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Editorial on the Research Topic

Paleoceanographic Conditions in High Northern Latitudes During Quaternary

Interglaciations

The northern subpolar regions and the Arctic are particularly important for global climate, as
they are considered critical for the Atlantic Meridional Overturning Circulation (AMOC) intensity
which strongly depends on the behavior of AtlanticWater advected into the high northern latitudes
(e.g., Sévellec et al., 2017). Geological data and modeling experiments have shown that the AMOC
can considerably weaken or even completely shutdown in response to fresh water input (Bond
et al., 1993; Rahmstorf, 1995; Clark et al., 2002). The modern rapid atmospheric and ocean
water temperature rise in the Arctic and the subpolar regions (e.g., Chylek et al., 2009; Screen
and Simmonds, 2010) promotes sea-surface freshening through a chain of feedback mechanisms
such as an enhanced seasonal sea-ice loss (e.g., Comiso et al., 2008; Stroeve et al., 2008), the
drastic diminishing of the Greenland Ice Sheet (Rignot et al., 2011; Applegate et al., 2015), and
enhanced Arctic river runoff (Wagner et al., 2011). A longer-term perspective obtained through
reconstructing past interglacial climates helps to assess and model ongoing changes in the high
northern latitudes.

Reconstructions of various sea-water parameters in the high latitudes are especially challenging,
however conventional paleoceanographic methods reach the limits of their sensitivity due to:
(1) strongly reduced biogenic material; (2) reduced diversities in some faunal groups used in
paleoceanography; and (3) the large volume of fresh water at the sea surface. Furthermore, these
limitations can affect chronology and stratigraphic correlations of Arctic sediments. Planktic
foraminiferal assemblages, ubiquitously used as a sea-(sub-)surface temperature proxy, often
become almost monospecific in the Nordic Seas and the Arctic (Kellogg, 1980, 1984) in the size
fraction >150 µm recommended for research (Kucera et al., 2005) and, therefore, can hide subtle
temperature fluctuations in the high northern latitudes (Kandiano and Bauch, 2002). Also, the
traditional application of stable oxygen isotopes in calcareous shells as a proxy for temperature
is hampered by the huge impact of fresh water to the sub-Arctic and Arctic Ocean as it overrides
the temperature signal in the stable oxygen isotopes record.
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In the last few decades, a number of new methods and
approaches have been developed to refine the paleoceanography
state-of-the-art in high latitudes. It has been demonstrated
that planktic foraminiferal assemblages in mesh-size fractions
smaller than 150 µm reveal changes in the intensity of Atlantic
Water advection and sea- (sub-) surface temperatures in the
Nordic Seas and the Arctic (Hebbeln et al., 1994; Dokken and
Hald, 1996; Nørgaard-Pedersen et al., 2007; Taldenkova et al.,
2010; Husum and Hald, 2012; Werner et al., 2016). Moreover,
the analysis of smaller-sized foraminiferal fractions unveiled
drastic differences in the character of Atlantic Water advection
in the Nordic Seas during the Holocene climate optimum and
the Marine Isotope Stages (MIS) 5e and 11—which are the
interglacial time periods suggested as close analogs for the
forthcoming climate (Bauch et al., 2011; Cronin et al., 2013;
Kandiano et al., 2016). The biogeochemical marker IP25/PIP25
is now being applied by many research groups to identify the
extent of the sea-ice cover in the past (Belt et al., 2007; Müller
et al., 2009, 2011; Müller and Stein, 2014; Belt, 2018). Changes in
stable nitrogen isotope composition (δ15N) of bulk sediment are
used as a proxy for nitrate utilization related to the depth-level
of Atlantic Water inflow in the Nordic Seas (Thibodeau et al.,
2017). This Research Topic comprises articles focusing on new
approaches for deciphering paleoclimates in the Nordic Seas and
the Arctic that brings our understanding of climate evolution and
mechanisms to a new level. It represents a collection of original
research papers and a review describing the last achievements
in reconstructing past interglacial conditions in high
northern latitudes.

Doherty and Thibodeau devote their article to the most
intriguing late Quaternary interglacial, the MIS 11, and reviewed
recent literature to reconcile enhanced AMOC but with
freshened and relatively cold ocean surface in the Nordic Seas
during this period. This controversy might be explained by
a persistent subduction of saline and relatively dense Atlantic
waters below a freshwater cover in the Nordic Seas. Further
analysis by the authors led to the conclusion that the formation
of the freshwater lid might neither be due to iceberg discharge
nor to Greenland ice-sheet melting, but likely had an external
origin. Elevated Arctic sea-ice export and an enhanced Eurasian
river runoff were suggested by the authors as potential external
sources of melt water in the Nordic seas.

Risebrobakken and Berben describe changes in water-mass
circulation in the Barents Sea during the last late deglaciation
and the Holocene, since 12,000 years (12 ka) to the present. The
reconstructions are based on planktic foraminiferal diversities
in the >150 µm size fraction but also smaller size fractions of
the studied sediment cores. Emphasis is on the Arctic Front
migration from its submeridional western position during the
late deglaciation to the present position which the Arctic Front
reached at ca 7.4 ka.

Ye et al. analyze paired manganese (Mn) and cerium (Ce)
distribution in a sediment core taken from the Alpha Ridge
covering the time period from MIS 3 to MIS 10, and in
near-modern surface sediments from the western Arctic Ocean
and adjacent shelves. The authors showed that Mn contents
and Ce anomalies follow a distinct stratigraphic pattern with
overall low and high values in glacial and interglacial intervals,
respectively. This was linked to glacial-interglacial sea-level
changes. Transportation of Mn was related to cross-shelf and
mid-depth oceanic currents. The co-variation in the distribution
of both elements Mn and Ce has been demonstrated here for the
first time.

O’Regan et al. establish a consistent Pleistocene stratigraphy of
six sediment cores taken along 575 km of the Lomonosov Ridge.
In two of them, stratigraphic occurrences and the morphology
of subpolar planktic foraminiferal genus Turborotalita were
analyzed in small-sized sediment fractions. The invasions of
Turborotalita were attributed to MIS 5.1 and 5.5, MIS 9/10,
and MIS 11. All found planktic foraminifer specimens resemble
the species T. quinqueloba despite the fact that in the western
Arctic environment anothermorphological type ofTurborotalita,
T. egelida, is considered as a stratigraphic marker for MIS 11.
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