic (0.04mg m−3) to mesotrophic conditions (1.28mg
m−3) with a median value of 0.11mg m−3. Values of u(Chl)
span four orders of magnitude and have median values of 7.00

FIGURE 3 | Scatter plot comparisons of data product uncertainties estimated from FOFM with those estimated from Monte Carlo (MC) simulations. (A–D) OC

products Chl, Kd,490, POC, and nflh, respectively. Note that the scatter plot of Chl uncertainty is color coded with respect to the method use to derive the output

product (line height: purple, band ratio: green, blended: yellow). (E–H) IOP products anw,443, aφ,443, adg,443, and bbp,443, respectively.
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FIGURE 4 | (A–D) Histograms of derived Chl, Kd,490, POC, and nflh, respectively. (E–H) Histograms of FOFM-estimated uncertainties in derived Chl, Kd,490, POC,

and nflh, respectively computed using 5% spectrally flat, uncorrelated uncertainty in input Rrs. (I–L) Histograms of FOFM-estimated relative uncertainties in derived

Chl, Kd,490, POC, and nflh, respectively. Note: FOFM-estimates of POC relative uncertainties in this example were invariant. Dashed curves represent MC results,

solid blue bars represent FOFM results.

× 10−3 and 6.70 × 10−3 mg m−3 for the MC and FOFM
methods, respectively. The relative uncertainties for Chl span a
single order of magnitude and have median values of 9.74 and

9.67% for the MC and FOFM methods, respectively. Although
the histogram of derived Chl in Figure 4 appears log-normally
distributed, two distinct peaks are present; a low peak (ranging
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TABLE 3 | OC products and associated uncertainties derived via MC method with 5%, uncorrelated relative uncertainty in Rrs.

Derived value Absolute uncertainty Relative uncertainty (%)

Product Range Median Range Median Range Median

Chl (mg m−3 ) 3.96 × 10−2
−1.27 0.110 2.56 × 10−5-0.231 7.00 × 10−3 1.73–18.2 9.74

Kd,490 (m−1) 2.01 × 10−2
−0.131 2.91 x10−2 1.19 × 10−3

−1.36 × 10−2 2.68 × 10−3 5.92–10.5 8.94

POC (mg m−3) 18.8–203.4 33.1 1.37–14.6 2.44 7.11–7.60 7.37

nflh (mW cm−2
µm−1 sr−1) 5.25 × 10−6

−2.74 × 10−2 2.20 × 10−3 3.18 × 10−4-4.47 × 10−3 9.86 × 10−4 14.8–1.7 × 104 41.9

TABLE 4 | OC products and associated uncertainties derived via FOFM method with 5%, uncorrelated relative uncertainty in Rrs.

Derived value Absolute uncertainty Relative uncertainty (%)

Product Range Median Range Median Range Median

Chl (mg m−3 ) 3.96 × 10−2
−1.28 0.110 3.89 × 10−5-0.230 6.70 × 10−3 0.26–18.7 9.67

Kd,490 (m−1) 2.01 × 10−2
−0.131 2.91 × 10−2 1.18 × 10−3

−1.33 × 10−2 2.68 × 10−3 5.86–10.2 8.91

POC (mg m−3) 18.8–203.4 33.1 1.37–14.9 2.42 7.31* 7.31

nflh (mW cm−2
µm−1 sr−1) 2.05 × 10−6

−2.73 × 10−2 2.19E × 10−3 3.21 × 10−4
−4.43 × 10−3 9.87 × 10−4 15.1–3.24 × 104 42.1

*Relative uncertainties in POC computed using FOFM method were constant over the dynamic range.

from 0 to 0.5mgm−3) and a high peak (centered on 1.1mgm−3).
Since bio-optical properties are log-normally distributed in the
ocean (Campbell, 1995), the peaks observed in the distributions
of derived bio-optical variables are probably due to the limited
size of the hyperspectral Rrs dataset (N = 1124), that does not
uniformly span the entire range of oceanic conditions (see Figure
1A in Chase et al., 2017).

The range of derived Kd,490 spans an order of magnitude
with a median value of 0.0291 m−1. The values of u(Kd,490)
also span an order of magnitude with median values of 2.68 ×

10−3 m−1 for both MC and FOFM calculations. The relative
uncertainties for Kd,490 span a single order of magnitude and
have a median value of 8.94 and 8.91% for MC and FOFM
calculations, respectively. The range of derived POC spans two
orders of magnitude with a median value of 33.1mg m−3.
The values of u(POC) span an order of magnitude and
have median values of 2.44 and 2.42mg m−3 for MC and
FOFM calculations, respectively. The relative uncertainties in
POC have a value of 7.37 and 7.31% for MC and FOFM
calculations, respectively. We note that the relative uncertainty
in POC as computed by FOFM method exhibits no spread. For
uncorrelated, spectrally flat relative uncertainties, u(POC)/POC
is a function of u(Rrs,443)/Rrs,443 and u(Rrs,555)/Rrs,555. Thus,
when u(Rrs,443)/Rrs,443 and u(Rrs,555)/Rrs,555 are fixed (e.g., at 5%),
u(POC)/POC is fixed. In practice, this will not always hold true,
particularly when relative uncertainties in Rrs are variable and
spectrally dependent. We note that in Figure 4 the MC-derived
relative uncertainties for POC are normally distributed over a
narrow range centered on 7.37%.

The range of nflh spans three orders of magnitude with an
MC-estimated median value of 2.20 × 10−3 mW cm−2

µm−1

sr−1. We note that direct calculations of nflh resulted in a median
value of 2.19× 10−3 mW cm−2

µm−1 sr−1. The values of u(nflh)
span an order of magnitude with median values of 9.86 × 10−4

and 9.87 × 10−4 mW cm−2
µm−1 sr−1 for MC and FOFM

calculations, respectively. The median relative uncertainty in nflh

was 41.9 and 42.1% for MC and FOFM calculations, respectively
(Figure 4). We note that the range of relative errors for nflh is
very large (for MC calculations: 14.8–1.7 × 104%), and these
should be interpreted with a caution. Low values of nflh, in the
order of 1 × 10−6 mW cm−2

µm−1 sr−1, were derived from
the evaluation dataset which in most likelihood would be beyond
the detection limit of existing ocean color sensors. Further, while
the absolute uncertainties associated with these low nflh values
may also be small in magnitude, they can still manifest as large
relative uncertainties.

IOP Product Uncertainties
Using the radiometric evaluation dataset, uncertainties in
derived IOP products associated with 5% relative, uncorrelated
uncertainty in Rrs,i were computed following the methodology
in Appendix E (Supplementary Material). Figure 5 shows
histograms of derived IOP products, absolute uncertainties, and
relative uncertainties. MC computations are summarized in
Table 5 while FOFM computations are provided for comparative
purposes in Table 6.

The range of derived anw,443 spans two orders of magnitude
with a median value of 0.0185 m−1. Values of u(anw,443) span
an order of magnitude with median values of 2.31 × 10−3 and
2.26 × 10−3 m−1 for MC and FOFM methods, respectively. The
median relative uncertainty in anw,443 spans a single order of
magnitude and has median values of 12.6 and 12.2% for MC
and FOFM methods, respectively. The range of aφ,443, adg,443,
and bbp,443 all span a single order of magnitude with median

values of 9.6 × 10−3, 8.71 × 10−3, and 1.08 × 10−3 m−1,
respectively. Absolute uncertainties in IOPs all span two orders
of magnitude apart from u(aφ,443) which spanned a single order
of magnitude. Highest relative uncertainties of all GIOP-derived
products are for aφ,443 (∼20%), whereas anw,440, adg,440, and
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TABLE 5 | IOP products and associated uncertainties derived using MC method with 5%, uncorrelated relative uncertainty in Rrs.

Derived value Absolute uncertainty Relative uncertainty (%)

Product Range Median Range Median Range Median

anw (443) (m
−1) 9.40 × 10−3

−0.127 0.0185 1.79 × 10−3
−1.13x10−2 2.31 × 10−3 8.16–19.4 12.6

aφ (443) (m
−1) 5.80 × 10−3

−9.43 x10−2 9.60 × 10−3 1.63 × 10−3
−9.68 × 10−3 2.04 × 10−3 10.0–29.2 21.4

adg(443) (m
−1) 3.50 × 10−3

−3.72 x10−2 8.71 × 10−3 6.66 × 10−4
−5.90 × 10−3 1.07 × 10−3 7.92–19.9 14.5

bbp(443) (m
−1) 4.18 × 10−4

−4.00 × 10−3 1.08 × 10−3 8.98 × 10−5
−2.25E × 10−4 1.34 × 10−4 5.57–34.1 13.8

TABLE 6 | IOP products and associated uncertainties derived using FOFM method with 5%, uncorrelated relative uncertainty in Rrs.

Derived value Absolute uncertainty Relative uncertainty (%)

Product Range Median Range Median Range Median

anw,443 (m−1) 9.42 × 10−3
−0.127 0.0185 1.79 × 10−3-1.03 × 10−2 2.26 × 10−3 8.12–19.1 12.2

aφ,443 (m−1) 5.86 × 10−3
−9.45 × 10−2 9.63E-3 1.64 × 10−4

−8.73 × 10−3 2.00 × 10−3 9.02–28.6 20.8

adg,443 (m−1) 3.51 × 10−3
−3.70 × 10−2 8.73E-3 6.51 × 10−4

−5.63 × 10−3 1.05 × 10−3 7.93–18.9 14.1

bbp,443 (m−1) 4.16 × 10−4
−4.01x10−3 1.00E-3 9.00 × 10−5

−2.11 × 10−4 1.33 × 10−4 5.25–34.1 13.9

bbp,440 have relative uncertainties of similar magnitude that are
all <15%.

Summary of MC and FOFM Comparisons
FOFM and MC estimates of OC and IOP uncertainties were
generally in good agreement. This provides confidence that
our FOFM analytical formulations were correct. However,
FOFM-to-MC comparisons of Chl and IOP uncertainties, whilst
similar in magnitude, exhibited a degree of scatter around
the one-to-one line. We expect that these differences may be
due to the MC method’s ability to handle non-linearity and
discontinuities in the models more robustly than the FOFM
approach. For example, the Chl model has several complex
features such: switching between ChlBR and ChlLH , the ChlBR
model’s selection of maximum band ratios, and the blending
of ChlBR and ChlLH , which may not be fully captured by the
FOFMmethod.

We thus found FOFM-to-MC comparisons to be useful as a
“quick acceptability checking” of FOFM calculations. In practice,
however, one should not always assume the two methods will
closely agree as the MC model may handle non-linearities and
discontinuities more robustly than the FOFM method. The
FOFM and MC calculations also indicate that for normally
distributed radiometric input uncertainties, the estimated output
uncertainties for OC and IOP were log-normally distributed (as
per Figures 4, 5). Such highly dynamic and variable nature of
uncertainties in ocean color data products highlights the need
for these estimates to be done on a pixel-by-pixel basis, rather
than a single scene-wide estimate, further justifying the need for
simplified, computationally inexpensive approach (i.e., FOFM).

We note that our FOFM uncertainty formulation for the
GIOP currently does not consider uncertainty in spectral
shape models [i.e., u(a∗φ,i) and u(b∗

bp,i
)]. Indeed, we believe

that this may be why there were some noticeable differences

when comparing FOFM and MC methods, for example: when
u(bbp,443) > 2.00 × 10−4 m−1 (Figure 3H). In a cursory
study, we re-ran both FOFM and MC calculations with the
shape models parametrized as spectral constants (i.e., having
no uncertainties). This resulted in improved FOFM-to-MC
comparisons (results not shown) and further highlighted how
spectral shape uncertainties impact our FOFM uncertainty
estimates. As part of future work, we thus plan to extend our
current GIOP FOFM uncertainty formulation to include the
spectral shape uncertainties. Additionally, we note that u(a∗φ,i)
and u(b∗

bp,i
), computed as functions of Chl and a red-green Rrs,i

ratio, respectively, are also correlated. Thus, an improved GIOP
FOFM uncertainty formulation should also consider covariances
between spectral shape models.

GIOP Model Misfit Uncertainties
In this analysis we used our high-quality evaluation Rrs dataset to
approximate GIOP model misfit uncertainties. Our assumptions
in this exercise were: (i) the uncertainties in our Rrs dataset are
small, and (ii) the least squares residual of the optimal solution
(model misfit) are thus due to an imperfect model.

In this analysis we first computed the error-covariance
matrix, Errs, for each Rrs observation as follows: (i) employ the
Levenberg-Marquardt non-linear least squares optimization to
iteratively find an optimal solution for the free variables xφ ,
xdg , and xp which correspond to Chl concentration, adg,440, and
bbp,440, respectively (see Appendix E in Supplementary Material

for further detail). We note that in the standard implementation
of the GIOP, the cost function (Chi-squared) is unweighted. (ii)
feed the optimal set of xφ , xdg , and xp back in the forward
reflectance model to compute a best-fit spectral sub-surface
remote sensing reflectance, rmod

rs,i . (iii) calculate the spectral

residual, εrrs,i, between rmod
rs,i and sensor-observed subsurface
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FIGURE 5 | (A–D) histograms of derived anw,443, adg,443, aφ,443, and bbp,443, respectively. (E–H) histograms of FOFM-estimated uncertainties in derived anw,443,

adg,443, aφ ,443, and bbp,443, respectively, computed using 5% spectrally flat, uncorrelated uncertainty in input Rrs. (I–L) histograms of FOFM-estimated relative

uncertainties in derived anw.443, adg,443, aφ ,443, and bbp,443, respectively. Dashed curves represent MC results, solid blue bars represent FOFM results.

remote sensing reflectance. (iv) set the diagonal elements of Errs

as the square of εrrs,i.
Next, by substituting Errs for Vrrs in Equation E13 the

parameter error-covariance matrix, Ex, can be computed as:

Ex = J−1Errs(J
T)−1 (6)

Where J is the Jacobian matrix of the forward model (see
Appendix E in Supplementary Material for derivation). Finally,
the estimates of parameter uncertainties due to model misfit
were calculated as the square root of the diagonal elements of

Ex. The model-misfit uncertainties are summarized in Table 7

and compared to parameter uncertainties due to Hu spectrally-
dependent radiometric uncertainties (as per Table 6).

We found that estimated GIOP model misfit uncertainties
were 60–90% smaller than those imparted by radiometric
uncertainty. Thus, by combining the two during pixel-by-
pixel processing, it would be possible to more completely
estimate umeasurement(y) for IOPs. However, we accept that
our FOFM model-data misfit approach is approximate
only and does not consider all uncertainties in the GIOP
model formulation.
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TABLE 7 | GIOP model-misfit uncertainties estimated using the evaluation Rrs dataset.

Absolute uncertainty (m−1) Relative uncertainty (%) Difference between absolute data and

absolute model misfit uncertainties* (%)

Product Range Median Range Median Median

atw,443 (m−1) 3.88 × 10−4
−5.71 × 10−3 4.87 × 10−4 1.26–5.70 3.15 −77

aφ,443 (m−1) 3.67 × 10−4
−5.25 × 10−3 4.54 × 10−4 3.02–9.09 4.68 −77

adg,443 (m−1) 1.07 × 10−4
−2.26 × 10−3 1.434 × 10−4 0.81–7.48 2.86 −86

bbp,443 (m−1) 2.94 × 10−5
−2.17 × 10−4 5.22 × 10−5 1.57–9.58 4.52 −61

*Differences between median absolute model uncertainties in this table and median absolute radiometric (data) uncertainties (column RU: Hu in Table 9).

Comparing Product Uncertainties Due to
Various Radiometric Input Uncertainties
In order to evaluate the impact of different Rrs uncertainty values
on derived product uncertainties, using the FOFMmethod we: (i)
propagated spectrally flat, uncorrelated Rrs relative uncertainties
of 1, 5, and 10% through OC and IOP models, and (ii)
propagated spectrally-dependent, uncorrelated u(Rrs) through
OC and IOP models by linearly interpolating/extrapolating
tabulated data published by Hu et al. (2013), referred to as “Hu
uncertainties” (see Figure 2). Summary results of this analysis
are given in Tables 8, 9. As expected, introducing spectrally
flat, uncorrelated Rrs uncertainties of lower and higher value
than the previously evaluated 5%, resulted in respectively,
lower and higher uncertainties in data products, while the
distribution of uncertainties kept the same shape as for the 5%
run (Figure 6). For the product uncertainties derived using the
“Hu Rrs uncertainties,” both the shape of the distribution and
median values changed from the 5% run (Figure 6). These results
demonstrate the importance of considering spectral dependence
in radiometric uncertainties. Notably, considering spectrally flat
5% relative uncertainties in Rrs for a data product such as
nflh, which utilizes red-end bands, may result in significant
underestimation of likely data product uncertainties.

Spectrally flat relative uncertainty in Rrs (e.g., 5% in the
blue-green region) is a commonly used accuracy goal for ocean
color missions. However, we know from on-orbit data that
sensors such as SeaWiFS and MODIS have largely not achieved
their desired accuracy goals over the full spectral range (Hu
et al., 2013), particularly at red wavelengths. In lieu of any
knowledge of a sensor’s radiometric uncertainty characteristics
(e.g., during design trade studies), one might decide to utilize
desired relative radiometric accuracy goals to approximate ocean
color data product uncertainties. However, our results have
shown spectrally flat (5%) and spectrally-dependent (Hu) relative
Rrs uncertainties lead to different estimates of OC and IOP
uncertainties. Indeed, for improved uncertainty estimates, we
recommend the use of more representative spectrally-dependent
u(Rrs)/Rrs, if known.

Application to Satellite Chlorophyll Image
The potential impact that spectrally-correlated uncertainties in
Rrs have upon ocean color data product uncertainties was
evaluated using a scene of the southern Hawaiian Islands

captured on 1 December 2000 (Figure 7). We have estimated on
a pixel-by-pixel basis the covariance matrix of remote sensing
reflectances,VRrs, as per the methodology described in Appendix
F (Supplementary Material). Estimates of u(Chl) were then
calculated both with- and without the off-diagonal terms in VRrs

to demonstrate the impact of incorporating covariance terms (if
known) when estimating uncertainties.

The sample SeaWiFS Chl image (Figure 7A) shows that the
clearest waters occurred southeast of Island of Hawaii (largest
island) with two large eddies to the west. Regions of elevated
Chl concentration are also visible along the northeast coast
of the Island of Hawaii, and also adjacent to coastal waters
of four islands (Maui, Lanai, Molokai, and Kahoolawe) to the
northwest of Hawaii. Derived Chlblend ranges from 1.83 × 10−3

to 0.498mg m−3 with a median of 0.066mg m−3. When the
off-diagonal terms in VRrs were considered, the estimated values
of u(Chl) ranged from 1.30 × 10−3 to 0.075mg m−3 with a
scene-wide median of 5.20 × 10−3 mg m−3 (Figure 7B) and
the relative uncertainties spanned 0.84–38.6% with a median of
7.89% (Figure 7C).When the off-diagonal terms inVRrs were not
considered (i.e., set to zero), estimated values of u(Chl) ranged
from 1.30 × 10−3 to 0.109mg m−3 with a scene-wide median
of 5.50 × 10−3 mg m−3 (Figure 7D) and relative uncertainties
spanning 0.85–46.1 % with a median of 8.27% (Figure 7E). Note,
these image statistics were computed with standard NASA level-2
quality control flags applied to remove the effect of: land, clouds,
sun glint, atmospheric correction failure, product failure, and
straylight contamination.

These results demonstrate how a FOFM method can be
utilized in operational processing code to estimate uncertainties
in derived bio-optical data products. The FOFM method was
straightforward to implement within l2gen code and did not add
any appreciable processing overhead. Whilst our estimation of
VRrs is rudimentary (Appendix F in Supplementary Material),
it allowed us to consider the covariance terms in the FOFM
derivation of u(Chl). Critically, we demonstrated that the
inclusion of off-diagonal covariance terms from VRrs led to
lower estimates of both u(Chl) and u(Chl)/Chl when compared
to the same calculations performed with off-diagonal elements
of VRrs set to zero; a result consistent with findings of
Lamquin et al. (2013). Additionally, this example was done
with an operational processing code, demonstrating the easiness
of implementing a FOFM method within day-to-day ocean
color processing.
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TABLE 8 | Median OC data product uncertainties computed as relative uncertainties (RU) in Rrs vary.

Median absolute uncertainties Median relative uncertainties (%)

RU: 1% RU: 5% RU: 10% RU: Hu RU: 1% RU: 5% RU: 10% RU: Hu

Product

Chl (mg m−3 ) 1.52 × 10−3 6.70 × 10−3 1.46 × 10−2 6.50 × 10−3 1.96 9.67 19.35 8.29

Kd,490 (m−1) 5.37 × 10−4 2.68 × 10−3 5.36 × 10−3 5.07 × 10−3 1.78 8.91 17.8 17.3

POC (mg m−3) 4.84 × 10−1 2.42 4.84 4.38 1.46 7.31 14.6 13.1

nflh

(mW cm−2
µm−1 sr−1)

1.97 × 10−4 9.87 × 10−4 1.97 × 10−3 4.47 × 10−3 8.41 42.1 84.1 197.6

TABLE 9 | Median IOP data product uncertainties computed as relative uncertainties (RU) in Rrs vary.

Median absolute uncertainties Median relative uncertainties (%)

RU: 1% RU: 5% RU: 10% RU: Hu RU: 1% RU: 5% RU: 10% RU: Hu

Product

atw,443 (m−1) 4.52 × 10−4 2.26 × 10−3 4.52 × 10−3 2.76 × 10−3 2.45 12.2 24.5 15.1

aφ,443 (m−1) 4.00 × 10−4 2.00 × 10−3 4.00 × 10−3 2.42 × 10−3 4.15 20.8 41.6 23.8

adg,443 (m−1) 2.11 × 10−4 1.05 × 10−3 2.11 × 10−3 1.33 × 10−3 2.82 14.1 28.2 15.9

bbp,443 (m−1) 2.67 × 10−5 1.33 × 10−4 2.67 × 10−4 1.73 × 10−4 2.78 13.9 27.9 17.9

FIGURE 6 | Upper row are histograms of derived OC data products uncertainties estimated using the FOFM method. Bottom row are histograms of derived IOP data

product uncertainties estimated using the FOFM method. The four histograms in each subplot correspond to four different input u(Rrs): spectrally flat Rrs relative

uncertainties of 1% (dashed black), 5% (blue), and 10% (orange) as well as spectrally dependent relative uncertainties taken from Hu et al. (2013) outlined in green

dashed line.
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FIGURE 7 | Derived data products for a SeaWiFS image of waters surrounding the Hawaii Islands captured on 1 December 2000. (A) Chl concentration derived using

OCI algorithm, (B) u(Chl) computed with covariances included, (C) relative uncertainty in Chl computed with estimated Rrs covariances included, (D) u(Chl) calculated

without estimated Rrs covariances included, and (E) relative uncertainty in Chl computed without estimated Rrs covariances included.

POC Algorithm Case Study
Recall from Equation 1, we broadly defined measurement
uncertainty as having two sources: data uncertainty and model
uncertainty. Throughout this paper we have focused heavily
on deriving data uncertainties (i.e., propagation of radiometric
uncertainty) which is useful if one is trying understand how a
specific sensor’s noise characteristics may impact derived data
product uncertainties. However, this information alone does
not provide a complete picture of measurement uncertainty;
model uncertainty also needs to be considered. We thus wish
to demonstrate how with knowledge of model uncertainties one
can draw more complete conclusions about biogeochemically-
relevant data product uncertainties. As such, we present a case
study in which we estimate POC measurement uncertainty
for two different algorithms: (i) Stramski et al. (2008a) and
(ii) Rasse et al. (2017).

Our motivation here is to solely demonstrate how one
might develop algorithm uncertainty budgets (data and model
uncertainty as per Equation 1) using a FOFM framework. Our
calculations, however, are limited by: (i) the representativeness
of our in situ Rrs dataset which does not encompass all optical
water-types found in the World’s oceans, (ii) our spectral
u(Rrs) values which are estimated from data published by Hu
et al. (2013) for a MODIS-like sensor without co-variance
terms, and (iii) our knowledge of model uncertainties, such as
coefficients uncertainties, which is limited to those reported in

literature and/or our best-guess estimates. We hence caution
the reader should not use our reported numbers as a basis for
algorithm selection.

POC Measurement Uncertainty Estimates
In this exercise, we performed rudimentary calculations to
estimate measurement uncertainty budgets for two POC
algorithms: (i) NASA’s standard POC algorithm (Stramski et al.,
2008a) and (ii) the IOP-based model of Rasse et al. (2017).
Conveniently for this exercise, both POC models have a power
law formulation:

POC = apocX
bpoc (7)

where X in Stramski et al. (2008a) is a blue-to-green
reflectance ratio (Rrs,443/Rrs,555, as per Appendix C in
Supplementary Material) and the coefficients apoc and bpoc
have the values of 203.2 and −1.034, respectively. For the
approach of Rasse et al. (2017) X is bbp,470 and the coefficients
apoc and bpoc have the values of 141,253 and 1.18, respectively.
Note, in this case study we use GIOP-derived estimates of bbp,470
as inputs to the Rasse et al. (2017) model.

First, let us consider the model uncertainty component due
to imperfect model coefficients. For both POC algorithms, with
the coefficients apoc and bpoc and their assigned uncertainties of
umodel(apoc) and umodel(bpoc), respectively, we can estimate the
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model variance for POC as:

u2model(POC) =

(

Xbpoc
)2
u2model(apoc)

+

(

apocX
bpoc log(X)

)2
u2model(bpoc)

+

(

apocbpocX
bpoc−1

)2
u2model(X) (8)

In the third term on the right-hand side of Equation 8, we
set umodel(X) = 0 and umodel(X) = umodel(bbp,470) for Stramski
et al. (2008a) and Rasse et al. (2017), respectively. We have
also assumed the covariance of the coefficients apoc and bpoc,
which are determined by regression fit, is zero. For the Rasse
et al. (2017) model, the reported model coefficient uncertainties
umodel(apoc) and umodel(bpoc) are 45,534 and 0.046, respectively.
For the Stramski et al. (2008a) model, values of umodel(apoc)
and umodel(bpoc) were not reported. We did, however, estimate
these model uncertainties by reanalyzing the original published
dataset (Stramski et al., 2008b) and considering the likely
uncertainty introduced by not accounting for the effect of filter
pad absorption of POC (Novak et al., 2018). Following this
cursory analysis (results not shown), we estimated umodel(apoc)
and umodel(bpoc) for the Stramski et al. (2008a) model to be∼2.20
and 0.015, respectively.

Next, we considered the data uncertainty component. The
Stramski et al. (2008a) model’s data uncertainty FOFM calculus
was formulated in Appendix C (Supplementary Material). For
the Rasse et al. (2017) model, we first estimated udata(bbp,470).
To do so, bbp,470 was calculated from GIOP-derived
bbp,440 as:

bbp,470 = bbp,440 ×

(

440

470

)γ

(9)

The variance in bbp,470 due to data uncertainty was then
estimated as:

u2data(bbp,470) =

(

∂bbp,470

∂bbp,440

)2

u2data(bbp,440)+

(

∂bbp,470

∂γ

)2

u2data(γ )

+2
∂bbp,470

∂bbp,440

∂bbp,470

∂γ
u2data(bbp,440, γ ) (10)

For this exercise, we used GIOP-derived values of udata(bbp,470)
and u(γ). The correlation between derived values of bbp,547 and
γ was used to estimate the covariance term u(bbp,547, γ) as−1.64

× 10−6 m−1 nm−1. Using, the GUM methodology the variance
in the Rasse et al. (2017) POC model due to data uncertainty was
then estimated as:

u2data(POC) =
(

apocbpoc(bbp,470)
bpoc−1

)2
u2data(bbp,470) (11)

We finally estimated the measurement uncertainty budgets for
both POC models using our Rrs evaluation dataset and with
Hu spectrally-dependent, uncorrelated radiometric uncertainties
(results are shown in Table 10).

TABLE 10 | Simplified random uncertainty budgets for two POC models.

Algorithm Median derived

value (mg m−3)

Median absolute uncertainty

in mg m−3 (median relative

uncertainty in %)

Data Model Measurement

Stramski et al., 2008a 33.1 4.40

(13.1)

0.94

(2.85)

4.50 (16.6)

Rasse et al., 2017 37.8 6.96

(18.4)

17.30

(45.8)

18.6 (49.2)

Median absolute uncertainties and median relative uncertainties were computed using

our Rrs evaluation dataset with Hu spectrally-dependent, uncorrelated radiometric

uncertainties and basic knowledge of model coefficient uncertainty. We note that these

data are intended to illustrate how onemight formulate measurement uncertainty budgets.

These data are not intended for algorithm comparison purposes.

In our rudimentary measurement uncertainty budget for
the Stramski et al. (2008a) POC algorithm, we found the
contribution of data (radiometric) uncertainty was larger than
model uncertainty. Conversely, for the Rasse et al. (2017) POC
algorithm, the contribution of model uncertainty was larger
than data uncertainty. Whilst these POC algorithm uncertainty
budgets may not be fully representative due to the assumptions
we partook here, the exercise nonetheless demonstrates an
important point: data and model uncertainties should both be
considered if one wishes to use uncertainties as a means of
benchmarking/comparing ocean color algorithms.

From an algorithm development perspective one can also use
FOFM method to explore the relative contribution of individual
uncertainty sources to the combined measurement uncertainty.
We have graphically displayed the estimated component
uncertainty contribution for each POC algorithm using pie charts
(Figure 8). Such information may assist algorithm designers
identify and minimize uncertainty sources within a model.

Summary of POC Case Study
Our brief example demonstrates the benefits of using the FOFM
method for analytically estimating measurement uncertainty in
POC. From an ecological perspective, this is particularly useful if
one is trying to understand the variability in observed patterns,
and distinguish real change from variation in uncertainty.
Additionally, it allows for sensitivity analysis, thereby providing a
guideline for improving model parameterization. The case study
demonstrates how an uncertainty budget can provide additional
information to end-users regarding data product quality,
potentially informing algorithm selection, and/or guiding new
algorithm development. Although ocean color algorithms are
typically benchmarked based upon validation matchup metrics
(Seegers et al., 2018), we expect model selection and development
may be better guided by considering how data and model
uncertainties manifest in derived data products.

This case study highlights a challenge if one wishes to
compare/benchmark legacy ocean color algorithms based on
their measurement uncertainty; one must have reasonable and
complete knowledge of both data and model uncertainties to
do so. Whilst we have demonstrated that it is possible to
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FIGURE 8 | Pie charts demonstrate how individual uncertainty sources contribute to estimates of total measurement uncertainty. Here we consider: (A) a blue-green

band-ratio POC algorithm and (B) an IOP-based POC algorithm. We note that these examples are intended to illustrate how one might visualize source contributions

to measurement uncertainty. These plots are not intended for algorithm comparison purposes.

estimate and propagate random radiometric uncertainties using
the FOFM framework, estimating model uncertainties remains a
challenge. This is because model component uncertainties (e.g.,
model coefficient uncertainties) of legacy ocean color algorithms
were not routinely reported. To address this, re-analysis of the
structure of legacy ocean color algorithms using high quality bio-
optical datasets, such as NASA’s bio-Optical Marine Algorithm
Dataset (NOMAD; Werdell and Bailey, 2005), may be necessary.
Without such knowledge, it remains a challenge to formulate
complete measurement uncertainty budgets for legacy ocean
color algorithms.

CONCLUSIONS

In this paper we demonstrated a FOFM-based method for
estimating uncertainties in a selection of NASA OC and IOP
products, namely: Chl, Kd,490, POC, nflh, anw,440, aφ,440, adg,440,
and bbp,440, due to sensor-observed radiometric uncertainty.
Using a high quality hyperspectral Rrs dataset subsampled to our
target wavelengths, we first appraised the FOFM methodology
by comparing FOFM-derived uncertainty estimates with
uncertainties estimated from MC simulations with an assumed
relative spectrally flat, uncorrelated uncertainty in Rrs of 5%.
Our analyses showed that OC and IOP uncertainties estimated
using the FOFM method generally agreed with MC simulations.
Collectively, the FOFM-to-MC comparisons provided a basis
for checking the correctness of the FOFM formulations, which
are often algebraically complex. Further, we demonstrated
that the FOFM formulation, which is computationally
inexpensive, can be applied in routine pixel-by-pixel data
processing for estimating uncertainties in derived ocean color
data products.

This paper has primarily focused on propagating radiometric
uncertainties through bio-optical models (udata(y) in Equation
1). In practice, the combined measurement uncertainty in
derived ocean color data products is expected to be larger
once model uncertainties are included. In this study, we
have broadly assumed that coefficients within the bio-optical
algorithms themselves are errorless, which is not the case.
Indeed, most coefficients in bio-optical algorithms have been
derived empirically using in situ oceanographic datasets, which

themselves have inherent uncertainties due to measurement
method and environmental variability. The GIOP, for example,
makes assumptions about spectral shapes of IOPs, utilizes an
approximate forward reflectance model (Gordon et al., 1988),
and employs a model to convert Rrs,i to rrs,i (Lee et al.,
2002). Thus, there are a number of GIOP model components
whose uncertainties, if characterized, may improve the overall
estimate of IOP measurement uncertainty. Our case study of
POC algorithms also highlighted how the addition of model (e.g.,
coefficient) uncertainties can further inform end-users, and may
potentially guide algorithm development and/or selection.

Although this work represents a first step toward
implementing pixel-by-pixel uncertainty estimates in NASA
operational ocean color processing code, we recognize that
continued effort is required. For example, strategies for
quantifying uncertainties in look-up-table (LUT) based
models, such as the two-band particulate inorganic carbon
(PIC) algorithm (Balch et al., 2005) and bidirectional
reflectance distribution function (BRDF) correction (Morel
et al., 2002), are needed. Globally, there are a multitude of
ocean color algorithms maintained by various researchers
and/or institutes and formulating uncertainty estimates must
be a collective effort. While the community continues to
innovate new bio-optical algorithms, we strongly encourage
model developers to characterize uncertainties as a matter
of routine.

As we enter the hyperspectral world of PACE, it is credible
to expect an evolutionary leap in remote sensing observation of
ocean processes detailing, for example, phytoplankton diversity,
physiological preferences, and ecology from space. This, parallel
to the increase in computational power of the day-to-day data
processing, will allow for more complex algorithms; algorithms
which will need detailed evaluation of uncertainty budgets,
to understand what is real, and what is hidden under the
dashed line.
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