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Scientific visualization aims to present numerical values, or categorical information,
in a way that enables the researcher to make an inference that furthers knowledge.
Well-posed visualizations need to consider the characteristics of the data, the display
environment, and human visual capacity. In the geosciences, visualizations are commonly
applied to spatially varying continuous information or results. In this contribution we make
use of a suite of newly written computer applications which enable spatially varying data
to be displayed in a performant graphics environment. We present a comparison of
color-mapping using illustrative color spaces (RGB, CIELAB). The interactive applications
display the gradient paths through the chosen color spaces. This facilitates the creation of
color-maps that accommodate the non-uniformity of human color perception, producing
an image where genuine features are seen. We also take account of aspects of a dataset
such as parameter uncertainty. For an illustrative case study using a seismic tomography
result, we find that the use of RGB color-mapping can introduce non-linearities in the
visualization, potentially leading to incorrect inference. Interpolation in CIELAB color
space enables the creation of perceptually uniform linear gradients that match the
underlying data, along with a simply computable metric for color difference, AE. This
color space assists accuracy and reproducibility of visualization results. Well-posed
scientific visualization requires both “visual literacy” and “visual numeracy” on an equal
footing with clearly written text. It is anticipated that this current work, with the
included color-maps and software, will lead to wider usage of informed color-mapping
in the geosciences.

Keywords: data visualization, seismic tomography, feature identification, color mapping, color space, CIELab,
RGB

INTRODUCTION

Graphical representations in the form of static diagrams, plots, and charts form a fundamental
part of the scientific toolset. Scientific visualization aims to reveal and explore relationships in data
and assist in the development of robust inference, posing two initial questions of data: “Is what we
see really there?” and “Is there something there we cannot see?” The first question encapsulates the
interplay between scientific curiosity and apophenia—“the innate human ability to see pattern in
noise” (Wickham et al., 2010; Cook, 2017). The second question exposes the concept of “missed
discovery,” where the analyst is unaware that unperceived structures await discovery (Buja et al.,
2009).
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Important challenges are thus posed to software designed
for visual analytics (Keim et al., 2006) and data-based graphical
inference (Cook et al, 2016). Interactive computer-based
visualizations can expand the explanatory and exploratory
capabilities of scientific software. A significant body of research in
visualization, interactivity, analysis and design (e.g., Tukey, 1990;
Wilkinson, 2005; Ward et al., 2010; Ware, 2013; Munzner, 2014)
provides the foundations for visualization practice.

Well-posed visualizations clearly elicit features of underlying
data values, maintaining an overt awareness of the risks of
representational ambiguity and error (Rougier et al., 2014).
Given the constraints of a human-computer visualization system
(Haber and McNabb, 1990; Hansen and Johnson, 2005), they
can reveal structures and patterns that may be elusive to other,
e.g., statistical, approaches (Tukey, 1977, 1990; Tufte, 1990).
The informational capacity of static images can be extended by
incorporating elements of interactivity (Ward et al., 2010).

Interactivity enables the exploration of the design-space
for visualization (Schulz et al, 2013), including constraints
for visual encoding and interaction idioms (Munzner, 2014),
creating a feedback loop between user and visualization
system. Representations may be examined in detail, forming an
important part of the analytical and inferential processes (Keim,
2001; Keim et al., 2006) that actively facilitate conceptual model
building and analyses (Keim et al., 2010; Ward et al., 2010; Harold
etal, 2016).

BACKGROUND AND RELATED WORK

The Interactive Visualization Process

A model of the interactive visualization process (Figure1)
proposes three principal components: “Data,” “Visualization,”
and “User.” Data (D) is transformed by a specification (S)
into a visualization (V). The Image (I) is processed by the
perception and cognition of the user (P) to produce knowledge
(K), iterated via a time-variant perceptual/cognitive loop (dK/dt),
in concert with interactive exploration (IE). Time-variant
specification changes (dS/dt) in turn affect V. More explicitly,
D undergoes some pre-processing and transformation into an
interrogable structure before it is visualized. S includes interactive
steps including filtering, mapping, and rendering, affecting the
appearance of the visualization. This is pertinent to mapping
variables to color, given the interplay between machine models
of color spaces (S) and perceptual faculties of users (P) in their
context of observation. P implicitly incorporates the context in
which a visualization is observed. This includes factors such as
ambient illumination conditions and changes in lighting (e.g.,
shadows and light in a room or daylight through a window).
These are all normal criteria for screen and print reproduction
quality control in professional digital publishing, and merit
greater consideration for well-posed scientific visualization.

Colormaps and Color Scales in Scientific
Visualization

Colormaps and color-scales are standard features in interactive
scientific visualization software aiming to convey a wide variety
of information types: e.g., continuous values, categories and

many others (Rheingans, 1992, 2000; Munzner, 2014; Mittelstadt
and Keim, 2015; Zhou and Hansen, 2016). Colorization of
data can be driven parametrically, e.g., using algorithmic
functions (Eisemann et al., 2011), by human aesthetic decisions
(Healey and Enns, 2012) or by pre-existing convention and
experience (Bertin, 1983; MacEachren et al., 2012). The widely-
used rainbow (“Jet”) or spectrum-approximation colormap,
whilst having specific productive use-cases, is well-known
for introducing problems of perceptual non-linearity, hue-
ordering ambiguity and loss of visual discrimination for fine
detail (Rogowitz and Treish, 1998; Eddins, 2014; Hawkins,
2015; Stauffer et al, 2015). Research into optimal colormap
design for science has an extensive literature (Silva et al,
2011; Kovesi, 2015; Moreland, 2016; Ware et al., 2018),
including optimization for color vision deficiencies (Light
and Bartlein, 2004). Addressing the need for consistent
terminology, Bujack et al. (2018) propose a nomenclature
with unambiguous mathematical definitions, characteristics
that are quantifiable via their on-line tool (Bujack et al,
2018).

Colormaps that maximize color difference such as Viridis,
Magma, Parula and others are now becoming default schemes
in widely-used scientific software (Smith et al, 2015). Ware
et al. (2018) and Kovesi (2015) provide thorough analysis
of a range of colormaps for different visualization tasks.
Crameri (2018a,b) provides extensive discussion of colormaps
for geoscientific visualization, as well as software and colormap
resources for widely used programs such as GMT, Matlab, QGIS
and others.

Human Color Perception

Human color vision is a complex, adaptive system extensively
studied by vision researchers (Wyszecki and Stiles, 1982;
Gordon, 2004; Stockman and Brainard, 2015). Estimates
of the number of discernible colors perceivable by an
average human vary widely (Masaoka et al, 2013). The
non-uniform nature of human color perception has been well-
established by techniques in advanced colorimetry (Fairchild,
2013).

RGB, HSL, HSV Color

A simple computable model for linear RGB color calculates
and stores color values as 8-bit values of the three primaries
Red, Green, and Blue (RGB), following an additive color-
mixing model capable of generating (28)> colors: 16.7 million
colors or “24-bit color” (Poynton, 2012). Whilst computationally
simple, RGB color mixing is regarded as non-intuitive for
end-users (Meier et al, 2004; Zeileis and Hornik, 2006).
Tractable transformations of RGB, such as HSL and HSV (Smith,
1978), are simple geometric reformulations of this schematic
color model, rather than perception-based ones (Robertson,
1988), and inadequately represent human color perception
(Poynton, 2006; Fairchild, 2013). Despite their ease-of-use
and ubiquity in computer interfaces, they are discontinuous
and not perceptually uniform. They also present problems
in accurately representing color and lightness relationships
(Light and Bartlein, 2004; Silva et al., 2011; Kovesi, 2015;
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FIGURE 1 | Model of Visualization (after Van Wijk, 2005 and Liu et al., 2014). This figure shows a schematic model of the visualization process, incorporating

Moreland, 2016; Ware et al., 2018). Most importantly for data
visualization, there is no meaningful metric for representing
color difference in RGB, HSL, or HSV color spaces that
match human perception of color differences (Robertson,
1988).

CIE Color

The CIE system (CIE, 2004), an international standard for color
specification and communication, provides a series of color
models that mathematically represent human color perception
and color appearance. The CIEXYZ 1931 model is a perceptually
measured color space with known values (CIE, 2004). This
model represents all colors that are perceivable by an observer
with average eyesight (Fairchild, 2013; Asano et al., 2016). The
range of colors produced by the model is referred to as its
gamut (Morovic and Luo, 2001). Commonly used color models
such as RGB, HSV, HSL, and CMYK exhibit limited gamuts,
producing a substantially smaller range of colors than humans
are capable of perceiving. Because these models are relative, they
require a photometrically defined reference white point, CIE
Ds0/Dg5 (Poynton, 2006), in order for color values to be mapped
from one space to another (Poynton, 1994). The standard
RGB (sRGB) color space and gamma curve, using CIE defined
chromaticities and Dgs whitepoint, has become the default
color space for computer OS and internet color management
systems (Anderson et al., 1996; IEC, 1999; Hoffmann, 2000).
However, whilst “absolute;,” SRGB color space is not a perceptual
color space and has a significantly smaller gamut than that
of CIEXYZ derivatives (Hoffmann, 2000, 2008). Mathematical
regularizations of CIEXYZ have led to color models such as
CIELAB and others, which closely approximate human color
perception (Fairchild, 2013).

Uniform Color Space: CIELAB

Plotting CIE XYZ tristimulus values in Cartesian coordinates
produce perceptually non-uniform color spaces (CIE, 2007).
Uniform Color Spaces (UCS) are mathematical transformations
of the CIE 1931 XYZ gamut that represent color in a perceptually
even fashion, defined by the CIE as a color space in which
equal metric distances approximately predict and represent equal
perceived color differences (Luo et al., 2006; Bujack et al., 2018).
As perception-based color models, they more accurately map
the human visual gamut and mitigate color-matching and color-
difference problems.

CIELAB and other UCS are commonly proposed for creating
perceptually uniform color sequences in data visualization
(Meyer and Greenberg, 1980; Kovesi, 2015; Ware et al., 2018),
despite known limitations and deficiencies (Wyszecki and Stiles,
1982; Sharma and Rodriguez-Pardo, 2012; Fairchild, 2013; Zeyen
et al., 2018). They form a set of absolute color spaces defined
against reference whites or standard illuminants defined by the
CIE (Tkalcic and Tasic, 2003; Foster, 2008; Fairchild, 2013). Due
to relative ease of computability, CIELAB has become widely
used for color specification and color difference measurement.
It provides a complete numerical descriptor of color in a
perceptually uniform rectangular coordinate system (Hunter
Associates Laboratory Inc., 2018).

Color Difference
The CIELAB UCS color difference metric, AE, is calculated as
follows (Lindbloom, 2017):

Ep* = \/(Ll —L)* + (a1 —a)* + (b1 — bz)z
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for 0 <L <100, —128 < a < 127, —128 < b <127 (signed 8-bit
integer), where L = lightness, a = green (—a) to red (+a), b =
blue (—b) to yellow (+b).

Color differences for RGB values are calculated via
transposition into CIELAB coordinates within the sRGB
gamut, following standard conversion formulae and standard
illuminant values (RGB to XYZ, XYZ to CIELAB; Brainard,
2003; Lindbloom, 2013).This provides a dimensionless Euclidean
metric for color difference that can be linearly applied to known
data values and ranges during color-mapping. AE values of
~2.3 correspond to a just-noticeable-difference (JND) in color
stimuli for an average untrained observer (Sharma and Trussell,
1997; Mokrzycki and Tatol, 2011), indicated in Table 1. Color
opponency can be verified in CIELCh space, using Chroma (C)
and Hue (h) values, calculated:

C=+a*+ b?

hap = atan2(b, a)
where atan?2 is the 2-argument arctangent function.

3D Representations of Color

Most existing computer-based color-palette tools date back to
paint programs from the 1980s (Meier et al., 2004). Standard
2D RGB/HSL/HSV color-selection interfaces do not clearly
articulate the non-uniformity of human color perception and
provide poorly defined feedback on color difference (Douglas
and Kirkpatrick, 1999; Stauffer et al., 2015). 1D, 2D, and 3D
representations of different color gamuts form an essential part
of a user interface for color selection and application (Robertson,
1988; Zeileis and Hornik, 2006). Color gradients can be visualized
as paths through representations of two or three-dimensional
color spaces. Dimensionality is an imperative consideration in
determining the type of path traversal that can be undertaken
in a color space: 1D representations implicitly provide no path
information, 2D representations address only co-planar colors,
3D representations provide maximal information about path
extent, geometry and color relationships (Rheingans and Tebbs,
1990; Bergman et al., 1995). Path traversal is an important
indicator for the location of perceptually isoluminant colors,
indication of monotonicity (linear increase/decrease in chroma
or lightness), quantization or stepping, orthogonality and other
salient features (Ware, 1988; Bergman et al., 1995; Rogowitz and
Goodman, 2012).

TABLE 1 | AE perceptual characteristics (after Mokrzycki and Tatol, 2011).

AE Perceptual Characteristics

0<AE<1 Observer does not notice the difference
1<AE<?2 Only experienced observer can notice the difference
2<AE <35 Inexperienced observer also notices the difference
35<AE<5 Clear difference in color is noticed

5 < AE Observer notices two different colors

DATA AND METHODS

Interactive Color-Mapping for Geoscience
Interactive color-mapping in an intuitive real-time, performant
software application is an appealing proposition for geoscientific
data visualization. Interactivity affords immediate visual feedback
to the end-user, providing the opportunity to iterate through
color palettes and associated colorization functions, exploring
available color-spaces and their utility in eliciting features of
underlying data. However, great care must be taken to ensure
contiguity between data, color, and color-space geometries,
including gradient path trajectories.

Although there are many applications that enable the
construction of color gradients, few enable live interactive
exploration of color spaces whilst being applied to data,
concurrently providing visual feedback displaying the gradient
path through color space. In this contribution we introduce
Gradient Designer (GD), its companion applications and sample
colormaps. This suite of tools is suitable not only for color-
mapping, gradient design and data exploration, but extend live,
real-time interactive visualization beyond the computer desktop
to a range of visualization platforms, such as MR, VR, and Dome
display systems (Milgram and Kishino, 1994; Morse and Bourke,
2012).

Implementation: Gradient Designer
Gradient Designer (GD) is an interactive gradient design
and color-mapping software application aimed at the well-
posed display of continuous spatial data, as frequently used in
geoscience research. It is implemented on the MacOS platform
(Morse, 2019).

GD features the following capabilities:

Data Handling:

e Local or remote datasets maybe be rapidly explored through
an interactive interface that allows sequential overview of
multiple layers through a 3D dataset, as well as zooming and
panning to features of interest.

e Robust and clear relationship to known incoming data values
and ranges enabled by UL

e Export of high-resolution colorized images, as well as color
gradients for import into other software in raster image format
(.png), color palette table format (.cpt) and data interchange
format (JSON).

Color Control:

e RGB gradients can be replicated and analyzed in CIELAB
color space.

e Live color space visualization of gradient path traversal in
CIELAB, RGB, HSL and HCL color spaces through four
companion apps.

e Manipulation of linear RBG/sRGB (Dg5) gamut colors in
3D CIELAB/RGB/HSL/HCL color spaces using simple HSL
slider UL

e Complex gradients may be designed that target specific values
and ranges, including continuous-linear, stepped-linear, non-
continuous and non-contiguous ranges.
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Extended Functionality:

e Alpha channel control for downstream 3D compositing.

e Live video sharing of color gradient data to Syphon-
compatible client applications for display (e.g., on immersive
visualization systems).

Application Aims and Development

Framework

Gradient Designer (GD) and its companion apps aim to
provide an intuitive interface for a set of linear color-mapping
tasks for continuous geoscience data. For our case study, data
has been pre-processed into whole of globe equirectangular
greyscale images stored as 8-bit RGB PNG files, with known
data ranges (where 0-255 represent known minima and
maxima, linearly mapped to the underlying data, including an
alpha channel for lat/long region-of-interest delineation). This
provides 256 greyscale values, which are adequate for the data
under consideration.

The current version is programmed in the MacOS Quartz
Composer VPL, using a mixture of pre-defined QC processing
nodes as well as custom routines programmed in Objective-C,
Javascript, OpenCL and OpenGL. It is compatible with MacOS
10.13.6 High Sierra and MacOS 10.14 Mojave (Morse, 2019). GD
can share live video of the gradient display (Figure 2, panel 10) in
real-time to external applications running a Syphon-compatible
client (Butterworth et al., 2018; NewTek, 2019).

Gradient Designer User Interface

The user interface comprises two windows and standard MacOS
menus, providing access to further color picker interfaces at OS-
level. The application interface is designed around simple and
familiar slider and button controls, and text field inputs. It uses
a conventional mouse/keyboard combination.

Figure 2 illustrates the 10 main panels of the application:
Panel 1—user instructions; Panel 2, a floating parameters
window, provides access to file IO, global colorisation and
composite operators, OS-level color pickers, output parameters
and Dgs whitepoint XYZ reference values (IRO Group Ltd,
2019); Panel 3—interactive 3D Viewport; Panel 4—color picker
controls—toggle on/off LAB Color Mixer input, GD or OS color
picker controls; Panel 5—source image control and metadata;
Panel 6—gradient display and design interface including data
metric display; Panel 7—gradient control sliders for gradient
layers; Panel 8—gradient and colorized data output previews;
Panel 9—layer controls; Panel 10—output controls (Morse,
2019). Outputs include the ability to write out gradients as
raster image formats (.png), color palette tables (.cpt; Wessel
et al., 2013) and data interchange format (JSON), suitable for
evaluation via colormeasures.org (Bujack et al., 2018).

Companion Applications

LAB Color Mixer (Figure 3) is a companion color-selection app
for designing color gradients in CIELAB color space. LAB Color
mixer displays RGB and CIELAB gradients in the same view,
demonstrating the disparity between interpolation pathways in
their respective color spaces. It displays CIELAB AE, as well

as CIELCh Hue and Chroma values, for verification and color
opponency. Companion visualization apps (Figure 3) GV_LAB,
GV_RGB, GV_HSL, and GV_HCL run a continuous real-
time image pixel evaluation, mapping incoming gradient color
values to geometric positions in the visualized color spaces. The
path through color space is drawn via OpenGL line segments
in a looping refresh mode, providing visual feedback on the
relationships between gradient termini, hinge-points and vectors
in each color space. Dots along the path indicate the number
of steps of the incoming gradient. This can be a compute-
intensive process, so the detail density of the visualization can
be reduced to speed up draw times, depending upon available
GPU/CPU resources.

Example: CIELAB Divergent Gradient
Standard 2D color-picker GUIs impart limited information about
the relationships between colors in a color space, requiring the
user to infer characteristics that would be useful for scientific
visualization, such as AE. LAB Color Mixer and GV_LAB apps
address this gap.

LAB Color Mixer CIELAB gradients quantize in a binary
fashion, enabling step ranges between 2 and 128. End termini
are mapped first and interpolate toward the central value.
For divergent gradients this ensures that gradient steps fall
unambiguously either side of the central value. As quantization
increases, we asymptotically approach the center value to the
point of indistinguishability (AE <1), creating the appearance
of a continuous gradient (JND < 1). Colors in a three-
point divergent gradient can be selected that maximize color
difference, indicated by LAB and AE values. AE values displayed
are rounded to the nearest integer. Unit-level quantization is
sufficient for discriminability (see Table 1). The UT assists users
in defining terminal colors that do not exceed the sSRGB gamut by
providing gamut warnings (where individual R, G, B values equal
or exceed 0 or 255). LAB Color Mixer transmits the CIELAB-
conformed color gradients as linear RGB image data via an
addressable Syphon server to external client applications.

GV_LAB detects the Syphon server and draws the incoming
linear RGB image data in CIELAB space, spatially transposed
to the sSRGB gamut representation (default: Dgs, 2° Observer
model). GV_LAB visualizes CIELAB color space three-
dimensionally, displaying RGB gamut isoluminant colors on the
AB plane, L on the vertical axis. This view can be rotated, zoomed
and inspected. Path traversal lines between non-adjacent termini
indicate where interpolated points may exceed the sSRGB gamut.
This provides instructive feedback for (a)symmetric gradient
design, isoluminance and AE interpolation, enabling rapid
identification of “problem” gradient regions as users explore the
design space.

Case Study: Well-Posed Visualization of
Seismic Tomography Depth Slices

As a test case for the visualization of a spatially variable 3D dataset
in geoscience, we make use of a published seismic wavespeed
model of the Earth’s mantle beneath Australia, AuSREM (Kennett
et al,, 2013). In the following case study, we aim to display a 2D
slice through the model in such a way as to:
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1: User Instructions
2: Parameters Window
- —
. o]
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(I—
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CET—

4: Color Picker
Controls

6: Gradient Display

7: Gradient Controls

1: User Instructions.

6: Gradient Display - working gradient, active gradient region.

8: Output Previews - image gradient, colorised output, composite product.
9: Layer Controls - image layer separation, active displayed layer.

3: 3D Viewport

5: Source Image Control

2: Parameters Window - Data range values, composite operators, OS color pickers, data |0 directories, whitepoint XYZ reference values.

3: 3D Viewport - Main display area. Comparison and composite views of colorized and non-colorized data.

4: Color Picker Controls - Reset view and User/System/LAB color picker palette toggle and controls.

Export Image Previews - including Layer selection controls. Image, Color Palette Table and JSON save.

5: Source Image Control - Source file import adjustments - gamma control, linear to SRGB toggle, current active displayed file path, source file colourspace metadata.

7: Gradient Controls - Number of gradient iterations (steps) and quantisation/smoothness; Hue, Saturation, Luminosity, Alpha controls; Toggle on/off gradient layers.

10: Output Controls - file output (.png, .cpt, .json). Live gradient transmission via Syphon.

FIGURE 2 | Gradient Designer User Interface. The 10 interface panels are listed in the figure and described in further detail in the text.

8: Output Previews

9rLtayer Controls

10z Output Controls

e minimize the introduction of features that are visually salient,
but not relevant to the interpretation.

e reveal distinctive features of the wavespeed in Earth’s mantle.
This is the most important intent of the visualization.

e manage, in a pragmatic way, the uncertainty in the
numerical values.

e explore regions of interest in greater detail.

The Mantle Component of the Ausrem
Seismic Tomography Model

The AuSREM model is a mature research product, aimed at
capturing the distinctive features of the Earth’s mantle for
this continental area. It was constructed from several sources,
primarily seismic surface wave tomography, supplemented by
seismic body wave arrivals and regional tomography. The authors
have minimized any artifacts of individual modeling procedures
by combining 3D information from multiple sources. AuSREM
is therefore a sensible choice of spatially variable dataset to use in
the exploration of well-posed visualization approaches.

Data are supplied in the form of numerical seismic wavespeed
values in 11 layers from 50 to 300 km, at 25 km intervals. Each
layer is gridded at 0.5° intervals between —0.5 and —49.5°

latitude, and 105.5 and 179.5° longitude. Wavespeed values are
in the range 4.0-4.8 kms™! (Stil, 2019).

Uncertainty

For the purposes of this study, we assume the uncertainty in
wavespeed to be constant throughout the model at 4 0.05 kms ™!,
i.e., a given value of 4.20 kms™! could be between 4.15 and 4.25
but would not be as small as 4.14 nor as large as 4.26 kms™!.
We do not consider spatial uncertainty in this study, brought
about by effects such as smearing, noted by Rawlinson et al.
(2006). From a pragmatic perspective therefore, for a value at a
given point, the uncertainty is the maximum departure from the
given value within which an experienced analyst would expect
the actual value to be. In the case studies that follow, the contour
step interval and other color mapping choices may be set to take
account of uncertainty.

Visualizations

GD is used for the case study to create a series of visualizations
of the AuSREM dataset, focusing on the 100km depth slice,
which is likely to be representative of the main features of the
continental lithosphere. We build upon an example appearing

Frontiers in Earth Science | www.frontiersin.org

October 2019 | Volume 7 | Article 274


https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

Morse et al.

Well-Posed Geoscientific Visualization

LSO X:35.029 R:234
A74 Y:18419 C23
836 26408 B63
al

X0421 R14
Y0443 Cl4
20482 B14
al al

al al

LAB Color Mixer App

Gradient Designer App
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Gradient Designer and Companion Apps

FIGURE 3 | GD Color Space Visualization Companion Apps. This figure illustrates the workflow relationship between the LAB Color Mixer App, Gradient Designer and

the four color space visualization apps, GV_LAB, GV_RGB, GV_HSL, and GV_HCL.

in Kennett et al. (2013) (subsequently referred to as KFFY13)
and conduct a comparative analysis of our new visualizations.
KFFY13 visualizes Earth model reference values at 100 km depth,
with wavespeed ranges of 4.00-5.02 kms ™!, quantized in 17 steps,
each corresponding to a range of 0.06 kms~!. We visualize a
wavespeed range of 3.8-5.0 kms™! quantized in 12, 16, 24, 48,
64 steps (0.1, 0.075, 0.05, 0.025, 0.01875 kms~! respectively)
as required.

RESULTS

High resolution versions of Figures 4-8 are available at the
link provided in the figure captions. The first visualization
(Figure 4A) provides a reference view of the model, intended
to show the imported model values with a mapping of the
underlying values to a continuous gradient, linearly interpolated
in RGB color space (transposed to sSRGB for display). Subsequent
images (Figures 4B-D) use a three-point divergent color-map
which enables the researcher to examine areas with both low and
high values as distinctive features. In Figure 4B we replicate the
color-mapping used by the AuSREM authors (KFFY13), which

is, in many ways a successful visualization. It takes a value
close to 4.495 kms~! as its central value, which corresponds
to an Earth model reference value at 100 km (Kennett et al.,
1995). Two subsequent visualizations (Figures 4C,D) make use
of companion apps to Gradient Designer, the LAB Color Mixer
and GV_LAB, which enable fine-grained control of variation
in lightness and color difference (AE) within the sSRGB gamut.
These directly affect how the researcher will perceive features
in the image. Numerical feedback provided by the companion
apps on LAB values, AE and path traversal visualizations assist
analysis and reproduction for both 2D and 3D display.

The LAB color mixer directly displays the color difference
values between each gradient terminus and the midpoint (AE-1,
a value pair), the color difference between the two termini (AE-
2) and AE across each interpolated color step. GV LAB visualizes
isoluminance, color-map trajectories, AE and JNDs in CIELAB
color space, clearly indicating the constraints of the sRGB
(Des) gamut. These are novel additions to the tools available
to the researcher. The divergent sSRGB color-map (Figure 4B) is
replicated (Figure 4C) in CIELAB color space, with interval color
values interpolated in that space using clearly enumerated AE
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A Blue White sSRGB. Continuous (2048 Steps). | SRGB: Blue (1, 38, 102), White (255, 255, 255)

&
B KFFY13 Replica sSRGB. 16 Steps. sRGB: Brown(154, 122, 45), White (243, 243, 243),
° > Green (3, 159, 83)
L X 4
‘ ‘
C KFFY 13 Replica CIELAB. 16 Steps. CIELAB: Brown(53, 4, 45), White (96, 0, 0), Green
(58, -53, 30). AE-1 62,72, AE-259. Each AE 8,9
|
3 A
D KFFY13 Replica CIELAB. 16 Steps. CIELAB: Brown (53, 4, 45), White (96, 0, 0), Green
Isoluminant termini. (53, -53, 30). AE-1 62,75, AE-2 59. Each AE 8,9
L
v

FIGURE 4 | Comparative visualizations generated using Gradient Designer and LAB Color Mixer Apps (left column) shown with supporting insights in CIELAB color
space provided through the GV_LAB App (right column). The grid values being displayed are taken from the 100 km depth slice (KFFY13). (A) Linearly interpolated
HSL/sRGB reference view of the model in near-monochrome with slow values in dark blue; (B) Divergent 16 step RGB color-map replicating that used by KFFY13;
(C) Divergent 16 step CIELAB interpolation replicating (B); (D) Divergent 16 step CIELAB interpolation with isoluminant end termini. All images assigned Generic RGB
ICC profile. CIELAB colorspace conversions use Dgs 2° illuminant. High resolution: https://doi.org/10.5281/zenodo.3264037.
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A KFFY13 Optimized. CIELAB interpolation. CIELAB: Red (30, 36, 30), White (95,0,0), Green (30, -
16 steps. Isoluminant end termini with equivalent | 36, 30). AE-1 80,80 AE-2 72. Each AE = 10.
L

B KFFY13 Optimized. CIELAB interpolation. | CIELAB: Red (30, 36, 30), White (95, 0, 0), Green (30, -
48 steps. Isoluminant end termini with equivalent | 36, 30). AE-1 80,80 AE-2 72. Each AE = 3.
AE. L

g -

C KFFY13 Optimized. CIELAB interpolation.
16 steps. Isoluminant end termini with maximal
equivalent AE.

Y @
L 4
'q- ®
(]

D KFFY13 Optimized. CIELAB interpolation. CIELAB: Ochre (40, 50, 50), White (100, 0, 0), Green
48 steps. Isoluminant end termini with maximal 40, -50, 50). AE-1 93,93, AE-2 100. Each AE =4
equivalent AE. L

CIELAB: Ochre (40, 50, 50), White (100, 0, 0), Green
40, -50, 50). AE-1 93,93, AE-2 100. Each AE = 12
L

FIGURE 5 | Comparative optimized visualizations generated using the Gradient Designer and LAB Color Mixer Apps (left column) shown with supporting insights in
CIELAB color space provided through the GV_LAB App (right column). For details of the grid values being displayed, see the caption for Figure 4. (A) KFFY13
optimized, 16 step divergent color-map, with isoluminant termini with equivalent AE from termini to midpoint; (B) As per B, with 48 steps; (C) 16 step divergent
color-map, with isoluminant termini with enlarged AE from termini to midpoint, enlarged AE between termini; (D) As per (C), with 48 steps. CIELAB colorspace
conversions use Dgs 2° illuminant. Red-Green termini may present difficulties for viewers with deuteranopia, tritanopia. High resolution: https://doi.org/10.5281/
zenodo.32640837.
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A R-W-B RGB interpolation. 16 Steps. RGB Red (255, 0, 0), White (255, 255, 255), Blue (0, 0,
© ® ;
L & 4

B R-W-B CIELAB interpolation. 16 Steps. CIELAB: Red (53, 80, 67), White (100, 0, 0), Blue (32,
80, -107). AE-1 114, 150 AE-2 175. Step AE 14,19.

CR-W-B CIELAB Optimized. 16 Steps. CIELAB: Red (50, 74, 36), White (96, 0, 0), Blue (50,
36, -74). AE-1 94, 94 AE-2 116. Step AE 12.

D R-Bk-B CIELAB Optimized Dark. 16 Steps. CIELAB: Red (50, 74, 36), Black (4, 0, 0), Blue (50, 36,
-74). AE-1 94, 94 AE-2 116. Step AE 12.

FIGURE 6 | Further comparative visualizations generated using the Gradient Designer and LAB Color Mixer Apps (left column) shown with supporting insights in
CIELAB color space provided through the GV_LAB App (right column). (A) R-W-B non-linear RGB interpolation 16 Steps; (B) R-W-B CIELAB interpolation 16 Steps.
Red and Blue Values match 6 (A), Blue-White interpolation is SRGB gamut constrained; (C) R-W-B linear CIELAB Optimized 16 Steps, Red and Blue are Isoluminant
(L = 50), all colors within sRGB gamut; (D) R-Bk-B CIELAB Optimized Dark 16 Steps. Red/Blue as per 6(C), Black L = 4. CIELAB colorspace conversions use Dgs 2°
illuminant. High resolution: https://doi.org/10.5281/zenodo.3264037.
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A R-W-B CIELAB Optimized Light. 16 Steps. CIELAB: Red (50, 74, 36), White (96, 0, 0), Blue (50,
Centre Alpha = 0. 36, -74).

B R-Bk-B CIELAB Optimized Dark. 16 Steps. CIELAB: Red (50, 74, 36), Black (4, 0, 0), Blue (50, 36,
Centre Al ha = 0 -74).

"‘

¢ R-Bk-B CIELAB Optimized Dark. 48 Steps. CIELAB: Red (50, 74, 36), Black (4, 0, 0), Blue (50, 36,
Centre Alpha 0. -74).

lﬁ':l

1

D R-Bk-B CIELAB Optimized Dark. 48 Steps. CIELAB: Red (50, 74, 36), Black (4, 0, 0), Blue (50, 36,
Left Alpha = 0. Centre Alpha = 0. -74).

FIGURE 7 | Detailed 2D Views and preparation for 3D. Visualizations generated using the Gradient Designer and LAB Color Mixer Apps (left column) shown with
supporting insights in CIELAB color space provided through the GV_LAB App (right column). Note: images contain alpha channels composited against white
background. (A) R-W-B gradient as per 6 (C), Center Alpha = 0; (B) R-Bk-B CIELAB Optimized Dark, 16 steps, Center Alpha = 0; (C) R-Bk-B CIELAB Optimized
Dark, 48 steps, Center Alpha = 0; (D) R-Bk-B CIELAB Optimized Dark. 48 Steps. Left Apha = 0. Center Alpha = 0. CIELAB colorspace conversions use Dgs 2°
illuminant. High resolution:https://doi.org/10.5281/zenodo.3264037.
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A CIELAB (0,0,0 — 100,0,0 64 Steps. Each AE = ~2. Limit of JND.

C

Top 50% 12 Steps. Each AE =~8

o

Bottom Half 0 Alpha. Top half 0-100 Alpha. Top 50%
12 Steps. Each Top 50% AE = ~8.

FIGURE 8 | Comparative visualizations, intended to highlight areas of detail, generated using the Gradient Designer App (left column) shown with supporting insights
in CIELAB color space provided through the GV_LAB App (right column). For details of the grid values being displayed, see the caption for Figure 4. (A) Detail All
CIELAB 0-90 L 64 Steps. (B) Detail top-half CIELAB 0-90L 24 steps. (C) Detail top-half CIELAB 0-90L 12 steps. (D) Detail top-half CIELAB 0-90L 12 steps +
bottom-half alpha 0, top-half alpha 0-100. CIELAB colorspace conversions use Dgs 2° illuminant. High resolution: https://doi.org/10.5281/zenodo.3264037.
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values. In visualization Figure 4D, we equalize gradient termini
located on an isoluminant AB plane (L = 53). This however,
does not guarantee that the color intervals in the divergent three-
point gradient cover equivalent Euclidean distance, nor that
interpolated colors do not exceed the sSRGB gamut.

In Figures 5A,B, we optimize the color-map, whilst
maintaining the same general color range as Figure 4D,
ensuring that all interpolated colors fall within the SRGB (Dgs)
gamut. Gradient termini are isoluminant (L = 30) and have
equivalized AE-1 (=80) for gradient termini. AE-2 (=72) is also
larger than that exhibited in Figure 4D (=59). In Figures 5C,D
we maximize both AE-1 (=93) and AE-2 (=100) for that region
of the sSRGB gamut (visualized by the isosceles triangles on
the right column). This increases the dynamic range of the
visualization both in lightness (L) and color difference (AE),
and assures that Euclidean distances for gradient interpolation
steps are equivalent, linearly matching the underlying data
values. Figures 5C,D display results using 16 and 48 steps, with
interpolated AE values of 12 and 4 respectively. These exceed
recommended JND (>3) values for clearly discriminable colors,
measurably indicating on which side (- or +) of the reference
value they fall. They proceed in linear, quantifiable, perceptually
accurate steps mapped to the underlying data values according
to the CIELAB color model. At lower (16 steps) quantization
the visualization performs categorically, where color steps
implicitly consolidate wavespeed ranges and uncertainty. In
concert with a higher dynamic range in L and AE, increased
(finer) quantization acts like a lens, sharpening focus upon
the underlying data, eliciting physical structural information
to the extent this can be visually inferred within the limits of
known uncertainty.

In Figures 6A-D Red-White-Blue divergent gradient colors
are chosen to align with convention in seismology (i.e.,
reddish/orange colors represent slow wavespeeds; bluish colors
represent fast wavespeeds). Terminal color values and their
equivalents in different color spaces appear in Table 2. Following
Kovesi (2015, p. 17), Figure 6A presents a standard RGB Red-
White-Blue divergent gradient interpolated in RGB color space.
Visualizing this in GV_LAB (right-hand column) in CIELAB
color space clearly reveals this to be asymmetrical, non-linearly
interpolated and volumetrically constrained by the sRGB gamut.
Figure 6B replicates 6A in CIELAB colorspace, with Red/Blue
terminal values per Table 2. Steps between termini are linearly
interpolated within the sRGB volume, with Step AE-2 = 14,19.
End termini to midpoint quantization constrains the point of
closest interpolation to white. The gradient is non-optimal due
to non-isoluminant end termini, sRGB volumetric constraint
and asymmetry. None of the values in the underlying data
map linearly to the Red/Blue extrema, implying that 6A is a
poor representation.

Figure 6C optimizes 6B in CIELAB, adjusting color values to
more closely match 6A. Red/Blue values are isoluminant (L =
50), all interpolated colors fall linearly (Step AE = 12) within
the sRGB volume, forming a perceptually symmetrical gradient
(AE-1 =94, 94). The balanced dynamic range, linearly matching
color differences and symmetry ensure a quantifiable perceptual
match with underlying data values. Setting Red/Blue values to L

= 50 also ensures that the gradient is easily invertible within the
SRGB gamut.

Figure 6D sets the midpoint reference value to near Black
(L = 4), and maintains Red/Blue CIELAB values from 6C.
This maintains the AE-1, AE-2, and Steps AE of Figure 6C.
It is perceptually near-equivalent to Figure 6C, with judiciously
chosen termini within the complex shape of the sRGB volume.
Invertibility of a gradient is a desirable characteristic for
downstream 3D compositing methodologies (Porter and Duff,
1984), and should be tested for dynamic range and gamut
exceedance at the outset of the design-decision process.

In Figures 7A-D, we introduce the ability of the LAB Color
Mixer App to assign an interpolated alpha channel data to the
gradient. This is not driven by underlying seismic wavespeed
values directly, but by the user: the alpha channel is linearly
interpolated across the number of gradient steps, and in this
case enables specification of transparency. Figure 7A illustrates
the non-linear interpolation this introduces when an alpha
channel is applied to the optimized Red-White-Blue gradient.
This is a consequence of the alpha blending function in OpenGL:
multiplication of alpha values (0-1) applied to the relevant color
values as L increases (Telea, 2007). Figure 7B demonstrates the
retention of linearity when colors interpolate to black rather than
white, affirming that an invertible divergent gradient is desirable
for a variety of compositing approaches, dependent upon context
and the compositing algorithm chosen. Figure 7C demonstrates
the effect of finer gradient steps, which may be desirable in
tomographic visualization. Finally, Figure 7D demonstrates the
ability to display a selected range of the data (in this case
the upper 50%) using alpha information, with the concomitant
GV_LAB plot representing this as a straight line, as expected.
These outputs are suitable for 3D compositing of multiple layers
in external applications.

Our final visualizations in Figures 8A-D dispense with color
and apply a simple greyscale gradient, linearly interpolated
in CIELAB color space, with the intent to use lightness to
reveal shape from shading. In this instance features emerge
corresponding to regions of wavespeed contiguity and other
structures of the mantle. Figure 8A illustrates the entire model
with L ranging from 0 to 100, in 64 steps. This reduces the AE of
each interpolated step to approximately 2, approaching the limit
of JND for an expert observer. Figure 8B highlights the top 50%
of the range, indicating regions of high wavespeed (24 steps),
with each step AE = 4. A coarser approximation (12 steps) in
Figure 8C reveals clear groupings within this subset, with a AE
per step of ~8. Finally, Figure 8D introduces an alpha channel,
applied at 100% for the lower 50% of the data, and linearly
stepped from 0 to 100% over the top 50% range. This similarly
prepares the output layers for 3D display.

DISCUSSION

In the following section we note current limitations in our
software and data visualization pipeline, followed by an appraisal
of the strength of our approaches and the on-going potential for
future research and development.
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TABLE 2 | Figures 6A-D Gradient Color Values.

Figures Color RGB HSL (normalized) CIELAB (Dgs) CIELCh (Dgs)
R G B H S L L A B C h
Figures 6A,B Red 255 0 0 0 1 0.5 53 80 67 104.4 39.9°
White 255 255 255 0 0 1 100 0 0 0 270°
Blue 0 0 255 0.7 1 0.5 32 79 —-107 133.8 306.3°
Figure 6C Red 234 23 63 1 0.8 0.5 50 74 36 82.3 25.9°
White 243 243 243 0 0 1 96 0 0 0 0°
Blue 79 105 247 0.6 0.9 0.6 50 36 —74 82.3 —64.1°
Figure 6D Red 234 23 63 1 0.8 0.5 50 74 36 82.3 25.9°
Black 14 14 14 0 0 0.1 4 0 0 0 0°
Blue 79 105 247 0.6 0.9 0.6 50 36 —74 82.3 —64.1°

RGB 0-255, HSL Normalized 0-1.00, CIELAB and CIELCh Dgs.

Implementing our software in the QC VPL limits our
software to the MacOS platform. QC was chosen for its
simple visual programming paradigm, its facility for rapid
application prototyping and wide API support. Since 2018 QC
has been deprecated by Apple, and future support is unclear.
We intend to reimplement our software in an alternative
VPL (e.g., Touch Designer, Derivative Inc., 2019) or a game
engine environment (e.g., Unity Technologies, 2019), which
include cross-platform support. Aspects of the UI can be
improved subject to user-feedback. Future development could
incorporate more sophisticated color models (e.g., CIECAMO02;
Fairchild, 2013), to account for known deficiencies with CIELAB.
The 8-bit pipeline can be extended to 16- or 32-bit color
and greyscale, including float as well as integer values for
greater precision in the manipulation of continuous data.
Improvements in alpha channel control could include evaluation
of color-shift due to transparency mapping, extra functions
for the alpha channel (e.g., tagging or delimiting regions,
defining isosurfaces). Output improvements could include more
control over Syphon/OSC output, including addressable transfer
functions suitable for true volumetric raycasters and other
shading models.

Our visualizations demonstrate that color-mapping should
be conducted with great care and that extant mappings can be
improved. Building on Kovesi (2015), Ware et al. (2018) and
Crameri (2018a), we employed CIELAB color space to visualize
continuous geoscience data.

We first showed a naive two color HSL/sRGB gradient
reference visualization (Figure 4A) for the 100km depth slice
of the AuSREM model. Figure4B closely replicated the
sRGB KFFY13 100km depth slice visualization incorporating
uncertainty. Visualizing this gradient within the sRGB gamut
mapped within CIELAB color space revealed the non-linear
interpolation of the gradient. The gradient termini were
re-mapped within CIELAB space, resulting in linear color
interpolation between gradient termini. This revealed the
difference in lightness (L) values between the end-point colors,
in turn demonstrating that color differences between end termini
and midpoint were non-equivalent. Using CIELAB color space
we can accurately quantify this non-equivalence in AE values,
both for the end-midpoint ranges and for the color difference

of each step in the gradient. This causes the end points of
the gradient to have different “perceptual distances” from the
reference midpoint value, potentially creating the visual inference
that regions of slower wavespeed are more proximate to the
reference value than regions of higher wavespeed, when in
fact this is not the case. Figure4D adjusts for end-point
isoluminance, but does not equalize AE, demonstrating that
despite matching the L values of the endpoints, because color
is used in the visualization, adjustments to color termini in the
AB plane must also be undertaken in order to ensure gradient
symmetry and matching of AE values.

Our software enabled us to control precisely and regularize
these CIELAB differences, and to characterize uncertainty, using
the AE metric. Isoluminant gradient termini, equidistant from
the midpoint reference value, were established in Figure 5A.
Figure 5B quantized the gradient from 16 to 48 steps,
approaching the non-professional observer JND discriminability
limit of 2 < AE < 3.5 per step. Whilst this exceeds our nominal
uncertainty of 4+/— 0.05 kms™! per step, it affirms that coarser
approximations will encode discriminable uncertainty across the
gradient and consistently visually agglomerate regions according
to a linear AE metric.

Optimizing for L and AB variation to elicit form,
Figures 5C,D take advantage of the ability of our software
to symmetrically maximize AE within the sSRGB gamut. This
demonstrates the capacity to linearly sharpen the chromatic
distinction between steps, as well as maximizing lightness
variation between end and midpoints of the gradient. This has
the effect of enhancing contrast, shape perception and slow-fast
discrimination across the data slice, whilst maintaining a JND of
between AE = 12 and AE = 4, values that are well within the
capabilities of the non-expert observer.

A standard seismic Red-White-Blue divergent gradient is
optimized in Figures 6A,B, clearly demonstrating the non-
linearity of this gradient if it is interpolated in RGB colorspace or
naively transposed to CIELAB. This suggests that visualizations
that naively use similar gradients may be misleading. Figure 6C
represents a controlled, isoluminant, AE equivalized CIELAB
version, with correct linear interpolation. The attraction of this
approach is illustrated in Figure 6D, where the gradient is
inverted, but is perceptually isometric. Isometric invertibility is

Frontiers in Earth Science | www.frontiersin.org

14 October 2019 | Volume 7 | Article 274


https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

Morse et al.

Well-Posed Geoscientific Visualization

attractive for 3D compositing operations, some 2D display and
print operations, as well as for volumetric visualization.

Alpha is an important feature for compositing operations
and may have unintended consequences for color perception.
Figure 7 demonstrates the use of linearly interpolated alpha
channels and their effect upon color values within CIELAB.
Figures 7B,C demonstrates the retention of color interpolation
linearity by the inverted gradient, which is desirable for
additive or multiplicative compositing operations. AE values
are disregarded when premultiplied alpha is applied. Figure 7D
illustrates the capability of isolating value ranges through the use
of alpha channel control.

The utility of CIELAB greyscale interpolation is demonstrated
in Figure 8. Unlike perceptually non-uniform RGB greyscale
interpolation, CIELAB greyscale is perceptually linear and
midpoint gray is accurately represented (L = 50). The capability
of LAB color mixer, GV_LAB and Gradient Designer is
demonstrated in resolving the AusREM data from the limits of
discriminability (Figure 8A), to the limits of known uncertainty
(Figure 8B), along with the ability to isolate regions of interest
(Figures 8C,D).

Visual inference may be one of the first important steps
in ascertaining significant formal aspects of geoscientific data.
Looking for structure in noisy or uncertain continuous data
requires clarity and precision in analytical techniques, including
color-mapping. Our software suite, repeatable metrics, and
illustrative color-maps are a proof-of-concept that illuminate the
relationships between data variables and color that should be
part of visually-aware science and human-computer interaction
for visual analytics. Interfaces for colorisation using perceptually
uniform color spaces, such as CIELAB, provide greater certainty
for the accurate visualization of data as well as enhancing the
reproducibility of results.

CONCLUSIONS

We have demonstrated the subtle problems that the inherent
non-uniformity of common RGB-based color models may
present for the interpretation of scientific visualization.
Our approach of color-mapping using the CIELAB color
model improves the correspondence between a color-map
and underlying data. We have demonstrated the capacity of
interactive software to apply linear, quantifiable, and perceptually
accurate color to a typical geoscience dataset, finding that:

1) Color should be applied to visualization of data with care.

2) CIELAB is a good choice of color space for colorization
of linear data as it closely matches human color perception
and facilitates a linear mapping between color space metrics
and underlying data. Understanding that the sSRGB gamut
is a constrained subset of the CIELAB gamut is important
knowledge. Visualization activities should take this constraint
into account at the outset of the visualization process.

3) The AE metric accounts for linear color difference and
establishes the limits of discriminability for color differences
perceivable by the average observer. If color is to be
interpolated across underlying data values, then this should

take place within an appropriate linear color model, such as
CIELAB, within the sSRGB gamut.

4) Uncertainty can be characterized using AE. In this way, the
visualization captures features of the data as well as implicitly
representing the uncertainty, encoded as color difference.

5) Form is best expressed using lightness variation in CIELAB
colorspace. Lightness can be linearly mapped to underlying
data values, using dynamic range to elucidate spatial features.
It may be used together with chromaticity or independently
as greyscale. The interplay between chromaticity and lightness
must be balanced in an effective visualization and may be
explored using the software presented.

6) Reproducibility of color is enabled through the use of
CIELAB. All color reproduction devices and media are
susceptible to color variance. As a perceptual color space,
CIELAB is an absolute color space with known values.
Stipulating LAB and AE values for applied gradients in
scientific visualization achieves the desirable goal of accurate
color reproducibility across a range of platforms and media,
such as calibrated computer displays and print devices.

7) Our contribution encourages attention to both “visual
literacy” and “visual numeracy” for scientific data
visualization. In providing software, raster image output
files (.png), color palette files (.cpt) and data interchange
outputs (JSON) that enable linear, quantifiable and
perceptually accurate color, we hope to promote well-posed
scientific visualization.
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