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Reanalysis Approach for Midlatitude
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A new snow reanalysis method is presented that is designed to jointly assimilate
Landsat- and MODIS-derived (MODSCAG) fractional snow covered area (fSCA) to
characterize seasonal snow in remote regions like High Mountain Asia (HMA) where
in situ data is severely lacking. The method leverages existing readily available global
datasets for forcing a snow model and uses the fSCA retrievals along with the ensemble
prior model estimates to derive posterior estimates using a Bayesian framework.
The method addresses MODIS viewing-geometry effects on the fSCA retrievals by
accounting for viewing angle dependent measurement errors and using a CDF-matching
technique to improve the joint fSCA measurement consistency before assimilation.
The method was verified through comparison with the Airborne Snow Observatory
(ASO) snow water equivalent (SWE) estimates over the Tuolumne River watershed in
California. The posterior SWE estimates were shown to be much more consistent with
the independent ASO estimates across the three WYs examined. Tests over Tuolumne
showed that in cases where sufficient Landsat observations are available (i.e., with
multiple sensors and in areas of overlapping Landsat tiles), assimilation of only Landsat
data may be optimal, which is attributable primarily to the higher spatial resolution of
the raw Landsat data, but that in cases with fewer Landsat measurements (i.e., with
single Landsat tiles and/or significant reduction due to clouds), the additional screened
and CDF-matched MODIS-based measurements can have a positive (albeit marginal)
impact. Illustrative results are presented for nine HMA test tiles to illustrate how the
method can provide posterior estimates of the space-time climatology of SWE storage
in areas where in situ data does not generally exist. Ongoing work is being conducted
to use the method outlined herein to generate an HMA-wide reanalysis dataset that
will provide an opportunity for a more thorough characterization of HMA seasonal snow
storage and dynamics over the joint Landsat-MODIS era. The method is generalizable
to any midlatitude montane region where seasonal snow is important.
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INTRODUCTION

Midlatitude montane seasonal snowpacks are a vital part
of the global water and energy budget and the resulting
snowmelt-driven runoff provides fresh water to a significant
fraction of the global population (Barnett et al., 2005;
Mankin et al., 2015). However, the lack of in situ data
networks in key mountain ranges, i.e., in the Western U.S.
where sampling is perhaps densest but still unrepresentative
of all elevation ranges (Serreze et al., 1999) to High-
Mountain Asia (HMA) where it is essentially non-existent
(Rohrer et al., 2013), makes answering basic science questions
about the spatio-temporal distribution of snow water mass
and how it is changing difficult (Dozier et al., 2016).
This necessarily requires that estimates of snow distribution
rely on remote sensing data and/or models (i.e., global or
regional climate models or offline land surface snow and
hydrology models).

While monitoring of snow covered area (SCA) has been
measured from space over much of the modern remote sensing
era, estimating snow water equivalent (SWE) with spaceborne
observations remains elusive (Lettenmaier et al., 2015). This
is in part because there is currently no dedicated research
or operational satellite specifically designed for retrieving
SWE. Large-scale SWE retrieval algorithms have primarily
been developed based on active (Ulaby and Stiles, 1980;
Tsang et al., 2007) and passive (Chang et al., 1987; Kwon
et al., 2017) microwave sensors. However, accurate and
generally applicable SWE retrieval algorithms based on these
measurements are complicated by many factors including (Li
et al., 2017): coarse-scale measurements (in the case of passive
microwave sensors) that do not capture sub-grid variations,
decreasing sensitivity with respect to deep SWE, and a lack
of sensitivity altogether to SWE in forest-covered or wet snow
conditions. All of these factors lead to significant retrieval
errors, especially in mountainous terrain (Tedesco et al., 2010;
Frei et al., 2012).

Physically based modeling in mountain regions has its
own set of difficulties with respect to SWE estimation.
In the case of coupled land-atmosphere models, significant
progress has been made in estimating SWE using regional
climate models (e.g., Wrzesien et al., 2018 and references
therein), however, snowfall precipitation in complex terrain
is highly sensitive to the parameterizations that are used
(e.g., Rhoades et al., 2018), which can lead to significant
biases in SWE and its distribution. Coarse-gridded general
circulation models often significantly smooth topography,
requiring the need for downscaling procedures to resolve
snow processes (e.g., Pierce et al., 2014). In the case of
offline land surface snow modeling, which can be applied
at high-enough resolution to resolve topography, biases in
precipitation from in situ or other meteorological datasets
(Adam and Lettenmaier, 2003) can lead to first-order errors in
snow accumulation, while uncertainties in other meteorological
fields (e.g., air temperature, radiation), combined with the
complexity of the terrain, can lead to significant snowmelt errors
(Baldo and Margulis, 2017).

One approach to address these issues is to use ensemble-
based data assimilation (DA) methods for SWE estimation. DA
methods are attractive because they can naturally incorporate
remote sensing observations in ways that take advantage of their
spatially distributed nature, while accounting for measurement
errors and filling gaps in between measurements that leverage
physically based model information. Examples of remote
sensing-based DA approaches to snow estimation generally
include those that incorporate passive microwave-based data
(e.g., Durand and Margulis, 2007; Durand et al., 2009; De Lannoy
et al., 2010; Li et al., 2017) and those that use visible/near-infrared
based SCA data (e.g., Andreadis and Lettenmaier, 2006; Clark
et al., 2006; Su et al., 2008; Arsenault et al., 2013; Girotto et al.,
2014a,b; Margulis et al., 2015, 2016a) or combinations thereof
(e.g., De Lannoy et al., 2012; Liu et al., 2013; Kumar et al., 2015a).
From this body of work, several overarching conclusions have
emerged: (1) Methods that rely solely on passive microwave-
based data tend to suffer from biases in the retrieved SWE
that is assimilated and/or cannot provide SWE at the scales of
variation desired due to the coarse-scale of the measurements; (2)
Filtering (sequential) methods that assimilate SCA show limited
improvement over model-based estimates as they are reliant
on the instantaneous SCA-SWE relationship, which is generally
weak. Recent applications that assimilate fractional SCA (fSCA),
but using a retrospective “smoother” framework (e.g., Girotto
et al., 2014a; Margulis et al., 2016a; Cortes and Margulis, 2017)
have been shown to perform well by instead leveraging the fact
that SWE and the set of SCA data over the course of the melt
season have a much higher correlation. In essence, these methods
constrain the SWE estimates such that they match the depletion
record in the fSCA time series.

In this methodological paper we generalize a previous fSCA
DA approach for global-scale applications over midlatitude
mountain regions. In particular we are motivated to build a
framework capable of deriving snow reanalysis estimates over
domains like HMA where in situ meteorological and snow data is
extremely limited, thereby limiting knowledge of seasonal snow
processes. As such we focus on developing a method that jointly
uses Landsat- and MODIS-derived fSCA in an effort to maximize
the number of cloud-free images and allow for deriving snow
estimates at relatively high resolution (∼500 m). The method is
further developed to account for MODIS viewing-angle impacts
on fSCA estimates – a factor that is often neglected.

STUDY SITES

The primary objective of the method presented herein is to
provide snow estimates in remote midlatitude montane areas
where in situ information is generally limited to non-existent
(e.g., HMA). The new method is applied at a site in the Sierra
Nevada range of California, where a unique Lidar-derived dataset
is used for verification, and is then applied over select sub-
domains across HMA to illustrate the technique over domains
without verification data. The HMA sample results are the first
step in the development of a large-scale HMA reanalysis that is
the subject of ongoing work.
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Tuolumne Watershed in Sierra Nevada
(CA, United States)
The Tuolumne River watershed (Figure 1A) drains ∼1100 km2

from the western slopes of the Sierra Nevada in California
(central coordinates: 38◦N, 119.5◦W). The basin is a high-
elevation, snow-dominated basin with complex terrain and
an elevation range between ∼1600 m to above 3500 m and
provides water supply for downstream use from snowmelt-
driven runoff. The terrain has aspect values mostly distributed
between directions facing NW and SE. Forest cover exists at
lower elevations (mostly below ∼2700 m) with fractional forest
coverage ranging up to 50%. The climatology of Tuolumne is
characterized by a strong seasonal precipitation pattern, with
the majority of precipitation falling in the winter (December–
March) as a result of frontal and atmospheric river systems that
tend to result in ∼11 storms per winter season (on average),
often with a few storms contributing to the bulk of the snowpack
(Huning and Margulis, 2017). The choice of Tuolumne is
made primarily because of the existence of the Airborne Snow
Observatory (ASO) data [see Section Verification Data: Airborne
Snow Observatory (ASO) Data], which provides a unique set of
spatially distributed SWE estimates for evaluation of the method.

Test Sub-Domains in High Mountain Asia
After verifying the method over Tuolumne we provide some
sample results from sub-domains in HMA. A set of nine 1◦ × 1◦
tiles are examined in Liu and Margulis (unpublished) to derive
a MERRA-2 precipitation uncertainty parameterization for use
in generating the forthcoming HMA snow reanalysis dataset.
For consistency, we use the same tiles (Figure 1B) herein for
illustration of the type of data that will ultimately be generated
for the whole HMA domain. The tiles (labeled with their lower
left corner) were chosen to sample a range of climatological and
physiographic variability across HMA. Four tiles are located in
the western part of the domain covering portions of the Hindu
Kush, Tien Shan, Pamir, and Karakorum ranges, three tiles are
located in the southern part of the domain covering portions of
the Himalaya and Hengduan ranges, and the remaining two tiles
cover the north central and eastern parts of the domain covering
portions of the Kunlun and Qilian ranges. More details on the
physiographic and climatological characteristics of the tiles are
given in Liu and Margulis (unpublished).

METHODS AND DATA

Bayesian Snow Reanalysis Framework
The method developed and demonstrated herein builds on our
previous work (Margulis et al., 2015, 2016a) using a Bayesian
snow reanalysis (data assimilation) framework. The “reanalysis”
term is used to convey a framework that aims to provide
physically based space-time continuous estimates of snow states
and fluxes using a snow model that is constrained by remotely
sensed snow measurements (in this case fSCA). The methodology
is first presented generally, with the specific datasets used as
inputs and constraints described in more detail in subsequent

sections. The methods and framework are designed with the
overarching goal of being globally applicable in any relevant
mountainous region.

The specific method presented in this paper is the Particle
Batch Smoother (PBS; Margulis et al., 2015). A “smoother”
identifies the fact that the fSCA data is assimilated in a single
batch (i.e., all images at once) over the full water year (WY) rather
than sequentially, as done in a filtering scheme. The primary
reason for this choice is that fSCA has limited instantaneous
information on SWE, but the depletion (i.e., time series) of fSCA
over the melt season, combined with information on energy
fluxes that drive snowmelt (via the snow model) is strongly
correlated with the evolving SWE time series. Hence it is the batch
smoother approach that is primarily responsible for transforming
fSCA information into SWE. Such approaches cannot be applied
in real-time, but rather provide retrospective estimates once
the remotely sensed fSCA time series is available. This is not
necessarily a drawback when the goal is to develop historical
datasets for improving insight into space-time dynamics of
snow processes. The modular framework consists of two main
components, highlighted as red and blue boxes in the schematic
shown in Figure 2. The first component (red boxes) involves
a spatially distributed ensemble-based land surface model-snow
depletion curve (LSM-SDC) that is applied to generate so-called
prior estimates of snow states and fluxes at each grid cell. The
LSM-SDC used herein is the same setup in our previous work
with the SSiB-SAST LSM (Sun and Xue, 2001; Xue et al., 2003)
coupled to the Liston (2004) SDC, but other models could be
used within the framework. The LSM serves to take model inputs
(i.e., meteorological time series and static model parameters) and
transform them to grid-averaged snow accumulation and surface
energy balance fluxes that drive snowmelt. The SDC assumes a
lognormal sub-grid distribution for SWE and evolves the grid-
averaged SWE and fSCA based on the snow accumulation, melt,
and the sub-grid SWE coefficient of variation parameter (β).

Uncertainties in model inputs are a key driver of uncertainty
in snow states/fluxes in mountainous environments. The input
uncertainties are postulated and explicitly propagated through
the modeling framework using an ensemble (Monte-Carlo)
approach. Precipitation, which is typically the most important
control on SWE accumulation and most uncertain input variable
in mountain environments, is treated as follows:

P−j (xr, t) = bj,nom(xr)
∗Pnom(xnom, t) (1)

where the j subscript represent the ensemble realization and t
represents time respectively, while the ‘−’ superscript represents
that this is a prior (a Bayesian a priori) estimate (i.e., not
conditioned on independent observations). The variable Pnom
is the nominal precipitation input that is being used, and is
typically a gridded product (e.g., MERRA-2 as described below)
on a grid (xnom) that is considerably coarser than the model
grid (xr). The random variable b is often prescribed as a
lognormally distributed multiplicative factor that is used to allow
for the first-order uncertainty in the nominal precipitation. The
a priori distributional parameters (e.g., mean and coefficient
of variation) of b are typically specified based on postulated
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FIGURE 1 | Site maps showing the DEMs (elevations in meters) for (A) the verification site in Tuolumne River watershed in California and (B) the sample tiles across
High-Mountain Asia (HMA). The Tuolumne watershed boundary is shown with the black line in panel (A) along with four sample locations used to illustrate verification
in Figure 7. Sample tiles over HMA are outlined in red with the color insets showing the respective DEMs in more detail. Inset DEMs do not use the same colorbar
range across all tiles, but instead a localized range for each tile to emphasize the spatial patterns that are seen in subsequent figures. The tiles examined are labeled
with their lower left corner and consist of: (34◦N, 66◦E), (41◦N, 77◦E), (34◦N, 75◦E), (38◦N, 70◦E), (29◦N, 82◦E), (36◦N, 85◦E), (27◦N, 90◦E), (29◦N, 97◦E),
(38◦N, 98◦E).

uncertainty or via derivation by comparison with in situ data.
Liu and Margulis (unpublished) provide an example of how
these parameters can be derived for areas like HMA where
such in situ data does not exist (using the reanalysis framework
described herein). The formulation in Equation (1) implies a

precipitation downscaling (and bias-correction) scheme. What
is unique about this approach is that the spatial patterns in
the downscaling parameter b are not specified a priori, but
instead are derived from the reanalysis framework through
the conditioning on fSCA data. Hence the method not only
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FIGURE 2 | Schematic representation of the Bayesian snow reanalysis framework that consists of an ensemble-based prior modeling system (red boxes) and a
posterior update component for assimilating remotely sensed fractional snow covered area (SCA) data from Landsat and MODIS (blue boxes).

derives reanalysis estimates for snow states, but for the key input
variable (snowfall). Other (non-precipitation) meteorological
forcings (i.e., air temperature, radiation, humidity, surface
pressure) are downscaled to the modeling resolution using
commonly applied topographic downscaling parameterizations,
where uncertainty is also added based on postulated or derived
distributional parameters (Girotto et al., 2014a). Zonal and
meridional components of wind speed are downscaled following
the approach of Liston and Elder (2006). Uncertainty is also
included in the sub-grid CV parameter (β) and in the snow albedo
module (through a scaling parameter CVIS), both of which are
discussed in more detail in Girotto et al. (2014a).

The ensemble LSM-SDC provides an N-replicate estimate of
snow states and fluxes at each grid cell and time step, where it
is assumed that each prior realization is given the same weight
(w−j = 1/N). To condition the estimate on the independent fSCA
measurements (Figure 2, blue boxes), a measurement model
must be employed that maps the model states to the measurement
space. For the purposes of the measurement operator, the LSM-
SDC is used to generate estimates of SWE and fSCA for the
forest-covered and bare fractions of each pixel. As done in our
previous work (Girotto et al., 2014a; Margulis et al., 2016a), rather
than apply a forest correction to the measurements, we instead
apply the assumption that snow under the forest canopy is not
visible to the sensor and that only snow in the bare areas are.
Moreover we acknowledge the fact that in complex terrain, even
in unforested areas, there are often portions of the measurement
pixel that are covered by steep rock outcrops that will rarely be
covered by snow. To account for both factors, the measurement

model used to make predictions of the measured fSCA at a
measurement time is of the form:

fSCA−pred,j(xr) = fSCA−bare,j(xr)[1− fforest (xr)− frock (xr)] (2)

where fSCA−bare is the fSCA over the bare (non-forested) fraction
of the grid cell (i.e., visible to the sensor), and fforest and
frock are respectively the specified grid-cell forest fraction and
persistent exposed rock fraction. The latter two parameters are
assumed static and are estimated as described below in Section
“Data.” The measured fSCA [fSCAmeas; see Sections “Landsat-
Based fSCA Data,” “MODIS-Based fSCA (MODSCAG) Data,”
and “MODSCAG Screening, CDF-Matching to Landsat Data,
and fSCA Measurement Errors] and a Bayesian update are used
to generate posterior (a posteriori) estimates of SWE and other
state/flux variables by updating the individual realization weights
using (Margulis et al., 2015):

w+j (xr) =
c0

N
pV

[
(fSCAmeas (xr)− fSCA−pred,j(xr)),CV

]
(3)

where the ‘+’ superscript denotes that this is a posterior estimate,
pV [ ] is the specified (multivariate Gaussian) probability density
function (PDF) for the fSCA measurement error vector V
[typically assumed as zero-mean with specified error covariance
CV ; see Sections “Landsat-Based fSCA Data,” “MODIS-Based
fSCA (MODSCAG) Data,” and “MODSCAG Screening, CDF-
Matching to Landsat Data, and fSCA Measurement Errors] and
c0 is a normalization constant used to ensure a valid posterior
PDF. It should be noted that in Equation (3), which is applied

Frontiers in Earth Science | www.frontiersin.org 5 October 2019 | Volume 7 | Article 272

https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-07-00272 October 22, 2019 Time: 20:45 # 6

Margulis et al. Landsat/MODIS Snow Reanalysis Methodology

pixel-wise, the difference between measured and predicted fSCA
is a vector of dimension (Nm × 1), where Nm is the total
number of available fSCA measurements (both Landsat and
MODSCAG) over the WY. The error covariance matrix at the
pixel is of dimension (Nm × Nm), and is diagonal based on the
assumptions that Landsat and MODSCAG measurement errors
are uncorrelated with each other:

CV =

[
CLandsat

V 0
0 CMODSCAG

V

]
(4)

where CLandsat
V and CMODSCAG

V are respectively the individual
Landsat and MODSCAG error covariance matrices, which are
described in more detail below.

The posterior weights provide a low-dimensional discrete
estimate of the posterior PDF, which can be used to
compute posterior ensemble statistics (i.e., mean, median,
standard deviation, inter-quartile range, etc.) of SWE or
other snow states/fluxes. In addition to snow states/fluxes
the posterior weights provide a mechanism to generate
posterior estimates of the precipitation multiplication
factors [b+j,nom(xr)] and thereby allow for improvements in
precipitation (snowfall) characterization (and its nominal bias;
i.e., Liu and Margulis, unpublished).

Data
Landsat-Based fSCA Data
Landsat data needed for fSCA retrieval is available at a
resolution of 30 m since 1985 based on acquisitions from
the Landsat 5 Thematic Mapper (TM; 1985-2011), Landsat 7
Enhanced Thematic Mapper (ETM+; 1999-present) and Landsat
8 Operational Land Imager (OLI; 2013-present) sensors. It should
be noted that gaps in the Landsat-era record exist in some
regions of the globe during some years (Kovalskyy and Roy, 2013;
Wulder et al., 2016). Landsat data is available from the USGS
repository1. Landsat images with a cloud cover fraction greater
than 40% are discarded and otherwise the internal cloud mask is
used to identify individual cloudy pixels within the image. The
nominal repeat frequency of images from a single sensor, based
on the orbital characteristics and near-nadir viewing geometry
of the Landsat platform, is once every 16 days, which results in
a maximum of ∼23 images per WY per sensor. Cloudy images
reduce this number, while years with multiple sensors (i.e., 1999–
2011 and 2013-present) can increase the amount of useful data.
Our previous work has generally shown this number of images to
be sufficient to accurately estimate SWE, however to increase the
number of images, thereby increasing the generality and accuracy
of the method in varying climate regimes, we extend the method
to include MODIS-based images as described below.

Images of fSCA are derived from the multi-band Landsat data
using a spectral end-member unmixing approach described in
Cortes et al. (2014). The 30 m fSCA data is then aggregated
to the desired reanalysis model resolution. Previous regional
applications have used 90 m (Margulis et al., 2016a), 180 m
(Cortes and Margulis, 2017) and a multi-resolution approach

1https://www.usgs.gov/land-resources/nli/landsat/data-tools

(Baldo and Margulis, 2018). For the ultimate application to the
large-scale HMA domain, and to make the Landsat fSCA of
consistent scale with the MODIS-based fSCA, we herein used
an aggregated resolution of ∼480 m (16 arcsecond grid). This
choice for resolution is made primarily for computational reasons
over large domains like HMA. A sample image of the derived
Landsat fSCA over a Sierra Nevada tile covering Tuolumne is
shown in Figure 3A.

MODIS-Based fSCA (MODSCAG) Data
The MODIS-based fSCA estimates used herein, were extracted
from the MODSCAG product (Painter et al., 2009; using v005
MODIS reflectances)2. These estimates were derived from the
MODIS sensor (Terra satellite) that are available since 2000
and are distributed on the MODIS sinusoidal tile grid (SIN).
The MODSCAG fSCA is also derived from a spectral end-
member unmixing approach and is therefore consistent with
the Landsat-based fSCA from a retrieval algorithm perspective.
We interpolated the MODSCAG products from their nominal
resolution of ∼463 m to a regular 16 arcsecond (∼480 m)
grid to match the reanalysis and (aggregated) Landsat fSCA
resolution. Raw MODSCAG images are screened for clouds
using the internal MODIS cloud mask. However, the cloud
detection algorithm is generally thought to be less discriminating
than the Landsat cloud mask algorithm and hence, based on
manual testing, we discard any images with a diagnosed cloud
cover greater than 10% to avoid using cloudy pixels that are
misclassified as snow.

A key difference between MODIS and Landsat data is that
MODIS revisit frequency for a given location is daily. However,
the tradeoff for this daily sampling is that unlike Landsat, which
is near-nadir looking, MODIS is a scanning sensor such that the
daily measurements can have significant off-nadir viewing angles
(up to ∼65◦) at the outer edge of the swath. A schematic of
the implications of the viewing geometry is shown in Figure 4.
As the viewing angle increases, the sampled footprint of each
pixel elongates, most notably in the scanning (i.e., cross-track)
direction. Dozier et al. (2008) provide expressions for along-
track and cross-track sampling pixel dimensions as a function of
viewing geometry. At the outer edges of the swath, the sampled
footprint can become as large 2.5 km in the cross-track direction
(Dozier et al., 2008), making it about five times as large as
the nominal pixel footprint. Despite this much larger sampled
footprint, the reflectance data is regridded and stored on the
nominal footprint grid (i.e., at ∼463 m). The implications of this
are important, but seldom accounted for in analysis or usage
of retrieved MODIS-based fSCA. For example, in the case of
forest-covered surfaces in flat terrain (Figure 4A), the general
impact is that more of the snow is obscured at larger viewing
angles. This can artificially reduce the fSCA from an image at high
viewing zenith angle relative to one at low viewing zenith angle.
Since the reanalysis framework diagnoses SWE changes from
fSCA changes, assimilating such images could lead to erroneous
estimates of snow states, where viewing angle variations are
(erroneously) ascribed to snow dynamics. Additionally, in the

2https://snow.jpl.nasa.gov/portal/data/
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FIGURE 3 | (A) An example of a Landsat fSCA map for a tile covering the Tuolumne River watershed examined herein. (B) Map of forest cover over the tile including
three sample points (red triangles) used for illustration in Figure 6. (C) Coincident (within 1 day of Landsat image) MODSCAG fSCA maps at (C) low viewing angle
and (D) high viewing angle, illustrating the differences (errors) caused by viewing geometry effects. Specifically, the effect of “pixel elongation” described in the text is
apparent in (D). Gray areas in fSCA maps represent non-retrievals.

case of complex terrain (Figure 4B), the elongation of sampled
footprints can be exacerbated and are not systematic. The larger
sampled footprints will sample more of the surrounding terrain,
which could have varying levels of snow cover, rock or vegetation
making the retrieved fSCA potentially non-representative of the
pixel being modeled. To further illustrate this, a sample set of
MODSCAG images, within 1 day of the previously discussed
Landsat image is shown in Figure 3 and demonstrates how
changes in viewing geometry greatly impact the retrieved fSCA.
In particular, within 1 day, the viewing angle goes from ∼ 9◦
to over 60◦. The “pixel elongation” in the latter case is evident,

while the case closer to nadir compares more favorably to
the Landsat image.

In the context of DA, the errors caused by viewing geometry
should be reflected in the measurement error covariance
structure such that more accurate/representative fSCA
measurements are trusted more and less accurate/representative
measurements are trusted less. Specifically, as the viewing
zenith angle approaches zero the measurement error covariance
should approach that of the Landsat fSCA, while at higher
viewing angles the measurement error covariance should grow.
For this relationship, we borrow from the developments of

Frontiers in Earth Science | www.frontiersin.org 7 October 2019 | Volume 7 | Article 272

https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-07-00272 October 22, 2019 Time: 20:45 # 8

Margulis et al. Landsat/MODIS Snow Reanalysis Methodology

FIGURE 4 | Schematic illustrating the time-varying viewing geometry effects of MODIS on fractional snow covered area (fSCA) retrieval: (A) illustrative impacts of
forest cover on sampled footprint at two viewing angles (low zenith angle on left and high zenith angle on right). The blue lines represent a MODIS grid point center
(vertical tick) and nominal resolution (horizontal line; ∼463 m), at which the retrieval is provided. The actual sampled footprint is represented by the white rectangle
that is filled with white and green representing snow and forest respectively that is actually seen by the sensor within its sampled footprint. In the case shown on the
right, for the same snow on the ground, the MODIS sampled footprint will see more forest and therefore less snow. (B) Illustrative impacts of topography and rock
outcrops (shown in gray). The actual sampled footprint is represented by the white rectangle that is filled with white and brown (representing snow and rock
respectively) within the footprint. The “stretching” of the sampled footprint in the scanning direction will distort the retrieved fSCA that is mapped into the nominal
footprint due simply to the viewing angle. In contrast, the Landsat viewing angle does not change.

Dozier et al. (2008). In their work, a function based on viewing
geometry was used as a weighting function (W) in a least-squares
term used to fit splines to the raw MODSCAG data, i.e.:

W (θs) =
p2cosθ
p‖p⊥

(5)

where p is the linear pixel dimension at nadir (463 m), θ is
the sensor viewing angle, and p‖ and p⊥ are the along-track
and cross-track pixel dimensions at a non-nadir scan angles (see
Dozier et al., 2008 for detailed expressions of these quantities).
In weighted least-squares estimation, with assumed Gaussian

measurement errors (consistent with the assumptions herein),
the weighting function is theoretically proportional to the
inverse of the measurement error covariance. Hence we use this
theoretical grounding in combination with the above weighting
function to specify how measurement error covariance varies
with sensor viewing zenith angle:

CMODSCAG
V (θ) =

CMODSCAG
V (θ = 0)

W(θ)
(6)

where the numerator represents the specified error covariance
at nadir (i.e., θ = 0). Based on the formulation in Equation (6),
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the MODSCAG measurement error covariance values at viewing
zenith angles of ∼10◦, 20◦, and 35◦, would be increased by a
factor of ∼1.05 ∼ 1.25, and ∼2 respectively. Therefore, from
the perspective of the DA framework, off-nadir measurements
would be treated as less accurate than nadir measurements, and
therefore trusted to a lesser degree (as desired).

MODSCAG Screening, CDF-Matching to Landsat
Data, and fSCA Measurement Errors
As illustrated in Figure 3, even at near-nadir viewing angles, there
are same-day differences between Landsat- and MODSCAG-
retrieved fSCA. While the differences could result from a
variety of potential factors (sensor differences, retrieval algorithm
differences, and errors associated with the interpolation of the
raw MODSCAG data to the modeling resolution) a key factor
is likely the differences in scale between the raw reflectances
(i.e., 30 m vs. 463 m) used to construct fSCA and the varying
viewing angle sampling resolution of MODIS discussed above.
The differences in sampling resolution are evident as higher-
resolution features are seen in the Landsat image even though the
Landsat and MODSCAG fields are both displayed at a resolution
of 480 m. As discussed above, the differences become larger as
the viewing zenith angle increases (Figure 3D). These systematic
differences yield conflicting information in some images that
needs to be addressed within the DA framework. We propose to
do this in two ways: (1) MODSCAG data are screened to only
assimilate those that are below a certain viewing angle threshold
(i.e., those with lowest measurement errors) and (2) a CDF-
matching algorithm is used to put the screened MODSCAG data
on the same footing as the Landsat data. Such CDF-matching
approaches are commonly used in DA frameworks where data
from multiple sensors are being used (e.g., Reichle and Koster,
2004; Reichle et al., 2007; Liu et al., 2011; Kumar et al., 2015b).

The screening of MODSCAG data is designed to provide
additional high-quality information (i.e., at relatively low
viewing zenith angles) to supplement cloud-free Landsat data,
while excluding those measurements that are most likely to
be erroneous (i.e., at higher viewing angles). The viewing
angle screening threshold should be treated as a user-
specified adjustable parameter depending on the application
and domain. We performed sensitivity tests with different
screening thresholds and ultimately settled on using viewing
angles (θ) less than 20◦ herein to screen MODSCAG data.
As described in more detail below (see Section Spatially-
Distributed Estimates Over Tuolumne and the Impact of Using
Joint Landsat-MODSCAG Measurements4.1.2), incorporating
more MODSCAG observations at higher viewing angles
can have negative impacts over using Landsat and high-
quality MODSCAG observations. To provide context, Figure 5
illustrates the number of cloud-free Landsat observations
(including both Landsat 7 and 8) and MODSCAG observations
(for θ < 20◦) available over both the Tuolumne and HMA
domains in WY 2016. Note that the Landsat measurement
pattern is heterogeneous and includes areas where Landsat tiles
overlap and areas covered by single tiles (Figure 5, top row).
In the tile overlap areas, which happens to include much of the
Tuolumne watershed, the number of cloud-free measurements

are on the order of 60/year, while in the areas of single tile
coverage are on the order of 30/year, with the exception of the
southeastern portion of the HMA domain, where monsoon-
driven clouds tend to reduce the number of available Landsat
images. When MODSCAG images are screened by viewing angle,
there is a similar pattern of high density measurements in the
near-nadir MODIS overpass track locations and lower density
in between tracks (Figure 5, middle row). When the Landsat
and screened MODSCAG data are combined, the number
of assimilated measurements are at least 40/year over both
domains (Figure 5, bottom row). The tradeoffs between Landsat-
only vs. incorporating additional MODSCAG observations are
discussed below.

After screening, the CDF-matching algorithm used herein is
applied as follows: Over the shared observation period of 2000–
2017, all Landsat and screened MODSCAG images within 2 days
of each other are collected. Each set of data (including only
snow-covered cases) is used to create a pixel-specific empirical
CDF for both Landsat and MODSCAG fSCA. The raw CDFs are
discretized and saved at specified percentiles between 0 and 1. The
two discretized CDFs (i.e., FMODSCAG(fSCA) and FLandsat(fSCA))
are then used to map the raw (screened) MODSCAG data to the
equivalent Landsat basis using CDF-matching, i.e.:

fSCA
′

meas,MODSCAG = F−1
Landsat

[
FMODSCAG(fSCAmeas, MODSCAG)

]
(7)

where fSCA
′

meas,MODSCAG is the transformed (CDF-matched)
MODSCAG measurement. Because the empirical CDFs are
discretized, linear interpolation is used in the mapping shown
in Equation (7).

An example of the CDF-matching procedure is shown in
Figure 6. The derived CDFs (where the MODSCAG CDFs are
generated using only screened measurements) for three pixels
are shown (middle column), where the three are chosen to be
illustrative of three different forest-cover cases (see Figure 3B):
(1) a pixel that is essentially unforested (fforest = 1%) and in
a clearing, (2) a pixel that is moderately forested (fforest =

46%), but surrounded by less forest cover, (3) a pixel that
is nearly unforested (fforest = 4%), but surrounded by high
forest cover fraction pixels. For the first pixel, where there is
minimal forest at the pixel and over its surroundings, the two
CDFs are very similar such that the CDF-matching generates
only limited changes to the raw (screened) MODSCAG data.
In the second case the CDF-matching leads to a reduction
in the raw MODSCAG fSCA. This is likely because MODIS
samples neighboring less-forested pixels introducing a positive
bias relative to the Landsat fSCA. Finally, in the last case, the
CDFs are significantly different where the CDF-matching leads
to a significant increase in the raw MODSCAG fSCA. This can
be explained by the pixel being surrounded by more highly
forested pixels that reduce the fSCA when sampled off-nadir
by MODIS. It should be noted that the arguments regarding
forest cover are only one factor and that the reality is more
complicated due to the complex terrain that will also lead to
heterogeneity in the underlying true fSCA field that gets sampled
differently by MODIS and Landsat. When applied pixel-wise to
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FIGURE 5 | (Top row) Number of available cloud-free Landsat measurements over Tuolumne (left) and HMA (right) domains for WY 2016. (Middle row) Number
of available cloud-free MODSCAG measurements (screened for viewing zenith angles θ < 20◦) over Tuolumne (left) and HMA (right) domains for WY 2016.
(Bottom row) Total number of available cloud-free Landsat and screened MODSCAG measurements over Tuolumne (left) and HMA (right) domains for WY 2016.

the full image the result is a transformed MODSCAG image that
is more consistent with the Landsat image (Figure 6). For the
three example pixels the time series of fSCA is also shown. By
design the fSCA time series using the Landsat and transformed
(screened) MODSCAG are more consistent with each other and
amenable to simultaneous assimilation using the snow reanalysis
approach. Together, the Landsat and CDF-matched (screened)

MODSCAG data make up the vector fSCAmeas that appears
in Equation (3).

Finally, the measurement error covariance for both Landsat
and MODSCAG must be specified [Equations (4) and (6)]
for use in the reanalysis framework. Based on our previous
work (Cortes et al., 2014) the standard deviation of Landsat
fSCA error at ∼100 m resolution was found to be ∼15%.
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FIGURE 6 | (First column) Sample (WY 2016) images of fSCA estimates from Landsat (top), raw MODSCAG (middle) and CDF-matched MODSCAG. (Second
column) Empirical CDFs for: Landsat (blue) and screened (i.e., with viewing zenith angles θ < 20◦) MODSCAG (orange) for the three locations illustrated by red
triangles in the first column. (Third column) Sample time series for WY 2016 for the three locations showing the: Landsat (blue), raw MODSCAG [black
(θ < 20◦)/gray (θ > 20◦) triangles], and CDF-matched MODSCAG corresponding to screened measurements (orange circles). The open circles (i.e., Landsat and
screened/CDF-matched MODSCAG) are those measurements that are assimilated in the snow reanalysis method.

Therefore the error is expected to range between 3 to 15%
when Landsat fSCA is aggregated to ∼480 m as done herein,
depending on the independence of sub-grid errors. Based
on analysis over Tuolumne it was found that the Landsat
fSCA error standard deviation at ∼480 m was ∼10%. This
value is used to populate the diagonal of CLandsat

V , where for
simplicity it is assumed that errors between different image
acquisitions are uncorrelated (zero-valued off-diagonal terms).
The MODSCAG nadir error covariance in Equation (6) was
estimated based on the Landsat measurement error discussed

above and the disagreement between CDF-matched MODSCAG
data and Landsat data. Specifically, assuming the Landsat and
MODSCAG errors are independent, it can be shown that the sum
of Landsat and MODSCAG measurement error variances are
equal to the mean squared difference between Landsat and CDF-
matched MODSCAG fSCA estimates. Based on this analysis over
Tuolumne, it was found that the CDF-matched MODSCAG error
covariance at near-nadir is ∼15%, which is used populate the
diagonal of CMODSCAG

V using the near-nadir value and Equation
(6) based on viewing geometry of individual acquisitions.
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Model Input Data
MERRA2 meteorological inputs
The LSM-SDC model requires hourly meteorological inputs.
In our previous work over the Sierra Nevada we used the
NLDAS-2 dataset (Cosgrove et al., 2003; Xia et al., 2012) which
is available at 0.125◦ × 0.125◦ over CONUS. To extend the
methods for global applicability and usage over the full remote
sensing record we chose to use the MERRA-2 dataset (Gelaro
et al., 2017). MERRA-2 is available globally from 1980-present
at a horizontal resolution of 0.5◦ × 0.625◦ and is itself a
large-scale reanalysis, which benefits from a significant amount
of atmospheric DA including atmospheric motion vectors,
surface winds, temperature and ozone profiles, and microwave
and infrared sounding radiances. For the purposes of this
work we specifically used the hourly 2D surface fields (Global
Modeling and Assimilation Office [GMAO], 2015a,b,c) that
provide reference-level precipitation (“PRECTOT”), incoming
solar radiation (“SWDGN”), air temperature (“T2M”), specific
humidity (“QV2M”), surface pressure (“PS”), and wind speed
(“U10M” and “V10M”). For the purposes of forcing the LSM-
SDC at each pixel, the non-precipitation MERRA-2 data are
downscaled as described above in Section “Bayesian Snow
Reanalysis Framework,” while the precipitation is perturbed as
shown in Equation (1).

Ancillary inputs and parameter uncertainty
The remaining ancillary inputs needed for the modeling and
assimilation framework were drawn from globally available
datasets or based on previous work. Topographic data was
taken from the 30 m (1 arcsecond) resolution Shuttle Radar
Topography Mission (SRTM) DEM (Farr et al., 2007). Any
gaps in SRTM coverage were filled by the Advanced Spaceborne
Thermal Emission and Reflection (ASTER) DEM (NASA, 2001).
The DEM was used to determine secondary variables used
by the forcing downscaling scheme or LSM-SDC (e.g., slope,
aspect, sky-view factor). Forest fraction (fforest), which is used
in the measurement model Equation (2), was taken from the
Landsat continuous vegetation field dataset (Sexton et al., 2013).
Landcover maps were specified based on the 1 km Advanced
Very High Resolution Radiometer (AVHRR) global land cover
classification database (Hansen et al., 2000). The glacier mask was
extracted from the GLIMS glacier dataset (GLIMS and NSIDC,
2018). For the purposes of the reanalysis, all open water surfaces
and glacierized areas are masked out from the reanalysis domain
to focus on seasonal snow over land. A final ancillary input that
is used in the measurement model Equation (2) is the fraction of
perennially exposed rock (frock) that does not typically get snow
covered. While no standard dataset is available for estimating
this parameter, we use the combined information in the fforest
estimates and historical Landsat fSCA data to estimate it. In
particular, based on manual testing, we assume that the 95th
percentile of Landsat fSCA (over the period 2000–2017) for each
pixel (which is derived as part of the CDF-matching algorithm
described above) is representative of the maximum observed
fSCA [fSCAmax(x)]. Using a higher percentile was found to allow
for the possibility of including misidentified clouds as snow to
contaminate the estimate. Based on this estimate of fSCAmax, any

difference between that value and 100% is assumed to be the
result of obscuring forest cover and exposed rock (where grass,
shrubs or other low-lying vegetation will typically be buried by
snow at some point during the joint Landsat-MODIS-era used to
construct the CDFs). Hence the estimate of perennially exposed
rock fraction is given by:

frock (x) = 1− fforest (x)− fSCAmax (x) (8)

Testing indicated that the method is not very sensitive to
specification of frock, however it is introduced to maintain
consistency between the predictions and measurements of fSCA
in the measurement model.

Based on the underlying DEM and Landsat fSCA dataset,
the reanalysis could be run at spatial resolutions as high as
30 m. However, for simplicity in assimilating both Landsat and
MODSCAG data and for computational savings in applying
the method over large domains (e.g., HMA) all ancillary data
were resampled to a baseline model resolution of ∼480 m
(16 arcsecond) defined by aggregating the underlying DEM.
Future work will aim to apply the multi-resolution approach
of Baldo and Margulis (2017, 2018) to the joint assimilation of
Landsat and MODSCAG.

The final set of input parameters needed for application of
the method are the specified PDFs and uncertainty parameters
that control the random variables used in the reanalysis
framework. The set of random variables are the same as in
previous work (Margulis et al., 2016a), namely those controlling
the precipitation, air temperature, dewpoint temperature, and
incoming shortwave radiation meteorological forcings, the
subgrid coefficient of variation parameter (β) in the SDC
model, and the snow albedo scaling parameter (CVIS). The
uncertainty model distributions and relevant parameters are
shown in Table 1.

Verification Data: Airborne Snow Observatory (ASO)
Data
The ASO dataset3 (Painter et al., 2016), which provides multi-
temporal Lidar-derived snow depth images and SWE estimates
(using model-based and/or in situ snow density) over Tuolumne,
was used to verify the method. The 50 m ASO product was
re-gridded to the reanalysis modeling resolution of ∼480 m
for comparison. We used data from WYs 2015, 2016, and
2017, which span a historically dry, a relatively normal, and a
historically wet year respectively. The number and dates of ASO
images from these 3 years are shown in Table 2.

RESULTS AND DISCUSSION

Verification Using ASO Data Over
Tuolumne River Watershed
Illustrative Results at the Grid Cell
The snow reanalysis method was evaluated using ASO data
over Tuolumne for WYs 2015 (dry), 2016 (near-average), and

3https://nsidc.org/data/aso/data-summaries
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TABLE 1 | Parameters used in the specification of prior uncertainty in key snow
model inputs.

Uncertain
Variable

Distributional
form of variable

uncertainty

Parameter Values

Tuolumne HMA

MERRA-2 precip.
parameter (b)

Multiplicative LN∗ Mean (−) 2 –

CV (−) 0.75 –

Minimum (−) 0.1 0.1

Maximum (−) 5 5

MERRA-2 air temp.
(Ta) error

Additive Normal Mean (K) 0.5 −0.9

Standard
deviation (K)

2 1.2

MERRA-2
dewpoint temp.
(Td ) error

Additive Normal Mean (K) −3.5 −0.4

Standard
deviation (K)

3 2.2

Sub-grid CV
parameter (β)

Uniform Minimum (−) 0.05 0.05

Maximum (−) 0.8 0.8

Snow albedo
parameter (Cvis)

Uniform Minimum (−) 0.2 0.2

Maximum (−) 0.45 0.45

The form of these uncertainty models are the same as used in Girotto et al. (2014a)
and Margulis et al. (2016a) where the parameters are discussed in more detail.
∗For the HMA tiles presented herein, the prior precipitation uncertainty is based
on the uniform distribution used in Liu and Margulis (unpublished), which is used
as a mechanism to estimate the uncertainty parameter used in the future HMA
reanalysis. Parameter values are derived through comparison with in situ data
(air temperature and dewpoint temperature) where available, or using previously
derived values. Incoming shortwave radiation uncertainty uses the same model
as in Margulis et al. (2016a).

TABLE 2 | Airborne Snow Observatory (ASO) acquisition dates over Tuolumne
River watershed and their corresponding day of water year (DOWY) values.

Water Year ASO Acquisition Dates ASO Acquisition DOWY

2015 March: 05, 25, April: 03, 09,
15, 27, May: 01, 28, June: 08

156, 176, 185, 191, 197, 209,
213 240, 251

2016 March: 26, April: 01, 07, 16,
May: 27, June 07, 13, 20, 25,
July: 01, 08

178, 184, 190, 199, 240, 251,
257, 264, 269, 275, 282

2017 March: 03, April: 01, May: 02,
June 04, July: 09

154, 183, 214, 247, 282

The bold font indicates the days corresponding to the maps in Figure 7.

2017 (wet). Figure 7 is used to illustrate how the method
works at the grid cell level using four sample locations at
high-elevation in the Tuolumne watershed (Figure 1A). The
basic procedure is as described above: (i) the forward model
generates an ensemble prior estimate (of equally likely replicates)
for fSCA and SWE over the full WY (shown in red), (ii) the
PBS update equation generates posterior weights reflecting how
well individual replicates fit the Landsat and MODSCAG fSCA
measurements (open circles and squares respectively), (iii) the
posterior weights are used to generate a posterior ensemble
estimate for fSCA and SWE (shown in blue). The posterior

SWE estimates are then compared to the independent ASO SWE
estimates (open triangles).

Figure 7A illustrates this for location #1 in the northwest
of Tuolumne for WYs 2015-2017. The prior ensemble median
SWE for each of the 3 years at this location peaks at ∼0.3,
0.75, and 1.75 m respectively with a large uncertainty bound
(representing the inter-quartile range) around the median. The
uncertainty bounds are the result of the input uncertainties (i.e.,
related to snowfall, other meteorological inputs, snow albedo, and
sub-grid coefficient of variation parameter) that are propagated
through the forward model. The SDC in the model is used to
represent the evolution of predicted fSCA as seen by the satellite
(fSCApred), which is typically highly variable early in the water
year, saturates at fSCAmax (after enough snow has accumulated)
and then shows depletion during the spring/summer months.
The timing and rate of depletion is a function of the underlying
SWE and melt rates during ablation. Any discrepancies between
the predicted and observed fSCA are then used to generate the
posterior weights used to derive the posterior SWE estimates.
In all three WYs at location #1, the prior ensemble median
for fSCA is lower (i.e., earlier depletion) than the observations.
This causes those ensemble members with higher values of
fSCA to be weighed more heavily, resulting in the posterior
fSCA distribution, which, by construct, fits the observed fSCA
better than the prior. The same update is applied to the SWE
ensemble, resulting in an increase in the posterior ensemble
median SWE (and a reduction in posterior uncertainty). The
resulting posterior ensemble median SWE peaks at ∼0.6, 1.25,
and 2.75 m respectively across the three WYs, where the increased
SWE is implicitly more consistent with the fSCA depletion time
series. The ASO SWE estimates are shown in comparison to the
prior and posterior SWE in each WY. For this particular location,
the posterior estimates of SWE are in better agreement with the
ASO estimates than the prior estimates are.

Figures 7B–D illustrates the same results for the other
three sample locations (Figure 1). The overarching results are
qualitatively the same as for location #1 with some variations.
Generally speaking, the prior estimates of fSCA underestimate
the observed values, which lead to an increase in the posterior
SWE estimates relative to the prior. One exception to this is
location #3 (Figure 7C) in WY 2015, where the prior fSCA
predictions are relatively consistent with the fSCA measurements
such that the prior and posterior ensemble median SWE are
similar (with a reduced uncertainty in the posterior). WY 2015
was unusual in that it was a historically dry snow year (Margulis
et al., 2016b) and therefore led to early melt-out followed by
intermittent snowfall and melt events later in the year, compared
to the more typical single melt out seen in WYs 2016 and
2017 (seen across all four locations). Hence the fSCA depletion-
SWE relationship is much noisier in WY 2015. For location
#3 in WY 2015, the prior and posterior show lower SWE than
the ASO estimates. At that same location in other years, the
posterior estimates of SWE are in much better agreement with
ASO SWE. Another case that is worth pointing out is location #2
(Figure 7B) in WY 2016. While the posterior fSCA distribution is
in reasonable agreement with the measurements (by construct),
and there is a large increase in the posterior SWE estimates
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FIGURE 7 | (A) Prior (red) and posterior (blue) predicted fSCA and grid-averaged SWE for each WY corresponding to location #1 shown in Figure 1. The ensemble
estimates are represented by the: median (solid line) and inter-quartile range (shaded region). Assimilated fSCA measurements are shown as open circles (Landsat)
and CDF-matched MODSCAG (open squares). The fSCA measurements shown in gray are those that do not contribute to the update (since the prior ensemble
spread is zero). The independent ASO SWE estimates are shown as open triangles. Panels (B–D) are the same but for location #2 to #4 shown in Figure 1
respectively.

relative to the prior, the posterior peak SWE estimates are less
than those estimated by ASO. To the extent that the ASO
SWE estimates are closest to the true SWE values, the fact that
the posterior peak SWE underestimates SWE, while matching
the observed fSCA depletion time series, indicates potential
errors in the modeled melt fluxes. Such errors are most likely
attributable to the coarse (MERRA-2) meteorological inputs that
are downscaled and used in the model.

Another point to make, that is illustrated in Figure 7, has to
do with the fSCA observations that contribute to the posterior
update. While all fSCA measurements shown are used in the
Bayesian update Equation (3), not all will contribute meaningful
information with respect to the posterior. In particular, in
cases where the prior ensemble spread in predicted fSCA is
negligible, which typically happens either when all replicates
saturate at fSCAmax in the mid- to late-accumulation season
or converge to zero after ablation, there will be no differential
penalty (with respect to those measurements) for one ensemble
member over another since all will have exactly the same
discrepancy with measurements (likelihood) at those times.
This is illustrated in Figure 7, where those measurements that
contribute meaningful information are shown in black, while
those without meaningful contribution are shown in gray. The
“non-informative” measurements primarily occur during mid-
to late-accumulation season, when fSCA-SWE information is

expected to be lowest, which is implicitly being confirmed via
the fact that that ensemble spread in predicted measurements
is negligible. During the accumulation season, fSCA retrievals
tend to be noisier due to lower solar zenith angles, increased
terrain shading, potential for cloud vs. snow misclassification,
and other factors. The seemingly large differences during that
period are attributed to these factors. To the extent that some of
those measurements may be measuring real snow dynamics, this
would indicate weakness in the SDC model which is invariably a
simplification of sub-grid snow cover dynamics that is arguably
best suited for capturing the main ablation season depletion. The
end result is that high information content measurements during
the ablation season are those that primarily contribute to the
update. Pixels that are less seasonal (more intermittent fSCA) are
more likely to have less information in the fSCA time series that
can be used to update the prior.

Spatially Distributed Estimates Over Tuolumne and
the Impact of Using Joint Landsat-MODSCAG
Measurements
The prior and posterior estimates were compared to the spatial
estimates from ASO to more fully characterize the performance
of the method. Figure 8 illustrates the spatial SWE fields for
the ASO estimate closest to April 1st in each WY compared
to the prior and posterior ensemble median fields and the
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difference fields relative to ASO estimates on those days. WY
2015 was a historically dry year so that SWE was relatively
low on DOWY 185 (generally less than 0.5 m and limited
primarily to the highest elevations of the Tuolumne watershed).
The ASO SWE field is well correlated with the posterior with
a spatial pattern correlation of ∼0.84 compared to ∼0.55 with
the prior. The posterior shows a small mean difference (MD;
less than 1 cm) with a root-mean-squared difference (RMSD)
of ∼ 5 cm, while the prior has a MD and RMSD of ∼ −5 cm
and ∼9 cm, respectively. In WYs 2016 and 2017 most of the
watershed was covered by snow near April 1st (DOWYs 184 and
183 respectively) with SWE values in some locations exceeding
1.2 and 2.5 m respectively. In both years the posterior had a
much larger pattern correlation (0.81 and 0.86 respectively) with
ASO than does the prior (0.59 and 0.55 respectively). The mean
differences are largest in WY 2016 where the posterior has an
MD of ∼ −12 cm compared to the prior MD of ∼ −23 cm.
The prior shows large negative differences at high elevations
and positive differences at low elevations. The posterior reduces
these differences, but still exhibits negative differences at high
elevations. We hypothesize that this is due to errors in the
downscaled MERRA-2 forcing inputs. Sensitivity tests (not
shown) found that when using the higher-resolution NLDAS-2
forcing in this year, the differences were smaller. This highlights
that, where available, higher resolution forcing inputs may
provide benefit due to the need for less downscaling (although
tests in WYs 2015 and 2017 showed similar performance when
using NLDAS-2 and MERRA-2 forcing). In WY 2017 the low- vs.
high-elevation contrast in prior SWE differences was amplified
compared to WY 2016. So while the prior MD was relatively
low (∼ −6 cm), this was primarily due to the large positive and
negative errors canceling out rather than an indicator of a good
estimate. This is confirmed by the large prior RMSD (∼63 cm).
The posterior reduced the prior errors with a MD of ∼ 2 cm
and RMSD of 39 cm.

Beyond the SWE fields near April 1st, a similar comparison
was performed for all of the ASO flight days shown in Table 2.
For each day, the prior and posterior spatial correlation, MD
and RMSD are shown side-by-side in Figure 9. For the spatial
correlation (top row), the posterior uniformly outperforms the
prior. The posterior mean (range) in correlation for each WY
is 0.80 (0.65–0.87), 0.79 (0.69–0.84), and 0.82 (0.71–0.87). In
contrast the prior mean (range) in correlation for each WY is 0.55
(0.50–0.61), 0.59 (0.55–0.64), and 0.51 (0.28–0.62). On average,
the posterior correlation coefficient values are 45% higher than
the prior values. In terms of MD, the posterior performs best
in WYs 2015 and 2017 where the magnitude of MD values are
generally less than 5 cm in 2015 and less than 10 cm in 2017.
The largest posterior MD values are in WY 2016, where negative
MD values of 10–20 cm are seen in the late accumulation season.
With respect to RMSD, the posterior estimates are generally
comparable to or considerably better than the prior across all
three WYs. The posterior mean (range) in RMSD for each WY is
∼7 cm (4–11 cm), ∼15 cm (4–28 cm), and ∼37 cm (26–43 cm).
The prior mean (range) in RMSD for each WY is ∼ 10 cm (4–
13 cm),∼22 cm (5–40 cm), and∼ 54 cm (32–67 cm). On average,
the posterior RMSD values are 29% lower than the prior values.

To justify the MODSCAG screening method (θ < 20◦)
used in the results presented above and below, a sensitivity
analysis was done for several different assimilation cases over
the Tuolumne watershed (Table 3). Specifically, we tested cases
with Landsat-only, MODSCAG-only, joint Landsat-MODSCAG
and additional cases where the Landsat data was subsampled.
The latter cases were examined because Tuolumne happens to
be in an area where Landsat tiles overlap, such that it is not
representative of the more general (single tile) case. For this
reason and to mimic locations with more cloudy conditions, the
subsampled Landsat cases used every third Landsat measurement
(i.e., so that pixels have∼20 measurements/year). All assimilation
cases outperform the prior across all WYs, indicating the
benefit of the additional information contained in the fSCA
measurements. The Landsat-only case with all measurements
generally performs the best. In particular the spatial correlation
for the full Landsat-only case is highest across all WYs,
which is attributed to the higher spatial resolution of the
raw Landsat data which better resolves spatial snow patterns
(Figure 3) compared to MODSCAG. Of the assimilation cases,
the (screened) MODSCAG-only case performs the worst, while
the joint full Landsat + MODSCAG case results fall between
the two end-members. The performance of the Landsat-only
case is attributed in part to the fact that Tuolumne happens to
benefit from being where Landsat tiles overlap and therefore has
a significant number (∼60/year) in a given WY. This is confirmed
for the subsampled Landsat-only case, where most error metrics
show degradation of performance relative to the full Landsat-
only case. Aside from the spatial correlation coefficient, the joint
subsampled Landsat + MODSCAG case performs comparably
(and in some metrics, i.e., MD and RMSD in WYs 2015 and 2016,
outperforms) the subsampled Landsat-only case. We interpret
this to reflect the fact that in the general case with single Landsat
tile coverage and the potential reduction of measurement number
due to clouds, there is some benefit to using screened (and CDF-
matched) MODSCAG data. Moreover, the degradation when
adding the screened MODSCAG data to even the full Landsat-
only case is relatively small. So including MODSCAG data
provides added benefit in regions that may be subject to limited
Landsat data and provides relatively limited degradation where
Landsat data is plentiful. Hence all other results presented herein
are for the joint Landsat + MODSCAG case with a screening
threshold parameter of θ< 20◦.

In summary, the comparison of reanalysis results to
independent spatially distributed estimates from ASO provides
confidence that the method is able to produce reasonable
posterior estimates. All of the inputs used in these results are
available globally and thus allow the method to be applied in
remote areas where such verification data does not exist.

Sample Results Over HMA Tiles
The primary motivation of the development of the method is to
make it applicable to the HMA domain where information on
spatially distributed seasonal SWE is extremely limited. Ongoing
work is being performed to develop an HMA snow reanalysis
dataset for the whole domain shown in Figure 1B, but here we
provide some illustrative results for the 9 test tiles examined
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FIGURE 8 | Comparison of reanalysis results to ASO SWE estimates nearest April 1st in each verification year (WYs 2015–2017). For each WY, the ASO SWE
estimates are shown in the left panel followed by the (ensemble median) prior and posterior SWE estimates. Difference fields are shown below the prior and
posterior estimates to illustrate the differences relative to ASO SWE. The spatial correlation (R), mean difference (MD) and root-mean-squared difference (RMSD)
relative to ASO SWE estimates are shown in the prior and posterior difference panels.
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FIGURE 9 | Comparison of ASO SWE estimates to the prior and posterior SWE estimates for each WY (organized in columns) as characterized by the spatial
pattern correlation (top row), the mean difference (middle row), and root-mean-squared difference (bottom row). Result for the prior and posterior are shown in
red and blue respectively.

TABLE 3 | Analysis of SWE error metrics (Correlation coefficient: R, Mean Difference: MD, Root Mean Squared Difference: RMSD) for Tuolumne River watershed relative
to ASO SWE for ASO measurement DOWY nearest April 1st (see Table 2) for the prior model case and different fSCA assimilation cases.

WY 2015 WY 2016 WY 2017

R MD (m) RMSD (m) R MD (m) RMSD (m) R MD (m) RMSD (m)

Prior 0.553 −0.048 0.087 0.591 −0.226 0.364 0.546 −0.064 0.629

Full Landsat-only 0.863 −0.001 0.054 0.842 −0.115 0.222 0.914 0.03 0.308

MODSCAG-only (θ < 20◦) 0.678 −0.002 0.072 0.747 −0.146 0.277 0.81 −0.012 0.462

Full Landsat + MODSCAG (θ < 20◦) 0.839 −0.002 0.054 0.807 −0.123 0.242 0.861 −0.02 0.394

Subsampled Landsat-only 0.807 −0.004 0.062 0.787 −0.143 0.261 0.9 −0.004 0.33

Subsampled Landsat + MODSCAG (θ < 20◦) 0.78 −0.002 0.061 0.787 −0.136 0.257 0.848 0.005 0.411

Units for MD and RMSD are in meters of SWE. The full Landsat case includes all Landsat measurement, which happens to include the overlapping Landsat tiles over
Tuolumne (see Figure 5). The sub-sampled Landsat case uses only every third Landsat measurements to mimic the more realistic case of single Landsat tile measurement
locations and/or cloudier regions.

in Liu and Margulis (unpublished). That work focused on the
use of the reanalysis method for deriving estimates of MERRA-
2 precipitation uncertainty. Herein we highlight posterior SWE
estimates derived for the 9 test tiles, with a focus on the

climatological characteristics of peak SWE over WYs 2000-2017.
A more thorough and quantitative analysis of domain-wide SWE
and its space-time variability will be forthcoming when the HMA
snow reanalysis is completed.
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FIGURE 10 | Maps of annual (WYs 2000–2017) pixel-wise peak SWE (in meters) for tile (38◦N, 75◦E). The gray pixels represent those masked out as pre-identified
glaciers, likely glaciers (i.e., pixels with persistent carry-over SWE in more than 14 out of 18 years), or open water bodies. For reference, the DEM of this tile is shown
in Figure 1.

Maps of Posterior Peak SWE Climatology in HMA
Test Tiles
The reanalysis method provides daily SWE estimates at each
pixel over the 18-year application period (WYs 2000–2017).
From this we can derive the peak SWE maps for each WY. To
first illustrate this for a single tile, the annual map of pixel-
wise peak SWE for tile (38◦N, 70◦E) is shown in Figure 10
(for reference its DEM is shown in Figure 1). The maps are
designed to show the seasonal snowpack, i.e., pre-identified
glaciers and water bodies are masked out (gray pixels). Some
seasonal snow pixels may carry-over snow from 1 year to the
next (typically in wet years) and some pixels that are not
identified by the glacier mask may in fact be glaciers. To attempt
to focus on the climatology of pixels that represent seasonal
snow, those pixels with a minimum to maximum SWE ratio
(where non-zero represents carry-over SWE) greater than 1%
in more than 14 out of the 18 WYs are also masked out. This
is an arbitrary threshold, but one designed to allow for the fact
that some seasonal snow pixels may have carry-over SWE in
many years, but should not in every year if they are indeed
seasonal. The combined mask tends to be at the highest elevations
(Figure 10). Also note that the pixel-wise peak SWE represents
the peak at each grid cell across the WY and is therefore not
tied to a particular day, but instead represents the amount of
total maximum seasonal snowpack storage across the tile. The
individual WY maps show some consistent patterns as well
as inter-annual variability in peak SWE (Figure 10). For this
particular tile, the maximum SWE is generally on the fringes
of glacier pixels, with lower values in the valley regions. In
terms of inter-annual variability, WYs 2016, 2004, and 2010
represented the minimum, median, and maximum tile-averaged
annual peak SWE years.

The annual maps for each test tile were compiled into a
single climatology map as shown in Figure 11. The maps capture
the large-scale variations across the HMA domain as sampled
by the tiles, with the largest SWE values generally occurring
in the tiles (34◦N, 75◦E) and (38◦N, 70◦E), intermediate SWE
values in tiles (41◦N, 77◦E), (34◦N, 66◦E), (29◦N, 82◦E), (27◦N,
90◦E), and (29◦N, 97◦E) and the lowest values occurring in
tiles (36◦N, 85◦E) and (38◦N, 98◦E). The largest glacierized
areas (i.e., with diagnosed persistent carry-over snow) occur in
(41◦N, 77◦E), (34◦N, 75◦E), (29◦N, 82◦E), (27◦N, 90◦E), and
(29◦N, 97◦E). In each tile there is significant spatial variability
with the largest values generally occurring, as expected, in the
high-elevation regions (see Figure 1 for tile DEMs). Beyond the
broad correlation with elevation, peak SWE patterns also show
more localized spatial patterns likely indicative of orographic
and other effects. One such example is in tile (34◦N, 66◦E),
which largely experiences winter westerlies driving snowfall, and
shows what appears to be a strong orographic/rain-shadow in
the northeastern portion of the tile where a valley exists to the
northeast of a high mountain range. The windward side of the
mountain range is where some of the largest peak SWE values
are seen, with much lower values on the leeward side and in
the leeward valley.

Elevational Distribution of Posterior Peak SWE
Climatology in HMA Test Tiles
The climatological maps can be used to aggregate SWE and
illustrate how it varies with elevation across each tile. The SWE
distribution is shown in Figure 12 in terms of both the average
depth (SWE in meters) and integrated volume (SWE in km3) in
each elevation band. Both are complementary in that the former
illustrates how physical processes (e.g., orographic precipitation
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FIGURE 11 | Maps of climatological (i.e., averaged over WYs 2000–2017) pixel-wise peak SWE (in meters) for the set of HMA test tiles. The gray pixels represent
those masked out as pre-identified glaciers, likely glaciers (i.e., pixels with persistent carry-over SWE in more than 14 out of 18 years), or open water bodies. For
reference, the tile DEMs are shown in Figure 1. The upper value used in the colorbars represent the 95th percentile of values in each map and not the maximum
values.

and snowfall vs. rainfall occurrence) may drive variations in SWE
depth accumulation, while the latter merges that information
with the hypsometry (i.e., area-elevation relationship) for each
tile to get SWE volume storage. The SWE depth (Figure 12A)
generally shows a strong gradient with respect to elevation.
Tiles (27◦N, 90◦E) and (29◦N, 97◦E) show essentially no SWE
at the lowest elevations, while the others have non-negligible
SWE across the full range of elevations in the tiles. Tiles (34◦N,
66◦E), (41◦N, 77◦E) and (38◦N, 98◦E) show a relatively linear
SWE lapse rate across the tile elevation range, while the other
tiles show a non-linear relationship with an increasing lapse
rate with elevation. The largest SWE depth values occur in the
upper elevation bins in (27◦N, 90◦E) with over 1.5 m and (38◦N,
70◦E) with ∼1 m. Generally speaking, the relative tile area will
decrease with increasing elevation, which is reflected in the
SWE volume distribution (Figure 12B), where the peak volumes

are generally stored at intermediate elevations. For reference,
the cumulative fractional volume distribution and the median
elevation within each tile are shown. Tiles (34◦N, 66◦E), (36◦N,
85◦E) exhibit distributions where the SWE volume storage is split
approximately equally above and below the median tile elevation.
Otherwise most of the tiles, including (34◦N, 75◦E), (41◦N, 77◦E),
(29◦N, 82◦E), (29◦N, 97◦E), and (38◦N, 98◦E) have more than
50% of the SWE stored below the median elevation, while tiles
(38◦N, 70◦E) and (27◦N, 90◦E) have more than 50% of the SWE
stored above the median elevation. Tile (27◦N, 90◦E) stands out
with∼75% of its SWE volume stored above the median elevation.

Seasonal Cycle of Posterior SWE in HMA Test Tiles
To illustrate the seasonal nature of SWE storage we show the
climatological seasonal cycle in tile-integrated SWE in each test
tile along with the individual annual realizations over the 18
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FIGURE 12 | SWE distribution as a function of elevation for HMA test tiles expressed as: (A) bin-averaged SWE depth (in meters) and (B) bin-averaged SWE volume
(in km3). For the SWE volume distributions, the cumulative distribution function (solid black line) showing the cumulative fraction of stored volume (right axis) and
location of the median elevation (dark gray dashed line) is also shown.

WYs examined (Figure 13). This is done by tile-averaging SWE
for each day of the WY (to get annual time series) and then
averaging across WYs to get the climatology. The seasonal cycle
highlights some of the variations in snow drivers across the
nine tiles. Of the tiles examined, the most canonical winter
accumulation/spring melt examples are those in the western
portion of the domain, i.e., (41◦N, 77◦E), (38◦N, 70◦E), (34◦N,
75◦E), and (34◦N, 66◦E), where there is a clear unimodal
seasonal signature driven by precipitation in the winter and
melt in the spring. Tiles (34◦N, 75◦E) and (38◦N, 70◦E) show
the largest seasonal storage, with an average peak (interannual
range) of ∼3.25 km3 (1.5–4.75 km3) and ∼3.25 km3 (1.75–
5 km3), respectively, peaking around DOWY 175–200 (late-
March to mid-April). Tiles (34◦N, 66◦E) and (38◦N, 70◦E)
exhibit negligible carry-over seasonal SWE from 1 year to
the next, while (41◦N, 77◦E) and (34◦N, 75◦E) have carry-
over in some years. The remaining tiles (when moving east),
show a much more mixed seasonal behavior with monsoonal

influence evident in the SWE annual cycle. For example, most
of these tiles have precipitation in the spring/summer season
(i.e., after DOWY 200) extending into the fall (i.e., before
DOWY 50) with very limited precipitation in between. This
results in a seasonal shift where SWE can carry-over from one
WY to the next and/or have multiple local maxima throughout
the year. Tiles (27◦N, 90◦E), (29◦N, 97◦E), and (38◦N, 98◦E)
appears to be the most monsoon-driven, with either peak SWE
occurring later in the WY and/or common carry-over from
spring to fall as a result, in part, of non-winter snowfall. The
reduced ratio of winter to non-winter precipitation explains
why SWE is limited to the highest elevations in these tiles
(as shown in Figure 12), where air temperatures are cold
enough in summer to allow for snow accumulation. The other
tiles generally show a mix of winter/summer precipitation.
Tile (38◦N, 98◦E) show two peaks, one driven by early
fall precipitation (i.e., before DOWY 50) and a larger peak
around DOWY 220.

Frontiers in Earth Science | www.frontiersin.org 20 October 2019 | Volume 7 | Article 272

https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-07-00272 October 22, 2019 Time: 20:45 # 21

Margulis et al. Landsat/MODIS Snow Reanalysis Methodology

FIGURE 13 | Tile-averaged seasonal cycle in SWE volume (km3) for HMA test tiles. The 18-year climatology is shown with the thick blue line. Individual years are
shown with thin gray lines for reference.

SUMMARY AND CONCLUSION

The snow reanalysis framework presented herein is designed
to provide a methodology for estimating seasonal snow storage
and its dynamics in global midlatitude mountain regimes where
in situ observations are severely lacking. The method leverages
existing readily available global datasets for forcing a snow
model and Landsat- and MODIS-derived (MODSCAG) fSCA
retrievals to update the prior model estimates in order to
derive posterior estimates using a Bayesian framework. The
DA framework not only jointly uses Landsat and MODSCAG
fSCA data, but accounts for MODIS viewing -geometry effects
on the fSCA retrievals through: (i) accounting for expected
variations in measurement error covariance and (ii) a screening
and CDF-matching technique that leverages the high-resolution
(near-nadir) sampling of Landsat to transform the MODIS
measurements to a consistent basis before assimilation. The
method was verified through comparison with the Airborne
Snow Observatory (ASO) SWE estimates over the Tuolumne

River watershed in California. The posterior SWE estimates
were shown to be much more consistent with the independent
ASO estimates across the three WYs examined. Tests over
Tuolumne showed that, where a large number of Landsat
measurements exist (i.e., in areas of overlapping Landsat tiles
and multiple sensors), the Landsat-only case performance is
best, attributable primarily to the higher spatial resolution
of the raw Landsat data, but that with fewer Landsat
measurements (i.e., in areas with only single Landsat tile
coverage or significant cloud cover), the additional MODIS-
based measurements can have a positive impact. Illustrative
results were presented for nine HMA test tiles to illustrate
how the method can provide posterior estimates of the space-
time climatology in SWE storage in areas where in situ data
does not generally exist. Ongoing work is being conducted
to use the method outlined herein to generate an HMA-wide
reanalysis dataset that will provide an opportunity for a more
thorough characterization of seasonal snow storage and dynamics
over the joint Landsat-MODIS era as well as putting it in the
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context of other studies that have characterized seasonal snow
in HMA. Additional future avenues of research could include a
detailed exploration of different forcing datasets (i.e., MERRA-
2, ERA5, GLDAS, etc.) and their implications, and the usage
or addition of other fSCA products (i.e., from VIIRS) using the
framework developed herein.
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