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The deep marine biosphere is one of the largest, and yet least explored, microbial
habitats on the planet. Quantifying the extent, diversity, and activity of subsurface
microbial communities is a crucial part of understanding their role in global
biogeochemical cycles. Even though deep biosphere habitats can vary widely in
chemistry, temperature, turnover rates, and energy sources, all subsurface microbes
inherently experience high pressures. While not all subsurface microbes require
elevated pressures, for many high pressures are essential to their cellular function and
metabolism. Thus, when targeting this elusive portion of the biosphere, it is critical to
maintain in situ pressure while sampling and cultivating subsurface microorganisms. In
this perspective paper we highlight the sampling and cultivation technologies available
to study these communities under in situ conditions. Maintaining elevated pressures
throughout sampling, transfer, cultivation, and isolation is challenging, and more often
than not samples are decompressed at some point during sample handling, potentially
leading to biases in both community diversity and isolate physiology. The development
of devices that maintain in situ pressures during sampling and allow for sample
transfer without decompression have begun to address this challenge (like the PUSH –
Pressurized Underwater Sample Handler). Such vessels can be used for both retrieval
and enrichment of deep subsurface samples, as well as high-pressure growth and
physiology experiments, thus expanding possibilities for deep biosphere exploration.
Finally, we discuss the significant need to develop and share high-pressure facilities
across the deep biosphere community, in order to expand the opportunities to discover
novel piezophiles from the deep subsurface.

Keywords: deep biosphere, high-pressure microbiology, decompression, sampling, cultivation

UNVEILING THE INVISIBLE MAJORITY: THE DEEP MARINE
BIOSPHERE

In this communication we consider the deep biosphere to include all environments at and above
10 MPa in the water column (10 MPa/km), subseafloor sediments (15 MPa/km) and all the potential
reservoirs in the continental and oceanic crust (25 MPa/km) (Jannasch and Taylor, 1984; Oger and
Jebbar, 2010; Picard and Daniel, 2013), though we focus primarily on marine environments. The
deep-sea, defined as waters and sediments beneath 1000 m depth, is the Earth’s largest ecosystem,
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representing 65% of the planet’s surface and encompassing
88% of the global biosphere (Jannasch and Taylor, 1984).
The ocean has an average depth of 3800 m and an average
pressure of 38 MPa (Herring and Clarke, 1971), and even
the deepest waters (Mariana Trench at 11 km, 110 MPa) are
known to host life (Glud et al., 2013; Nunoura et al., 2015;
Tarn et al., 2016). The habitable zones of the continental
crust are similarly vast and underexplored, and also host
unique microbial communities (Stevens and McKinley, 1995;
Takai et al., 2001; Moser et al., 2005; Lollar et al., 2006;
Lavalleur and Colwell, 2013; Borgonie et al., 2015). This
remote and dark biosphere hosts a range of subsurface habitats
typically characterized by extreme conditions (Jørgensen and
Boetius, 2007). They are mostly nutrient-poor – excluding
the hot spots (e.g., hydrothermal vents) – and have slow
or transient energy fluxes supplied by water-rock reactions
and circulating crustal fluids (Orcutt et al., 2011). Despite
harsh conditions, these ecosystems define the largest microbial
habitat on Earth (Whitman et al., 1998; Kallmeyer et al.,
2012; Bar-On et al., 2018). The subsurface is estimated to
hold ∼15% of the total terrestrial biomass (Bar-On et al.,
2018), and resident microbial communities potentially play
an important role in mediating global biogeochemical cycles
(D’Hondt et al., 2004; D’Hondt et al., 2009). However, only 5%
of the oceans have been investigated using remote instruments
and less than 0.01% has been sampled and studied (Ramirez-
Llodra et al., 2010). Despite being such a large fraction of
Earth’s biomass the microbial diversity, activity and distribution,
metabolic pathways, and energy fluxes of the subsurface
biosphere are poorly understood because access is limited
by technical and economic challenges. Over the past decade,
international drilling programs (IODP – International Ocean
Discovery Program, ICDP – International Continental Scientific
Drilling Program), as well as national submersible facilities
have expanded subsurface microbiology research to better
understand how intra-terrestrial life inhabiting the deep crust
and deep oceans plays a role within the deep biosphere.
Subsurface technologies and recent advances in this field are
well documented in Schrenk et al. (2010), Edwards et al. (2011),
and Edwards et al. (2012).

A majority of prokaryotes live under high-pressure conditions,
and thus pressure is a governing factor for the distribution of life
(Picard and Daniel, 2013), and subsurface microorganisms are
classified by their physiological responses (e.g., growth rates, cell
yields) to pressure (Abe, 2007; Fang et al., 2010). Usually, well-
adapted surface microorganisms are negatively impacted by high-
pressure conditions (piezosensitive), even though some can grow
at elevated pressures (piezotolerant). Likewise, microorganisms
isolated from the subsurface often grow optimally at high-
pressure (piezophiles), and obligate piezophiles are unable to
grow at ambient (surface) pressures. In the case of the deep
marine biosphere, evidence suggests that decompression can
deleteriously impact cellular viability, including morphological
changes (Chastain and Yayanos, 1991), membrane cell rupture
(Park and Clark, 2002), and piezophile inactivation (Yayanos and
Dietz, 1982; Yayanos and Dietz, 1983). Furthermore, significant
shifts in community composition and gene expression have

been noted as a result of sample decompression (La Cono
et al., 2015; Edgcomb et al., 2016). To date, the number of
facultative and obligate piezophiles is limited to ∼56 (Figure 1A
and Supplementary Table S2) (Picard and Daniel, 2013;
Jebbar et al., 2015). Among the obligate piezophiles, Colwellia
marinimaniae has the highest optimum growth pressure at
120 MPa (Kusube et al., 2017). This psychrophile and the
hyperthermophilic Pyrococcus yayanosii (Zeng et al., 2009),
currently claim the highest pressure limits of growth (140 and
120 MPa, respectively). Although the majority of currently
known piezophiles were isolated following decompression, these
isolates may be notable exceptions, representing only the fraction
of the subsurface biosphere tolerant of decompression. Indeed a
much broader microbial community has been identified in the
subsurface through alternative methods, including genetic and
molecular approaches (Orsi et al., 2013), in situ metabolic rate
measurements (Jørgensen et al., 1992; Kallmeyer and Boetius,
2004; Kallmeyer et al., 2012), intact polar lipid analysis (Zink
et al., 2003; Lipp et al., 2008), stable isotope enrichments (Morono
et al., 2011), cell counts (Parkes et al., 1994), and growth of
viable cultures (D’Hondt et al., 2004; Smith et al., 2011). It
should be noted that many of these observations were made on
decompressed samples. While such results of ambient pressure
experiments might extend our view of the deep biosphere, they
are nonetheless biased toward surface pressures and likely do not
reflect microbial processes at in situ pressure conditions.

The limited number of piezophilic isolates also hinders our
ability to investigate the effects of high-pressure on metabolism
and physiology (Tamburini, 2006). Piezophiles exhibit different
strategies to cope with elevated pressure and maintain cell
integrity over a wide pressure range (Bartlett, 2002; Abe,
2007; Oger and Jebbar, 2010) including (i) cell wall and lipid
membrane biochemistry (DeLong and Yayanos, 1985; Allen
and Bartlett, 2002; Cario et al., 2015); (ii) intracellular salt
content and osmolyte regulation (Martin et al., 2002; Cario
et al., 2016b); (iii) specific high-pressure gene expressions (Kato
and Qureshi, 1999; Campanaro et al., 2005; Simonato et al.,
2006; Vannier et al., 2015; Michoud and Jebbar, 2016); and
(iv) macromolecule structural modulation (Kawano et al., 2004;
Rosenbaum et al., 2012). These unique piezophilic strategies have
been identified via a limited number of high-pressure cultivation
experiments, but there are diverse, uncultured species within
the deep biosphere that undoubtedly have unknown metabolic
and physiological strategies. In the absence of additional isolates,
these unknown functions have been probed with high-pressure
experiments conducted on bulk samples from the deep biosphere
(e.g., sediments, fluids, enrichment cultures). Among these
>200 varied experiments one general trend that has emerged
is that retrieval depth is broadly correlated with a positive
response to elevated pressure (Figure 1B). These results suggest
that decompression and/or ambient pressure conditions are
a challenge for subsurface organisms, and that incorporating
elevated pressure conditions into sampling and experimental
protocols could greatly improve experimental outcomes. Below
we review the sampling and cultivation techniques commonly
adopted in marine subsurface biosphere research, the limitations
inherent to these approaches, and strategies to improve
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FIGURE 1 | (A) Optimal temperature and pressure growth conditions for known piezophiles (light orange circles) and obligate piezophiles (red squares). Gray bars
indicate the reported temperature and pressure growth ranges for each isolate. (B) Collection of natural samples and isolates with sample origins at various depths
and their response to elevated pressure compared to ambient pressure (0.1 MPa). Natural samples (solid), where metabolic activity was monitored, was reported to
have either a negative (solid blue), neutral (solid gray) or positive (solid orange) response to increased pressure compared to growth at 0.1 MPa. Isolated piezophiles
(dotted orange) are described here as having optimum growth at pressures above 0.1 MPa and obligate piezophiles (dotted red) are those that require elevated
pressures for growth and cannot grow at 0.1 MPa. This figure is not an exhaustive list of all natural samples taken from the deep biosphere with reported pressure
tolerances and does not include piezotolerant organisms (optimum growth pressure at 0.1 MPa). Temperature and pressure data for isolates in A,B were collected
from references listed in Supplementary Table S2. Data for natural samples were extracted from Picard and Daniel (2013).

subsurface exploration through technology development and
new collaborative models (Figure 2).

HOW DO WE EXPLORE THE
PIEZOSPHERE?

Since the discovery of deep-sea and subsurface microbial
life (Zobell, 1952; Corliss et al., 1979; Parkes et al., 1994),
the development of advanced instrumentation for observing,
retrieving, and manipulating samples has illuminated some of
the key characteristics of the deep geosphere and biosphere
(Tengberg et al., 1995; Ramirez-Llodra et al., 2010). International
collaboration and national efforts are the hallmarks of subsurface
exploration, including drilling and submersibles. Similarly large
international programs support the research communities that
explore the deep biosphere and improve our knowledge
of the subsurface microbiome (cf. ICOMM – International
Census of Marine Microbes; C-DEBI – Center for Dark
Energy Biosphere Investigations; and DCO – Deep Carbon
Observatory). Only three human expeditions have explored
the deepest part of the ocean (Mariana Trench, 11 km)
(Oppenheimer and Zobell, 1952; Gallo et al., 2015; Fitzherbert,
2019), leaving 95% of the ocean unexplored directly (Ramirez-
Llodra et al., 2010), even though other HOVs (human occupied
vehicles), like the Shinkai 6500 and Nautile that reach up
to 6500 m, allow for indirect exploration of nearly 98%
of the ocean floor. Moreover, a veritable army of landers,
ROVs (remotely operated vehicles), and AUVs (autonomous
underwater vehicles) enable much of today’s deep ocean

exploration (Supplementary Table S1) (Tengberg et al., 1995;
Reysenbach and Götz, 2001; Yayanos, 2001; Tamburini, 2006),
while a new class of Internet operated vehicles (IOVs) and mobile
platforms provide extended monitoring of both the seafloor and
the water column (Aguzzi et al., 2019).

While drilling and exploration vehicles remain few,
instruments to obtain subsurface samples are more numerous
(Supplementary Table S1). The paltry list of isolated piezophiles
reflects the difficulty of both retrieving and cultivating piezophiles
from subsurface samples. Because decompression affects cellular
viability, and because most samples are decompressed during
sample handling, it remains possible that most piezophilic strains
elude current sampling and culturing techniques. Therefore,
several pressure-retaining devices have been developed to
enable sampling without decompression (Jannasch et al.,
1973; Yayanos, 1977; Bianchi et al., 1999; Tamburini et al.,
2013). Recently, Tamburini’s team used a pressure-retaining
sampler in the bathypelagic zone to measure prokaryote activity
under in situ pressure conditions, and demonstrated that
decompression suppresses both piezophilic metabolisms and
water column community composition (Garel et al., 2019).
A similar pressure-retaining sampler was developed as part
of DCO’s PRIME (Piezophile Research Instrumentation for
Microbial Exploration) Facility. The Pressurized Underwater
Sample Handler System (PUSH) is similar to Bianchi’s sampler
(Bianchi et al., 1999), and uses a floating piston system to enable
sampling, transport, transfer, and cultivation of high-pressure
fluids without decompression (Rogers et al., 2016b).

Accessing the deep marine biosphere and retrieving samples at
in situ pressures has proven a significant technological challenge
for deep biosphere exploration, but these improvements can
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FIGURE 2 | Summary schematic of the deep-sea exploration workflow, from sampling to laboratory experiments. Access to deep marine environments is enabled
with submersibles (1 – Sampling), along with the various devices that support 2 – Sample retrieval. 3 – Transfer to the lab and subsequent cultivation techniques often
include batch cultivation, but can also accommodate continuous flow methods, though many of these techniques require sample decompression. 4 – Microbiology
techniques are much more robust for ambient pressure conditions, and high-pressure analogs of these methods require technology development, high-pressure
expertise, and can also increase the costs, and thus decrease the accessibility, of many of these protocols. (Box 1: Alvin picture is reprinted from Woods Hole
Oceanographic Institution website (link: https://www.whoi.edu/oceanus/feature/building-the-next-generation-alvin-submersible/) 2019 Copyright WHOI, ROV Victor
picture is reprinted from Ifremer website (link: https://wwz.ifremer.fr/grands_fonds/Les-moyens/Les-engins/Les-robots/Robots-Ifremer/Le-Victor-6000) 2019
Copyright IFREMER; Box 2: PUSH is a personal picture, Isobaric sampler picture is reprinted from Woods Hole Oceanographic Institution website (link:
https://www.whoi.edu/press-room/news-release/surprisingly-productive-microbes-fuel-deep-sea-ecosystem/) 2019 Copyright WHOI, CTD rosette picture is
Reprinted from NOAA website (link: https://oceanexplorer.noaa.gov) 2019 Copyright NOAA, in situ incubation is reprinted with permission from Rassa et al. (2009).
Copyright 2019 Taylor & Francis Group; Box 3: Reprint with permission from Sauer et al. (2012). © 2012 Sauer, Glombitza, and Kallmeyer (CC BY-NC 3.0). 2019.)

be amplified if subsequent laboratory studies, particularly
cultivation experiments, maintain high-pressure conditions. It
is particularly important to maintain in situ pressure conditions
during sampling, transfer to the laboratory, and throughout
cultivation and storage, in order to avoid decompression bias.
When targeting novel deep biosphere microbes, replicating
in situ environmental conditions (i.e., pressure, temperature,
pH, volatile composition, low nutrients concentrations) and
subsampling without decompression are crucial aspects of
the cultivation process. Since traditional laboratory culturing
techniques are not easily adapted to high-pressure, customized
devices and protocols have been developed. Yayanos and
colleagues, the pioneers of high-pressure microbiology,
developed early high-pressure cultivation apparatus (Yayanos
and Pollard, 1969; Yayanos et al., 1979; Yayanos et al., 1982;
Yayanos et al., 1984; Yayanos, 1986; DeLong et al., 1997), and
these have since been expanded (Taylor and Jannasch, 1976;

Bernhardt et al., 1987; Nauhaus et al., 2002; Takai et al., 2008).
Cultivating piezophiles requires expertise in both high-pressure
equipment (e.g., hydrostatic pumps, high-pressure vessels) (Kato
et al., 2008; Kato, 2011) as well as manipulating high-pressure
cultures. Most of these high-pressure devices are batch reactors,
using a compressible reaction container in static high-pressure
vessels. Typically, a stoppered syringe containing inoculated
growth medium will be pressurized in a hydrostatic pressure
vessel (e.g., Takai et al., 2008). Unfortunately, this setup requires
decompression during subsampling, potentially suppressing
growth rates and cell viability (Cario et al., 2016a; Rogers
et al., 2016a, Oliver, 2019). Variable-volume reactors, like the
PUSH and others (Seyfried et al., 1979; Bianchi et al., 1999;
Cario et al., 2016a; Rogers et al., 2016b; Garel et al., 2019;
Oliver, 2019; Supplementary Table S1), can overcome this
limitation, and have recently been used for batch cultivation
without decompression, identifying two pressure-tolerant
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strains previously thought to be pressure-sensitive (Cario et al.,
2016a; Oliver, 2019). This technology has been extended to
allow for high-pressure transfer (Oliver, 2019), a crucial step
in replicating traditional liquid culture microbial cultivation
and expanding the possibilities for high-pressure isolation
from enrichment cultures. A further improvement that better
replicates natural geological environments are continuous
flow-through systems. Jannasch and colleagues first developed
a high-pressure (71 MPa maximum) continuous culture system
for low temperatures (Jannasch et al., 1996). Sauer et al. designed
a flow-through bioreactor (120◦C and 60 MPa) that allows
for volatile equilibration of the culture medium, subsampling
without decompression, and the inclusion of a solid phase (Sauer
et al., 2012). Recently, in the Rogers’ lab, a similar continuous
flow reactor was built that extended this pressure range to
100 MPa and incorporated a module for sample fixation prior to
decompression (Supplementary Table S1).

Deep ocean sediments can also host a significant portion of the
subsurface biosphere (Jørgensen and Boetius, 2007; Kallmeyer
et al., 2012; Lloyd et al., 2013); However, retrieving deep ocean
sediments and maintaining in situ pressures during cultivation
and transfer of sediment present additional challenges. High-
pressure sediments have been retrieved during drilling with
pressure-coring systems (Reed et al., 2002; Kubo et al., 2014), but
only the DeepIsoBUG system (Parkes et al., 2009) can transfer
sediment under pressure for subsequent cultivation. Otherwise,
most methods developed for high-pressure incubation and
enrichment of sediments require decompression. Nonetheless,
these devices can accommodate general batch cultivation,
enhanced volatile concentrations, and flow-through conditions,
and have confirmed that microbial metabolic rates are faster
at elevated pressures in the presence of increased volatile
substrate concentrations (Nauhaus et al., 2002; Bowles et al.,
2011; Sauer et al., 2012). Given the extent of the subsurface
microbiome contained in deep-sea sediments, the deleterious
impact of decompression, and the documented importance of
elevated pressure on growth and metabolism, expansion and
improvement of high-pressure sediment manipulation remains
ripe for high-impact technological developments.

WHAT ARE THE LIMITS?

In the modern era of microbiology, the capabilities of Earth’s
extremophiles have far outpaced our ability to conceive of the
bounds of habitability. For each perceived limit – temperature,
pressure, pH, energy flux, etc. – a novel and hard-to-imagine
extremophile has surpassed expectations and extended the
reach of potential habitable environments. In contrast, our
technological capabilities have not kept pace with this ever-
expanding habitable envelope. Even with the current known
temperature and pressure limits of life, we have not yet explored
most of the habitable subsurface. The primary limitations are the
expense of drilling and oceanographic expeditions, together with
technological limitations for sampling and sample manipulation.
In the deepest parts of the ocean, pressures can reach 110 MPa,
and access to these environments is limited to only a few

ROVs and landers. Recently, Bartlett and colleagues developed
a modular lander capable of sampling these hadal trenches
at depths greater than 6000 m (Peoples et al., 2019). While
spatially limited, these regions nonetheless represent 45% of the
depth range of the ocean (Jamieson, 2015). Sampling at these
pressures also poses technological challenges, as most samplers
are designed to access meso- and bathypelagic zones (200–1000
and 1000–4000 m, respectively), and only a few are designed to
reach deeper zones. Access to subsurface crustal and sedimentary
ecosystems is limited by drilling technology, and high-pressure
retrieval of solid-phase samples is rare. To our knowledge only
fluid samples have been collected from deep crustal aquifers at
in situ pressures (Hatanpää et al., 2005; Hallbeck and Pedersen,
2008) and high-pressure sediment retrieval is pressure-limited
(Kubo et al., 2014). These latter examples highlight one of the
more daunting challenges to understanding the deep biosphere,
which is the scarcity of samples. Subsurface sampling is not
only sparse, but often targets specific kinds of environments
(e.g., hydrothermal systems, trenches, etc.), resulting in a lack
of coverage for the “average” deep subsurface. Therefore, it is
difficult to extrapolate across the entire subsurface biosphere,
leaving large errors on our estimates for subsurface biomass, as
well as metabolic, physiologic and genetic diversity.

CHALLENGES, INNOVATIONS AND
OPPORTUNITIES

The last few decades have witnessed a dramatic increase in
subsurface exploration and research, extending our access to
and understanding of the deep biosphere, nonetheless, sampling
and analysis challenges remain. Here we focus on four areas of
opportunity for innovation (Figure 2): (i) sampling at in situ
pressure conditions; (ii) high-pressure cultivation techniques;
(iii) dissemination of high-pressure skills among the community;
and (iv) increasing participation and/or incorporation of high-
pressure sampling into deep-sea and drilling expeditions. We
propose that community priorities going forward focus on
deepening our knowledge of the deep biosphere and its role
in global biogeochemical cycles, particularly by addressing
technology development and implementing novel management
and collaborative models to increase community access to high-
pressure samples and devices.

Despite the ubiquity of prokaryotes within the deep biosphere,
only a limited number have been cultivated (e.g., 0.1%) (D’Hondt
et al., 2004). Illustrative of this point is the distribution of the
isolated piezophiles (Figure 1A), with pressure maxima among
the psychrophiles of the hadal zones and vent hyperthermophiles.
The moderate temperature and pressure regime (e.g., ∼20
–60◦C and ∼40–80 MPa) lacks piezophilic isolates despite the
prevalence of such conditions within deep-sea sediments (Picard
and Daniel, 2013). Similarly, the moderate pressure extent of the
isolated hyperthermophilic piezophiles (Popt < 80 MPa) reflects
the conditions of the most accessible fluids from mid-ocean
ridge high-temperature vents. Ecosystems at higher pressures and
more moderate temperatures (e.g., subduction zones, crust off-
axis of spreading centers) are among the least accessed habitats
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of the subsurface. Exploring the full breadth of the piezosphere
will require new drilling and sampling techniques targeting
high-pressure retrieval and manipulations of rock and sediment
samples. More broadly across the piezosphere, better cultivation
methods that mimic in situ environmental conditions (i.e.,
temperature, pressure, chemical composition), could improve
enrichment and isolation of novel piezophiles. Targeting several
metabolic and physiologic niches requires scaling up high-
pressure cultivation either by vastly increasing the number of
pressure vessels or developing new technologies for multiplexing
techniques (Kallmeyer et al., 2003). The deep biosphere also
hosts microbial communities with slow metabolic rates surviving
on minimal energy sources (D’Hondt et al., 2002). Traditional
enrichment and isolation techniques favor fast growth under
high-energy conditions, and are less likely to capture the slow
pace of the deep biosphere microbiome. In situ or long-term
incubations could help target the deep slow biosphere, but
these require innovations for long-term incubations and high-
pressure retrieval. While it is clear that every microbiological and
molecular tool should be brought to bear to understand the deep
biosphere, many of these need to be adapted to accommodate
the elevated pressures of the subsurface. For example, monitoring
metabolic rates during controlled incubations often relies on
radiolabeled substrates (Frank et al., 2015), but adding radioactive
material to pressure vessels introduces significant shipboard and
laboratory safety concerns. Electrochemical monitoring of in situ
chemistry during laboratory cultivation is also quite common
in benchtop microbiology, but a more significant technological
challenge when incubations are conducted at elevated pressures.
Visualizing cells and microbial communities with high-pressure
microscopy can be accomplished via specialized equipment (e.g.,
DACs), but is hardly as routine as it is in the traditional
microbiology workflow. Even the most basic methods like
dilution-to-extinction isolation protocols, proteomic analyses, or
compound-specific stable isotope measurements, require either
large numbers or larger volumes of high-pressure devices,
limiting wide-spread use.

Molecular techniques, which are often used to give a more
robust picture of microbial diversity compared to cultivation-
based approaches, have indeed revealed that subsurface microbial
diversity is broader than that represented by the cultivated
piezophiles (Orsi et al., 2013). However, recent work suggests
that even molecular techniques can suffer from decompression
bias (Garel et al., 2019). Nonetheless, continued application of
next-generation –omics techniques could further elucidate the
diversity and activity of the subsurface microbiome (Nunoura
et al., 2010), and be used to improve culturing efforts. For
example, GeoChip-based high-throughput metagenomics have
highlighted metabolic functions within dynamic microbial
communities (He et al., 2007; Wang et al., 2009). Furthermore,
the combination of stable-isotope probing (Webster et al.,
2010; Lin et al., 2013; Fortunato and Huber, 2016), FISH-SIMS
(Behrens et al., 2008) and single-cell sorting (Lasken, 2007)
could further elucidate the links between microbial diversity,
environmental conditions, and ecosystem processes, and develop
more robust models of the deep biosphere and its connection to
long-term biogeochemical processes.

Finally, we believe that sharing high-pressure expertise and
equipment within the deep biosphere community, and expanding
the scope of high-pressure microbial research, will advance
our understanding of the deep biosphere. The number of
facilities that can sample and manipulate subsurface samples
at in situ pressures is considerably smaller than the number
of research groups that regularly sample and study the deep
subsurface. The barrier to entry (expense and expertise) into
high-pressure techniques is high, but better coordination and
new collaborative models can change this paradigm. The DCO,
via the PRIME facility, supported the purchase of several PUSH
samplers to share within the community, with the goal of
isolating and characterizing more piezophilic microorganisms.
However, equipment sharing will only be successful if it is
accompanied by the requisite personnel and expertise. Therefore,
new collaborative models that include equipment, personnel, and
funding need to be developed to keep community-wide facilities
successful and sustainable.

The Earth’s deep biosphere not only represents a crucial
segment of the global biosphere and modern biogeochemical
cycles, but it also serves as a window into Earth’s habitable
environments throughout its history. Furthermore, as the
exploration for life beyond Earth shifts to other solar system
bodies, including the subsurface of Mars (Stamenković et al.,
2019), or the subsurface ocean worlds of Europa, Enceladus
and other moons, understanding how these environments can
foster life becomes crucial to this exploration. Therefore, the
technology developed to explore Earth’s modern deep biosphere
will eventually become a key component of missions to these
bodies to search for signatures of extant extraterrestrial life or its
remnant biosignatures.
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