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A new open–source software tool, called GLAM BioLith–RT (Glacier Lakes Assisted

Melting Biological Lithological Radiative Transfer), has been developed for modeling

of Radiative Transfer (RT) in water bodies containing suspended lithic particles,

phytoplankton, dissolved salts, and colored dissolved organic matter. Although our

objective is an application to glacial lakes of High Mountain Asia, the model has potential

application for the study of seawater, organic-rich lakes, rivers, etc. The tool is built on a

solid foundation of an existing published open-source code called WASI, which has been

reviewed and augmented with new capabilities, notably the addition of a suspended

lithic particle grain size parameterization. GLAM BioLith-RT operates in both a forward

modeling and inverse modeling mode. The forward mode is specifically designed to

compute the reflectance spectra of glacier lakes from inherent optical water properties.

Conversely, in the inverse mode, measured spectral reflectance is employed with other

inputs to derive best fitting water component properties (e.g., suspended particles

concentration). The inverse modeling includes Bayesian inversion of the output which is a

significant advance over the existing software. We have tested the code for sensitivity to

noise, and uncertainties in input parameters. The model succeeds in nearly reproducing

the hyperspectral reflectance of some glacial lakes in Nepal as observed by the EO-1

Hyperion hyperspectral imager. The inverse modeling approach, when supported up

by validated forward modeling, offers a means for remote sensing characterization of

suspended sediment load in glacial lakes and rivers and hence, use of suspended

sediment as a proxy for glacial activity; and many other potential applications in other

thematic areas.

Keywords: remote sensing, Bayesian inversion, glacial lakes, hyperspectral/multispectral reflectance, suspended

sediment, Inverse mode problem, forward mode, radiative transfer
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1. INTRODUCTION

Satellite multispectral imaging offers much-used capabilities for
efficient mapping of lakes and rivers (Chikita et al., 1999;
Wessels et al., 2002; Giardino et al., 2010; Watson et al., 2017).
Less developed are approaches to the characterization of lakes
and rivers for their water quality and other properties by
multispectral and hyperspectral imaging (Wessels et al., 2002;
Ritchie and Everitt, 2003; Dornhofer and Oppelt, 2016). Relevant
to the application motivating this work, we observe that glacial
lakes have wide-ranging visible colors in the visible (Figure 1)
and differing Near Infrared (VNIR) and Short-wave Infrared
(SWIR) reflectances (Giardino et al., 2010). These “colors” are
caused by suspended sediment. Clearly, there is quantifiable
information about the suspended sediment contained in lakes
(any lakes, not just glacial) in the multispectral and hyperspectral
VNIR and SWIR reflectance spectrum (Giardino et al., 2010).
From a first principle standpoint, the observable (measured)
photon flux collected by space-based remote platforms hit
the detector after a long journey that includes interaction
with both water bodies in glacier lakes and atmosphere and
undergo a variety of physical processes including scattering and
absorption with the participation medium. Thus, there is a
physical link between the observed photon flux (radiance) and
the optical properties of the components comprising the makeup
of glacier lakes. The latter can be accounted by adequately
describing the absorption coefficient, backscattering coefficient,
beam attenuation coefficient, and single backscattering albedo
which are Inherent Optical Properties (IOP) of a water body.
Conversely, remote sensing reflectance (Rrs) is among the
Apparent Optical Properties (AOPs) of a water system (what a
satellite sensor observes). The water physical components such
as phytoplankton, detritus, colored dissolved organic matter,
dissolved salts, and inorganic particles influence the IOPs. The
IOPs along with the incoming light geometric distribution and
the atmospheric conditions affect the AOPs. The physical link
between water components concentrations, IOPs, incoming light
geometric distribution, atmospheric conditions, and AOPs are
usually described by the Radiative Transfer (RT) equation which
accounts for the balance of photons (scattered, absorbed) to
model and compute the spectral reflectance collected by the
remote sensor [e.g., Bio-Lithological Optical/Radiative Transfer
(RT) models (Giardino et al., 2012)].

In this paper, we developed and tested, on synthetic and real
data, a new open-source software tool named GLAM BioLith-RT
that can be used for remote sensing reflectance simulation
(forward modeling) and water components concentration
retrieval (inverse modeling) in surface water of a lake, river,
or sea. The software tool development is intended to allow
both forward and inverse modeling of the radiative transfer
influences, hence reflected spectrum, of water containing
suspended lithic and phytoplankton particles, dissolved organic
matter, and dissolved salts. GLAM BioLith-RT is built on
Bio-Lithological Optical/RT Semi-Analytical models that
are analytical parameterization of the commercial software
Hydrolight (Lee et al., 1998, 1999; Albert and Mobley, 2003;
Gege, 2015). The software is optimized for use with hyperspectral

FIGURE 1 | Low altitude oblique air–photo of Everest–area lakes and our

regions of interest, ROI 1 (Imja Lake) and ROI 2 (Amphulapcha Lake). These

lakes contain, respectively, large amounts of coarse silt and smaller amounts

of fine silt, resulting in pronounced color differences. Both lakes are optically

thick, except very near their shores.

reflectance data, such as derivable from EOS-1 Hyperion
imagery. It works in the following way:

• Forward modeling. Simulation of the spectral remote sensing
reflectance given the input: model parameters and the control
variable (wavelength in the visible range). This calculates the
color that an eye would see, or the spectrum of a lake as a
satellite might see, based on measured or arbitrary lake water
and suspended sediment properties.

• Inverse modeling. Water component concentrations retrieval
via optimization techniques given simulated and observed
remote sensing reflectance. This modeling approach starts
with what a satellite might see and determines something
about the lake sediment properties (concentration, grain
size, etc.).

Figure 2 shows the flowchart of the approach used in
the software.

Recently, a few open–source software programs have been
developed for remote sensing reflectance simulation and water
physical components abundance retrieval. The two primary
examples of such software that have been reported in the
literature are (1) Bio-Optical Model-Based tool for Estimating
water quality and bottom properties from Remote sensing images
(BOMBER, Giardino et al., 2012) and (2) Water Color Simulator
WASI (Gege, 2015) which have been validated and employed
for the characterization of Lake Trasimeno (Italy) and Lake
Constance (Austria, Germany, and Switzerland). These are two
very different lakes. Lake Constance is a deep glacial meltwater
fed lake having fine-grained suspended lithic rock “flour” as well
as phytoplankton. Lake Trasimeno is a shallow endorheic lake
with a muddy bottom and abundant coarse-grained suspended
silt, phytoplankton, and dissolved organic matter. These lakes
provided the authors ofWASI and BOMBERwith a wide range of
lake water properties. Our applications are for glacial rock-flour-
dominated lakes, but GLAM BioLith RT can be used for marine
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FIGURE 2 | Flowchart of the approach used in the software.

waters or almost any type of inland water (Ludovisi and Gaino,
2010; Marchegiano et al., 2019).

The existing software use standard constrained optimization
techniques for the particle concentrations retrieval. These
standard optimization techniques attempt to solve an inverse
retrieval problem using a deterministic approach where a set
of parameters that minimizes the square difference between
modeled and observed reflectance is found. However, inverse
problems are known to be ill-posed in the sense of Jacques
Hardamand (Kimes et al., 2000) and thus it becomes very hard to
quantify the uncertainty in the retrieved quantities mainly due to
the noise in the observed data and the uncertainty in the untuned
input parameter real values. GLAM BioLith–RT overcomes
the issue using more recently developed Bayesian inversion
techniques. In the Bayesian inversion framework, the estimated
parameters are assumed to be random variables. Hence the
output of the inversemodeling will be the probability distribution
for each of those quantities. With this approach, the degree of
uncertainty of the water component concentrations actual values
is included in their probability distributions (Schiassi et al., 2016).
Importantly, GLAM BioLith-RT code is developed and deployed
in a modular source format. Thus, the user has access and can
modify all the scripts and the functions provided according to
his/her tasks (where GLAM BioLith-RT can accomplish those).
Moreover, newmodules and functions can be added according to
the user’s needs.

The paper is organized as follows. In section 2, the biological
lithological and radiative transfer models used for the forward
modeling are presented, along with the methodology used for
the inverse modeling. Examples of Rrs simulations and particle

concentrations retrieval, with syntethic and real data, are shown
in section 3. In Appendix B, GLAM BioLith-RT’s main features
are presented, for the convenience of the user.

2. GLAM BIOLITH–RT: THEORETICAL
FOUNDATION AND MODELING
APPROACH

2.1. Forward Modeling
For both case–1 (open sea and oceans) and case–2 water (coastal
zones, lakes, estuaries, etc.) GLAM BioLith-RT performs remote
sensing reflectance simulations given the water component
concentrations, the wavelength, the geometry of the light field,
and the atmospheric conditions. The BioLith-RT model used in
GLAM BioLith-RT is based mainly on the models presented in
Gege (2014, 2015) and Albert and Mobley (2003). As shown in
the flowchart, the BioLith model computes the IOPs, given the
water component concentrations and the wavelength. The RT
model uses the computed IOPs, the given geometry of the light
field, and the given weather conditions to simulate the spectral
remote sensing reflectance.

2.1.1. BioLith Model
The biological lithological model for the IOPs computation is
based on the models presented in Gege (2015) and Albert and
Mobley (2003). Those models are validated using mainly in–
situ measurements from Lake Constance (Gege, 2015) and Lake
Trasimeno (Giardino et al., 2015). Thus, this model is expected
to work with high accuracy for these kind of lakes. The user has
to be careful when using the same biological lithological model
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for different kind of lakes as it can lead to less accurate results if
the lake biological–mineralogical compositions are significantly
different from Lake Constance and Lake Trasimeno type lakes.

In thismodel, three types of water components are considered:
phytoplankton ph, Color Dissolved Organic Matter CDOM,
and Suspended Particle Matter SPM 1. At this stage, since
we are dealing with case–2 water types, according to Gege
(2015) and Albert and Mobley (2003) we are neglecting the
presence of phytoplankton among the SPM. Therefore, SPM
is made only by lithic particles. The IOPs calculated with
the BioLith model are: absorption coefficient, backscattering
coefficient, beam attenuation coefficient (sum of the previous
two), and single backscattering albedo (ratio of backscattering
over beam attenuation).

2.1.1.1. Absorption coefficient
The total absorption coefficient is the sum of the water absorption
coefficient and the absorption coefficients of the components
listed above. That is:

a(λ) = aW(λ)+ aph(λ)+ aCDOM(λ)+ aX(λ) (1)

The pure water absorption coefficient is the water absorption
coefficient at a reference temperature ofT0 = 293.15 K [imported
from database available with the software, which is combined
from different sources (Gege, 2015)].

The phytoplankton absorption coefficient is modeled as the
sum of chlorophyll-a and phaeophytin-a:

aph(λ) =
(

a0(λ)+ a1(λ) ∗ log(aph(440)
)

∗ aph(440) (2)

where aph(440) = 0.06 ∗ C0.65
ph

, with Cph is the phytoplankton

concentration in mgm−3.
The CDOM absorption coefficient is modeled as

Babin et al. (2003):

aCDOM(λ) = aCDOM(λ0)a
∗
CDOM(λ) (3)

where aCDOM(λ0) is the CDOM absorption coefficient at λ0 =

440 nm, linked to the CDOM concentration, and a∗CDOM(λ) is
the specific absorption coefficient normalized to 1:

a∗CDOM(λ) = e−SCDOM(λ−λ0) (4)

The SPM absorption coefficient is modeled as Babin et al. (2003):

aX(λ) = aX(λ0)a
∗
X(λ) (5)

where aX(λ0) is the SPM absorption coefficient at λ0 = 440
nm, linked to the SPM concentration, and a∗X(λ) is the specific
absorption coefficient normalized to 1:

a∗X(λ) = e−SX(λ−λ0) (6)

1According to Gege (2015) and Albert and Mobley (2003) a subscripted X is also

used to refer to the SPM.

2.1.1.2. Backscattering coefficient
According to Gege (2015), in the BioLith model used in
our software only SPM and the water contribute to the
backscattering. That is:

bb(λ) = bb,W(λ)+ bb,X(λ) (7)

The pure water backscattering coefficient is modeled as in Gege
(2015) following the empirical relation of Morel (1974):

bb,W(λ) = b1

(

λ

λ1

)−4.32

(8)

where b1 = 0.00111 m−1 for fresh water (case-2 water) or b1 =

0.00114 m−1 for water with 3.5 − 3.8 % salinity (case-1 water),
and λ1 = 500 nm (Gege, 2015).

The SPM backscattering coefficient is modeled as follows:

bb,X(λ) = CXb
∗
b,X(λ) (9)

where CX in gm−3 is the SPM concentration and b∗
b,X

(λ)
is the specific backscattering coefficient which is considered
wavelength independent, in the visible range, for many type of
waters (Albert and Mobley, 2003). Often, this parameter is not a
constant, but it is function of both the grain size and the single
back scattering albedo ωb,X . In WASI, b∗

b,X
= 8.6 m2kg−1, which

corresponds to spherical perfect scattering particles with grain
size of r = 33.57 × 10−6 m, as we back-calculate next. As first
approximation for the back-calculation, we consider the lithic
particles as perfectly reflecting spherical scatterers. If there was
one particle of mass 1 kg, its volume would be V = mass

density
=

0.000385 m3, considering a density of 2600 kg m−3. Thus, 1 kg

particle’s radius is R = ( 34
V
π
)
1
3 = 0.04511 m. The subtended area

for that single 1 kg particle (the area that a beam of photons would
intersect) is then equal to πR2 = 0.0064 m2. However, the 1 kg of
particles giving that backscatter coefficient value is disseminated
in many small particles having a larger total surface area than the
one just calculated. The ratio area over the volume of a sphere
is proportional to 1

R . For perfectly scattering particles giving the
above-stated backscatter coefficient, the total area of grains giving
WASI’s specific backscattering coefficient 0.0086 m2g−1 is 8.6 m2.
That is, the summed areas of the subtended circles of the relevant
small grain diameter divided by the circular cross-sectional area
of the single 1 kg grain is then 8.6

0.0064 = 1, 343.75. Hence, it follows
that the small particles have a radius of factor 1,343.75 smaller
than the single 1 kg particle, namely 0.04511

1,343.75 = 33.57 × 10−6 m
= 33.57µm, which is the back calculated grain size that gives the
WASI’s value of the specific backscattering coefficient. This is the
size of very fine sand. This calculation is for perfect scatterers.
If we drop the perfect scatterers assumption, the particles will
have a single backscattering albedos ωb,X lower than 1 (ωb,X = 1
for perfect scatterers). Thus, the total area of particles must be
increased and the particle radius decreased by a factor 1

ωb,X
. From

this it follows that the backscatter coefficient is a function of
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both the grain size (radius) and the single backscattering albedo
(which is wavelength dependent). That is:

b∗b,X[m
2g−1] =

0.0086[m2g−1]× 33.57× 10−6[m]

r[m]× ωb,X
, (10)

where r is the SPM grain size.

2.1.2. Radiative Transfer (RT) Model
As mentioned above, the RT model used to compute the spectral
remote sensing reflectance Rrs(λ) is an analytical parametrization
of the commercial software Hydrolight, based mainly on Gege
(2015), Lee et al. (1998), Lee et al. (1999), and Albert and Mobley
(2003). Rrs(λ) is defined as the ratio of the upwelling radiance
to the downwelling irradiance (the former is the radiation field
directed in the upward hemisphere and the latter is directed in
the downward hemisphere). This subsection describes howRrs(λ)
is computed in GLAM BioLith-RT. As Rrs(λ) is calculated as in
Gege (2015) and Albert and Mobley (2003), for the sake of clarity
the same notation used in Gege (2015) and Albert and Mobley
(2003) will be adopted here. Gege (2015) and Albert and Mobley
(2003) compute Rrs(λ) taking in consideration the radiative
influence of the water column and the air above the water surface.
Below the water surface (water column contribution), the remote
sensing reflectance is computed both for deep water and shallow
water (in the former the bottom contribution to the remote
sensing reflectance is trivial). The user can select whether to use
case–1 or case–2 water, and deep or shallow water.

For case–2 deep water the remote sensing reflectance below
the surface is modeled as follows:

R−rs (λ) =
R(λ)

Q
(11)

The factor Q measures the light field anisotropy into the
water. Q is wavelength dependent, but as no convenient
parameterization is known it is considered constant. In Gege
(2015), Q = 5 steradians (sr) by default, and so it is here.
The irradiance reflectance R(λ) is computed by using the
following parameterization:

R(λ) = f (λ)ωb(λ) (12)

where the factor f considers the dependency of R(λ) on
the light field properties. As previously mentioned ωb is the
single backscattering albedo and is defined as the ratio of the
backscattering coefficient to the beam attenuation coefficient:

ωb(λ) =
bb(λ)

a(λ)+ bb(λ)
(13)

An alternative form to Equation (11), which is used inWASI and
in our software, is given by:

R−rs (λ) = frs(λ)ωb(λ) (14)

The factor frs(λ) sr
−1 is modeled as follows:

frs(λ) = 0.0512
(

1+ 4.6659ωb(λ)− 7.8387ω2
b(λ)

+5.4571ω3
b(λ)

)

(

1+
0.1098

cos2′
sun

) (

1+
0.4021

cos2′
V

)

(15)

where 2′
sun is the solar zenith angle viewed within the

water after refraction and 2′
V is the viewing angle

viewed within the water after refraction (both in radians).
Notice that:

frs(λ) =
f

Q
(16)

For case-1 deep water, the remote sensing reflectance is modeled
as in 14, where frs(λ) = 0.095 sr−1 (Albert and Mobley, 2003).

The remote sensing reflectance below the surface for shallow
water is modeled as follows:

Rsh−rs (λ) = R−rs (λ)
[

1− Ars,1e
−zB(Kd(λ)+kuW (λ))

]

+Ars,2R
b
rs(λ)e

−zB(Kd(λ)+kuB(λ)) (17)

On the right-hand side, we sum the remote sensing reflectance
of a water slab with thickness zB and the remote sensing
reflectance of the lakes’s bottom seen at the lake surface within
the water column. All the terms in Equation (17) are the
same as in WASI (Gege, 2015), and for the convenience of
the reader they are described and computed in details in
the Appendix.

2.2. Inverse Modeling: Parameters
Retrieval Methodology
By default, the decision variables for the inverse modeling
are the water component concentrations Cph, CCDOM , and CX .
All the other parameters described in the previous sections
are considered fixed and will not be fit in the optimization
problem. The inversion of the model can be done with standard
constrained optimization, Bayesian inversion, or a combination
of the two.

2.2.1. Bayesian Inversion vs. Standard Constrained

Optimization
In our software, the inverse modeling is a typical example of
inverse problem to parameters’ estimation, where the goal is
to characterize a physical system, water systems in our specific
case. As stated in Kolehmainen (2013), inverse problems to
parameters’ retrieval are in general ill-posed for two main
reasons; (1) the problem is non-unique as most of the times
we deal with more unknowns than data/measurements, and
(2) the stability of the solution, to modeling errors and noise
in the data, is not guaranteed. Inverse problems are usually
solved via standard constrained optimization, which uses a
deterministic approach to solve the problem. That is, standard
optimization techniques consider the adjustable values to be
deterministic. This causes the inverse problems’ outputs to
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be fixed quantities. However, these quantities are affected by
uncertainties that need to be computed. Unfortunate, uncertainty
estimations (usually done via regularization techniques, e.g.,
Tikhonov regularization) are not trivial to perform; and they
can lead to poor results, especially when the problem is ill-
posed, which is the case for most of the inverse problems of
interest. Moreover, inverse problems when they are nonlinear
or non-convex, or both, have more local minimum solutions.
Therefore more than one acceptable solutions can be found, and
it becomes challenging to select the best one via the classical
optimization framework (Aster et al., 2013). In the Bayesian
framework, the parameters to retrieve are considered themselves
as random variables. Thus, the solution of the Bayesian inversion
is the probability distribution of each one of those quantities.
This distribution is the combination of the prior distribution
for the model parameters with the collected data. The main
advantage of using the Bayesian framework to solving inverse
problems is that, as the outputs are probability distributions,
we automatically get more information about the parameters
we want to estimate. That is, at last our goal is to retrieve a
specific value for the quantity we want to estimate; and this
value can be, for instance, the mean of the posterior distribution
(which will be the same value that we would get via solving the
problem via regularized least square method, when the posterior
is normal). However, as we deal with probability distributions,
along with the mean, we will have the estimate of the variance
which is a valuable piece of extra information to evaluate our trust
in the retrieved estimations (Theodoridis, 2015). Moreover, as
stated in Schiassi et al. (2016) and Kolehmainen (2013), another
advantage of the Bayesian approach is that ill-posedness are
removed by using prior information about the solutions. Since
all variables are considered random, the randomness reflects
the uncertainty about their true values; and the degree of
uncertainty is intrinsically coded in the probability distribution
of these variables.

2.2.2. Standard Constrained Optimization
In the classical constrained optimization the water
characterization is done by solving the following optimization
problem:

• Data: remote sensing reflectance measured by satellite at
different wavelengths Rrealrs,i , where the index i = 1, . . . ,N refers
to the wavelengths, and all the parameters that will not be
tuned and hence are fixed.

• Decision Variables: water component concentrations Cj,

where the index j refers to the jth water component

• Objective Function: Res =
∑N

i=1

(

Rrealrs,i − Rrs,i

)2

• Constrains:

– Rrs,i = BioLith_RT(λi|Fixed
2,C), i = 1, . . . ,N. Where Rrs,i

is the remote sensing reflectance simulated by our software
at different wavelengths

– C = [Cph,CCDOM ,CX] ≥ 0

2Fixed is a structure containing the values of all the fixed parameters that will not

be tuned in the optimization problem.

• Optimization Problem: The overall optimization problem is
defined as a non-linear quadratic minimization problem, i.e.:

minimize
C

Res =

N
∑

i=1

(

Rrealrs,i − Rrs,i

)2

subject to Rrs,i = BioLith_RT(λi|Fixed,C), i = 1, . . . ,N

C = [Cph,CCDOM ,CX] ≥ 0

2.2.3. Bayesian Inversion
As previously stated, with the classical constrained optimization
framework, the parameters we seek to retrieve are considered
as deterministic quantities. By explicitly adding random noise
to the model we can estimate the uncertainty about their true
values. But this strategy is not trivial and can lead to the
introduction of strong model assumptions and model bias,
especially when the problems are ill-posed. In the Bayesian
approach, the parameters to estimate are considered themselves

FIGURE 3 | Spectral remote sensing reflectance vs. wavelengths and CDOM

concentration.

TABLE 1 | Simulated scenarios for CDOM concentration variation.

CCDOM [mg m−3]

Scenario 1 0.0000

Scenario 2 0.3000

Scenario 3 2.0000

Scenario 4 5.0000

TABLE 2 | Simulated scenarios for SPM concentration variation, fixed grain size.

CSPM [g m−3] r [µm]

Scenario 1 0.0000 3.36

Scenario 2 0.1000 3.36

Scenario 3 1.0000 3.36

Scenario 4 10.0000 3.36
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as random variables. The solution of a Bayesian optimization
is the probability density distribution of each parameter to fit.
According to Kolehmainen (2013) the degree of uncertainty is
embedded in these densities and the random nature of these
variables reflects the uncertainty on their true values. This
distribution is called posterior and is the combination of the
prior distribution, for the quantities to estimate, with the
observed data via the Bayes’ rule (Rogers and Girolami, 2003;
Schiassi et al., 2016):

π(x|m) =
πpr(x)Ŵ(m|x)

π(m)
(18)

where, in accordance with the notations in Schiassi et al.
(2016), m are the observed data, x are the parameters to
retrieve, Ŵ(m|x) is the likelihood function (i.e., the probability
distribution for the observed data given the parameters to
retrieve), πpr(x) is the prior distribution for the parameters to
fit, and π(m) is themarginal likelihood (normalization constant).
The posterior distribution is then used to compute expectation in
the form:

< fm(x) >=

∫

Rn
dxfm(x)π(x|m) (19)

FIGURE 4 | Spectral remote sensing reflectance vs. wavelengths and SPM

concentration, fixed grain size.

TABLE 3 | Simulated scenarios for SPM grain size variation, fixed concentration.

CSPM [mg m−3] r [µm]

Scenario 1 0.1000 0.40

Scenario 2 0.1000 1.00

Scenario 3 0.1000 10.00

Scenario 4 0.1000 33.60

In the cases of interest quantities such as 19 are impossible
to evaluate analytically. Thus either approximation or sampling
techniques must be used. Especially when n is large the sampling
techniques are the best choice as they allow to sample directly
from the true posterior. To sample directly from the posterior
Markov Chain Monte Carlo (MCMC) methods are used. There
are many algorithms to perform MCMC sampling. The most
common one is the Metropolis-Hastings (MH). Haario et al.
(2006) presents other widely used algorithms such as the
Adaptive Metropolis-Hastings (AM), Delayed rejection (DR), or
their combination called DRAM, which will be used for our
parameters retrieval.

In our software, by default, we consider uninformative priors,
i.e., πpr(Cj) = N(0,∞) for each j, and the following likelihood:

Ŵ(Rrsreal|λ,C,Fixed) =

N
∏

i=1

N
(

Rrsmodel
i (λi,C,Fixed), σ

2
)

,

where Rrsreali (λi) are random variables defined as follows:

Rrsreali (λi) = Rrsmodel
i (λi,C,Fixed)+ εi

Assuming that εi are i.i.d.∼ N(0, σ 2), it follows that:

p
(

Rrsreali |λi,C,Fixed
)

= N
(

Rrsmodel
i (λi,C,Fixed), σ

2
)

,

with C = [Cph,CCDOM ,CX] ≥ 0

2.2.4. Combination of Classical and Bayesian

Inversion
The combination of classical and Bayesian frameworks in solving
inverse problems works in two the sequential steps, (1) classical

FIGURE 5 | Spectral remote sensing reflectance vs. wavelengths and SPM

grain size, fixed concentration.
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constrained optimization is performed to compute the water
component concentration values to be used as a first guess
for the MCMC sampling process, and (2) Bayesian inversion
as described above. The motivation in combining the two
frameworks is to speed up the convergence of the Bayesian
inversion. When the problem is heavily ill-posed, or we do not
have prior knowledge so that we have to use uninformative priors,
the convergence of the Bayesian inversion can be slower if we
poorly chose the first guess to initiate the MCMC sampling.

3. RESULTS AND DISCUSSIONS

In this section, results from both forward modeling mode and
inverse modeling mode are presented and discussed. All the
inputs and outputs are listed in details in the Appendix B.
For the forward modeling mode the following examples are
considered, (1) water with different CDOM concentrations, (2)
water with different SPM concentrations and fixed grain size,
(3) water with different SPM grain size, and fixed concentration,
and (4) a model with parameters selected to match Hyperion
hyperspectral data for two glacier lakes in Nepal. In the examples
2 and 3, SPM is idealized as pefect scatterers.
For inverse modeling mode the following examples are showed,
(1) concentrations retrieval using synthetic remote sensing

reflectance data (for sensitivity analysis) for lakes containing
both organic components (phytoplankton and CDOM) and
minerals (SPM), and (2) concentrations retrieval using Hyperion
hyperspectral data for Imja lake (Nepal).

3.1. Forward Modeling Mode: Simulations
For the first three sets of simulations the following fixed
parameters are considered: case–2 water, view and sun zenith
angle 0 and 40 degrees respectively, shallow water, 4 m bottom
depth, only sediment in the bottom composition, Angstrom
exponent= 1.317, atmospheric pressure= 1013.25 mbar, relative
humidity=0.60, scale height for ozone= 0.300 cm, scale height of
the precipitable water in the atmosphere= 2.500 cm. For the last
simulation, we consider: case–2 water, view and sun zenith angle
0.98 and 51.2 degrees respectively (angles with which the image
was taken), deep water, Angstrom exponent= 1.317, atmospheric
pressure= 1013.25mbar, relative humidity=0.60, scale height for
ozone= 0.300 cm, scale height of the precipitable water in the
atmosphere= 2.500 cm.

3.1.1. CDOM Concentration Variation
For this example, the water system is assumed to be made of fresh
water and CDOM, i.e., Cph = CSPM = 0. Figure 3 shows Rrs(λ)
for the four different scenarios reported in Table 1.

FIGURE 6 | Hyperion reflectances vs. GLAM BioLith–RT simulated reflectances: Imja–ROI 1 (top–left), Amphulapcha–ROI 2 (top–right), Hyperion RGB image

(bottom).
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Figure 3 shows, as expected, that via increasing the CDOM
concentration the peak of the spectrum shifts toward higher
wavelengths and the water becomes darker, as CDOM is an
absorber. The inflection points are discrete absorptions due to the
water component.

3.1.2. SPM Concentration Variation, Fixed Grain Size
For this example, the water system is assumed to be made of fresh
water and SPM with fixed grain size, i.e., Cph = CCDOM = 0.
Figure 5 show Rrs(λ) for their four different scenarios reported
in Table 2.

Figure 4, as expected, shows that via increasing the SPM
concentration, with fixed SPM grain size, the water becomes
brighter, since for this example the variable amount of SPM
is approximated as idealized perfect scatterers. The inflection
points are discrete absorptions due to the water component.

3.1.3. SPM Grain Size Variation, Fixed Concentration
For this example, the water system is assumed to be made of fresh
water and SPM with different grain size and fixed concentration,
i.e., Cph = CCDOM = 0. Figure 6 shows Rrs(λ) for the four
different scenarios reported in Table 3.

Figure 5 shows, as expected, that via decreasing the SPM
grain size, with fixed SPM concentration, the peak shifts toward
shorter wavelengths and the water becomes brighter, since for
this example the constant amount of SPM is approximated as
idealized perfect scatterers. The inflection points are discrete
absorptions due to the water component.

3.1.4. GLAMBioLith RT Applicability to Glacial Lake

Hyperspectral Data
We have exercised GLAMBioLith RT to match a set of
hyperspectral observations covering the two main glacial lakes
shown in Figure 1, Imja Lake (the big rectangular gray-brown
lake) and Amphulapcha Lake (the small, round, blue lake). These
lakes receive suspended sediment of almost the same lithologies
derived from glacial erosion of leucogranite and black gneiss–
the dominant minerals being quartz, feldspar, and muscovite.
However, Imja Lake is far more active in terms of meltwater and
debris–laden iceberg input and contains abundant medium and
coarse–grained silt. Amphulapcha Lake is not in direct contact
with a glacier, is less active, and the coarse sediment has a
chance to settle, leaving a suspended sediment load of fine silt.

FIGURE 7 | Results for example 1: sampled concentrations, where in the x–axis the number of MCMC samples are reported (top–left), posterior distributions

(top–right), and real remote sensing reflectance vs. simulated ones (bottom).
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TABLE 4 | Concentrations and grain size used to match Hyperion reflectances.

Imja–ROI 1 Amphulapcha–ROI 2

Cph [mg m−3] 0.00 0.00

CCDOM [mg m−3] 0.73 0.10

CX [g m−3] 50.00 2.50

r [µm] 3.25 10.00

The result is a water of strikingly different coloration, as also
seen in the Hyperion spectra (Figure 7). For the simulations
shown in Figure 7, we have taken the Hyperion image metadata
for observing and illumination geometries and the atmospheric
conditions relevant for this area. As for the water components
concentrations and the grain size we used the values reported in
Table 4. For both the lakes, the values of CX is set equal to the
values measured by Giardino et al. (2010). SPM grain size and
CDOMconcentrationweremanually adjusted until a good fit was
reached with the spectra of the two lakes. The residuals are in the
order of 10−4 for Imja and 10−2 for Amphulapcha. This suggests,
as previously mentioned, that the BioLith model is accurate for
Imja type lakes, but can be improved for Amphulapcha lakes.

3.2. Inverse Modeling Mode
3.2.1. Lakes Containing Both Organic Components

and Minerals
The following examples show the sensitivity of the retrieved
concentrations with respect to different choices of the
fixed parameters. It is showed that when the value of any
fixed parameter differs from the real one, the accuracy in the
fit parameters decreases, as expected. We produced synthetic
data to use as observed remote sensing reflectance to perform
the inverse modeling (RrsObsSyn1.txt) To produce the
synthetic data we used the fixed parameters values used for the
forward modeling mode examples, changing only the sun zenith
inclination (set equal to 35 degrees here), the water components
concentrations, and the grain size reported in Table 5.

To retrieve the water components concentrations we
combined classical and Bayesian approaches in the following
fashion: with the constrained optimization we computed the
fit quantity to use as the first guess for the MCMC sampling
in the Bayesian inversion. Uninformative prior distributions
are considered and 4, 000 samples are drawn with the MCMC
sampling process.

In all the examples we considered pure water, i.e., Cph =

CCDOM = CSPM = 0, as the first estimate for the water system
composition and the following fixed parameter values:

• Example 1: same as the synthetic data
• Example 2: same as the synthetic data but changing the sun

inclination to 40 degrees, the bottom composition to sand
only, and the bottom depth to 16 m.

Mean and standard deviation, and the relative percent mean
errors of sampled posteriors for example, 1 are reported
in Table 6.

TABLE 5 | Concentrations and grain size used to RrsObsSyn1.txt synthetic

data generation.

Phytoplankton [mg m−3] CDOM [mg m−3] Lithic [g m−3] r [µm]

10.0000 0.0300 1.000 33.60

TABLE 6 | MCMC outputs for example 1.

Component Concentration mean Concentration Std δ%

Pythoplankton 8.3739 [mg m−3] 0.1005 16.2610

CDOM 0.0469 [mg m−3] 0.0029 36.0082

Lithic 1.3174 [g m−3] 0.0227 24.0929

TABLE 7 | MCMC outputs for example 2.

Component Concentration mean Concentration Std δ%

Pythoplankton 7.4988 [mg m−3] 0.5506 25.0120

CDOM 0.1699 [mg m−3] 0.0116 82.3426

Lithic 3.1915 [g m−3] 0.0564 68.6668

Mean and standard deviation, and the relative percent
mean errors of sampled posteriors, for example 2 are reported
in Table 7.

The relative percent mean error for the ith component is
computed as follows:

δi = 100

∣

∣

∣

∣

actuali − estimatedi

max(actuali, estimatedi)

∣

∣

∣

∣

, (20)

where the estimated value is the mean of the
posterior distribution.

Figures 7, 8 show that the MCMC sampling converges in all
the scenarios considered. Moreover, the results show that, as
expected, the relative errors and the uncertainties in the retrieved
quantities increases as the errors in selecting the fixed parameters
values increase. That is, the higher the knowledge we have about
the water system to characterize the higher will be the accuracy
in the retrieved quantities. In the remote sensing reflectance
plot, the blue line (Rrs guess) is the simulated remote sensing
reflectance using the guessed parameters, the purple line (Rrs
synthetic) is the synthetic remote sensing reflectance, the red
line (Rrs fit C) is the simulated remote sensing reflectance using
the parameters retrieved via standard constrained optimization,
and the yellow line (Rrs fit B) is the simulated remote sensing
reflectance using the mean values of the parameter probability
distributions retrieved via Bayesian inversion. The red and the
yellow lines overlap as the constrained optimization outputs are
almost the same as the means of the Bayesian inversion outputs.
That is, for this case the posterior distributions are Gaussian
(Figures 7, 8), and thus, as previously mentioned, the means are
the same as the outputs of the classical constrained optimization.
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FIGURE 8 | Results for example 2: sampled concentrations, where in the x–axis the number of MCMC samples are reported (top–left), posterior distributions

(top–right), and real remote sensing reflectance vs. simulated ones (bottom).

3.2.2. Inverse Modeling on Hyperspectral Data for

Imja Lake
The previous examples have proved the reliability of our software
in solving inverse problems for water components concentrations
retrieval from satellite data, where we created synthetic satellite
data to test our tool. In particular the sensitivity of GLAM Biolith
RT to noise and uncertainty in the data has been tested. In this
example, we test the software in retrieving concentrations and
SPM grain size using hyperspectral remote sensing reflectance
from a particular spot (red dot in Figure 6) of Imja lake. Again,
for the retrieval we combined standard and Bayesian approaches
to solve the inverse problem. CDOM and SPM concentration
along with the SPM grain size are the tuned parameters. We
assumed no presence of phytoplankton, hence Cph is set equal
to zero and it is a fixed parameter. The other fixed parameters
are the same used in the last example for the forward modeling,
where we reproduced the Hyperion reflectances.
From Figure 9 can be seen that MCMC sampling converges.
Mean, and standard deviation of the sampled posterior
distributions are reported in Table 8. Our results are in
accordance with Giardino et al. (2010), that collected a set of in–
situ measurements on several lakes of the Himalayas, finding that
for gray lakes both CDOM and SPM contribute to the photons

absorption. Moreover, in the same area of Imja lake, Giardino
et. al. measured SPM concentration around 50 gm−3 (Giardino
et al., 2010) which is in accordance with the posterior distribution
that we retrieved with our tool.
In this case, the convergence of the Bayesian inversion is slower
then the previous examples (10, 000 iterations vs. 4, 000), as it can
be seen in the top–left plot of Figure 9. This is due to the fact the
values used as initial guess to start the MCMC sampling were far
from the measured ones. The initial guess was computed with the
classical constrained optimization, giving the following values:
CCDOM = 1.407 mgm−3, CX = 10.538 gm−3, r = 0.631µm.
This example shows that the standard optimization, due to the
ill-posedness of the problem, failed in the retrieval. However, the
Bayesian inversion managed in reaching the convergence toward
the values close to the measured ones.

4. CONCLUSIONS AND OUTLOOKS

The primary goal of this paper is to present GLAM BioLith-RT, a
new open–source software tool for modeling RT in water bodies.
The software has been developed primarily for educational and
research uses, and what it does is the following:
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FIGURE 9 | Results for Imja Lake: sampled concentrations, where in the x–axis the number of MCMC samples are reported (top–left), posterior distributions

(top–right), and real remote sensing reflectance vs. simulated ones (bottom).

TABLE 8 | MCMC outputs for Imja Lake.

Parameter Parameter mean Parameter Std

CDOM 0.780 [mg m−3 ] 0.203

Lithic 39.349 [g m−3] 11.476

Grain size 2.651 µm 8.112e-07

• Remote sensing reflectance simulation via the Bio-Optical-
RT models presented in Gege (2015) and Albert and Mobley
(2003) (forward modeling)

• Water component concentrations retrieval via
constrained optimization framework, Bayesian
inversion framework, and combination of the two
(inverse modeling)

As previously stated, the Bayesian inversion framework is
an advancement over the existing software programs as it
automatically includes the uncertainty in the fit parameters,
and removes the ill-posedness by using prior information about
the solutions.

In this paper along with presenting the main features of
our software, we proved its reliability both in the forward
and inverse modeling modes. In particular we showed its
sensitivity to the noise and uncertainty in the data in
retrieving the water components concentrations. Moreover
we tested it, both in forward and inverse mode, with
hyperspectral data for two Himalayas lakes; finding our
results in accordance with the in–situ measurements collected
by Giardino et al. (2010).

Our next task is to adapt and validate GLAM BioLith-RT
to the characterization of glacial and non-glacial lake waters in
Nepal and the United States for which we will use detailed lab
measurements of the suspended sediment load’s composition,
grain size, and concentration, and have knowledge of the water
body’s bathymetry, bottom sediment lithology, colored dissolved
organic material concentration, and plankton abundance. We
also look forward to applying the inverse mode to the study of
lakes in High Mountain Asia. To achieve this goal the BioLith
model should be modified and adapted to the composition of
glacier lake of interest, based on in–situ measurements and lab
analysis. Among our intended next advances, besides rigorous
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validation, is the incorporation of a more detailed model for
the lithogical components’ absorption, and to investigate the
extension of the software in wavelength through the NIR and
possibly parts of the SWIR range.
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