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While burial diagenetic processes of tropical corals are well investigated, current
knowledge about factors initiating early diagenesis remains fragmentary. In the present
study, we focus on recent Porites microatolls, growing in the intertidal zone. This growth
form represents a model organism for elevated sea surface temperatures (SSTs) and
provides important but rare archives for changes close to the seawater/atmosphere
interface with exceptional precision on sea level reconstruction. As other coral growth
forms, microatolls are prone to the colonization by endolithic green algae. In this
case, the algae can facilitate earliest diagenetic alteration of the coral skeleton. Algae
metabolic activity not only results in secondary coral porosity due to boring activities,
but may also initiate reprecipitation of secondary aragonite within coral pore space, a
process not exclusively restricted to microatoll settings. In the samples of this initial
study, we quantified a mass transfer from primary to secondary aragonite of around
4% within endolithic green algae bands. Using 880, §'3C, Sr/Ca, U/Ca, Mg/Ca, and
Li’/Mg systematics suggests that the secondary aragonite precipitation followed abiotic
precipitation principles. According to their individual distribution coefficients, the different
isotope and element ratios showed variable sensitivity to the presence of secondary
aragonite in bulk samples, with implications for microatoll-based SST reconstructions.
The secondary precipitates formed on an organic template, presumably originating
from endolithic green algae activity. Based on laboratory experiments with the green
algae Ostreobium quekettii, we propose a conceptual model that secondary aragonite
formation is potentially accelerated by an active intracellular calcium transport through
the algal thallus from the location of dissolution into coral pore spaces. The combined
high-resolution imaging and geochemical approach applied in this study shows that
endolithic algae can possibly act as a main driver for earliest diagenesis of coral
aragonite starting already during a coral’s life span.

Keywords: early diagenesis, secondary precipitation, abiogenic aragonite, element ratio, sea surface
temperature, endolithic algae
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INTRODUCTION

Scleractinian corals have been shaping the Earth’s surface since
the Triassic (Stanley, 2003), forming massive reef ecosystems.
Besides their endosymbionts, scleractinian corals host a
diverse microbial community (Rosenberg et al., 2007). Recent
investigations discovered >120 taxonomic units including over
20 genetic lineages (Marcelino and Verbruggen, 2016) present in
skeletons of living corals.

Among the endolithic community, siphonal green algae
of the genus Ostreobium are the most common ones
(Halldal, 1968; Jeffrey, 1968), producing distinctive green
bands in the coral skeleton (Halldal, 1968; Highsmith, 1981;
Verbruggen and Tribollet, 2011).

Although known for many years (Duerden, 1902) the
colonization dynamics, ecophysiology, and activity of endolithic
phototrophs as Ostreobium are not entirely deciphered (Ralph
et al., 2007). While evidence exists that colonization by the algae
occurs mainly as a result of coral mechanical damage or coral
section death (Titlyanov et al., 2008), the entry of Ostreobium
during early coral ontogeny, within days after larval settlement,
has also been documented (Massé et al., 2018).

Euendolithic green algae, which bore into carbonate minerals,
have been identified as major agents of biological reef destruction
due to their boring activity in living and dead corals as
euendolithic organisms (Tribollet, 2008; Grange et al., 2015).
Unfortunately, details regarding the boring mechanism carried
out by endolithic green algae and the fate of dissolved carbonate
components are unconstrained.

Despite this adverse effect, endolithic green algae may also
be beneficial for the host during heat stress situations leading
to coral bleaching events. Under this condition, these algae
are an alternative source of metabolic products required by
the host coral (Schlichter et al., 1995; Fine and Loya, 2002),
including also nitrogen compounds (Maier et al., 2010). The
study of Hartmann et al. (2010) interpreted the formation
of green bands as endolithic algal blooms during episodes
of environmental heat stress inducing coral bleaching. An
increased endolithic algae activity could lead to more pronounced
metabolic fractionation of CO, manifesting as a locally more
positive 8'C value of the coral carbonate (Pereira et al., 2015),
thus recording environmental stress events. The intracrystalline
organic matter of endolithic algae as total hydrolyzable amino
acid (THAA) carbon (Gupta et al., 2007) is preserved over
centuries in coral skeletons (Ingalls et al., 2003), adding to
the established approaches used in paleoceanograpic research.
These findings illustrate that endolithic algae, in addition
to dissolution, can locally alter coral carbonate properties,
representing earliest diagenesis.

The range of reported diagenetic alterations occurring during
a coral’s life span includes variability in skeletal density, skeletal
chemistry (Sr/Ca, Mg/Ca, U/Ca, $!80, §!3C), and coral skeletal
organic matrix (Enmar et al., 2000; Hendy et al., 2007; Perrin
and Smith, 2007), while reasons for the observed heterogeneity
are still a matter of debate. Local magnesium increase could be
ascribed to the precipitation of brucite [Mg(OH;)] as a result
of increased pH due to endolithic green algae photosynthesis

(Buster and Holmes, 2006). Also, secondary aragonite (Macintyre
and Towe, 1976; Nothdurft and Webb, 2009) and high Mg-calcite
(Nothdurft and Webb, 2009; Griffiths et al., 2013) have been
reported from recent and fossil coral skeletons. These secondary
minerals show deviating element/calcium from the primary coral
aragonite (Griffiths et al., 2013). Although a spatial proximity
between secondary carbonate minerals and endolithic algae or
micro-boreholes has been noted as a petrographic feature, a clear
relationship between endolithic algae activity and the presence of
secondary carbonate phases has not been clarified to date.

The scleractinian coral genus Porites is commonly present in
all tropical reef environments showing different growth forms
(Veron, 2000). In addition to the common subtidal massive
growth form (Glynn et al., 1994; Lough et al., 1999), microatolls
are found in intertidal environments where vertical coral growth
is limited by sea level (Dana, 1849; Stoddart and Scoffin, 1979).
In addition to constrain past sea level variability (Woodrofte
and McLean, 1990; Chappell et al., 1996; Lewis et al., 2008),
modern and fossil microatolls have also been used for robust
sea surface temperature (SST) reconstruction using 8180 and
element ratios (McGregor et al., 2013; Roche et al., 2014; Farley
et al., 2018), demonstrating a high degree of reproducibility to
the common growth form of the same species (McGregor et al.,
2013; Wu et al,, 2013). As microatolls grow in the intertidal,
they are exposed to higher irradiation and thermal stress as
corals growing in subtidal conditions (Schoepf et al, 2015).
Endolithic algae as Ostreobium can adapt to elevated ambient
temperatures and also increase their metabolic activity (Fine
et al., 2005). Therefore, microatolls provide the opportunity to
study potentially amplified endolithic green algae-driven early
diagenetic processes under increased SSTs.

In this paper, we expand on previous studies using recent
Porites microatoll samples from a shallow fossil reef top
of Zanzibar, Tanzania, with the intention to decipher early
coral mineral diagenesis in the vicinity of endolithic green
algae activity. Using micro-computed tomography (nCT),
scanning electron microscopy (SEM), nanoscale secondary ion
mass spectrometry (nanoSIMS), fluorescence microscopy, bulk
element, and stable isotope analysis, we illustrate mineral
heterogeneities between pristine coral sections and secondary
aragonite identified in close proximity to endolithic green
algae. Based on laboratory experiments with Ostreobium
quekettii, we propose a conceptual model for an algal-driven
dissolution-reprecipitation mechanism, involving active long-
distance calcium transport within the siphonal cells.

MATERIALS AND METHODS

Coral Samples

Two recent Porites microatolls with coral tissue remains still
identifying the original growth position were collected in
late 2012 from the Buyu Beach area of Unguja (6.16583°S,
39.19916°E), the southern of the two main islands of Zanzibar
(Figure 1). Close to the time point of sampling, the corals
grew in close proximity (<2 m) to each other on top of a
Quaternary reefal limestone platform (Arthurton et al., 1999) and
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FIGURE 1 | Map showing the sample location of microatolls at the western
coast of Unguja island (Zanzibar).

were partly exposed to air when sampled at low tide (Figure 2).
Instrumental records of the SST variability, observed for the
region between 1982 and 2007, range between 25 and 31°C
with typical annual variation of £1°C (McClanahan et al., 2007;
LaJeunesse et al., 2010).

Sample Preparation

After retrieval, the microatolls were washed in running
freshwater and left to air-dry (Nothdurft and Webb, 2009). After
drying, samples showed no signs of surface salt precipitation,
indicative for the removal of seawater remains. Subsequently,
samples were wrapped in aluminum foil and shipped to the home
laboratory. Corals were stored in the dark at approximately 20°C
until further use. Upon preparation, the corals were free of odor,
indicating that extensive decay of organic remnants did not occur
during storage time.

The microatolls were cut into several sections using a saw
with a blade cooled by running ultra-purified water (resistance
18.2 MQ cm™!) to avoid the possibility of thermally induced
inversion of aragonite to low-Mg calcite (Waite and Swart, 2015)
and redistribution of abraded material. Subsequently, the sections
were left to dry at 20°C.

After optical inspection of the coral pieces, including
microscopy and pwCT imaging, individual spots for highly
selective sub-sampling were defined. Prior to any imaging,
coral samples were sonicated for 2 x 10 min in ultra-
purified water (resistance 18.2 MQ cm™!) to remove any
potentially remaining sawdust from the pore volumes. To prevent
unintended dissolution of coral carbonate, the pH of the water
was set to 8.5-9.0 with ammonium solution (25%, extra pure).
After the sonification procedure, samples were rinsed briefly
with ultra-purified water and left to dry for 48 h at 28°C in
dust-free conditions.

Coral samples for wet chemistry and X-ray diffraction (XRD)
analyses were obtained using a handheld power drill with a
bediamonded milling cutter. Drilling was carried out at the lowest
possible speed to avoid sample warming. Sampling spots were
approximately 5-6 mm in diameter (see Supplementary Figure
§2). The obtained discrete powder samples were aliquoted for
light stable isotopes (3'20, $13C), element ratios (Sr/Ca, Mg/Ca,
U/Ca, Li/Mg), and XRD analyses.

Light stable isotopes were analyzed with a Thermo Scientific
MAT 253 stable isotope ratio mass spectrometer (SIRMS)
connected to an automated carbonate preparation device Kiel
CARBO IV at GEOMAR. The isotope values were calibrated
vs. NBS 19 (National Bureau of Standards) and the GEOMAR
in-house standard (“Standard Bremen,” Solnhofen limestone).
Values are reported in per mil (%o) relative to the VPDB
(Vienna Peedee Belemnite) scale, accompanied by a typical
reproducibility of £0.05%o for §¥0 and +0.07%0 for !3C (SD,
n = 8) for the calibrated in-house standard measured during
this sample set.

Element concentrations and ratios were determined using a
quadrupole inductively coupled plasma-mass spectrometer (Q-
ICP-MS, Agilent 7500cx). The Coral standard JCp-1 was used as
a reference material and measured every fifth sample and in a
total of 10 times (n = 10). The average JCp-1 value and standard
deviation was 8.81 £ 0.04 mmol/mol for Sr/Ca, 4.19 £ 0.02 for
Mg/Ca, 1.197 % 0.026 for U/Ca, and 1.62 % 0.02 for Li/Mg.
Based on these analyses and the external precision at the 95%
confidence level (20), the average uncertainty is 0.04 mmol/mol
for Sr/Ca, 0.02 mmol/mol for Mg/Ca, 0.03 mmol/mol for U/Ca,
and 0.02 mmol/mol for Li/Mg. The error values given in the
manuscript are the standard deviation of 10 measurements.

Additional coral subsamples for high-resolution mapping
were cut out under sawing conditions mentioned above and
embedded in resin for further analytical approaches. After
formatting the specimen to the appropriate dimensions, plastic
rings with an outer diameter of 1 in were used to hold the samples.
Subsequently, the samples were embedded in Araldite®2020
resin (Huntsman International LLC) and left for complete
polymerization at 50°C over 24 h. After being completely cured,
the samples were formatted to the desired measures using
a microtome saw (Leica SP 1600). The samples were then
ground down and polished with a Tegra-Pol-21 system (Struers,
Denmark) to minimize sample surface reliefs down to nano-SIMS
adequate quality.

Algae Culture

A culture of O. quekettii (strain 6.99) was purchased from the
Culture Collection of Algae at Géttingen University (SAG). The
SAG seawater medium SWES was used for algae culturing. The
algae were kept in 250-mL glass bottles containing between 50
and 100 mL of medium at 20°C in a laminar flow box exposed to
an illuminance of 128-135 Ix. The light intensity was measured
with a UNITEST® 93560 luxmeter, equipped with a silicon
photodiode. The lux measurement accuracy is £2%. All bottles
were closed with autoclaved cotton plugs permitting gas exchange
between the bottle volume and ambient atmosphere. The SWES
medium was exchanged every 14 days. When the algal mass had
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FIGURE 2 | Original positions of the two Porites microatolls on the Buya Beach reef during low tide and corresponding coral slabs used for further analyses. (A,B)
BB1. (C,D) BB3. Arrows indicate macroscopically visible green algae bands perpendicular to the coral surfaces.

approximately tripled after 2 months, 100 wL of algal volume was
inoculated into a new bottle with medium.

Intracellular Calcium Transport
The variation of calcium concentration in O. quekettii in two
different illuminance conditions (high light vs. low light) was
investigated under laboratory conditions. Available skeleton
parts of the scleractinian coral Stylophora pistillata were used
as appropriate hard substrate. The branches were cut into
small plates of several centimeters in length and a diameter
of approximately 3 mm using a handheld power drill with a
diamond-coated saw blade. Subsequently, the plates were ultra-
sonicated and dried as described above. In order to remove any
organic residue, the plates were bleached in 1% NaClO for 48 h,
followed by thorough rinsing in ultra-purified water. Finally, the
coral plates were dried at 30°C under clean room conditions.

For the experiment, S. pistillata plates were placed individually
in transparent plastic Petri dishes filled with sterile SWES
medium. Subsequently, approximately 50 mL of O. quekettii

volume was placed directly on top of each plate. In addition, Petri
dishes including only SWES medium and O. quekettii were also
prepared. Dead controls were prepared using O. quekettii fixed in
4% formalin for 24 h.

For highlight conditions, Petri dishes with closed lid were
placed inside a clean bench exposed to an illuminance of 128-
135 Ix. Low-light conditions were created in a lightproof box
with lid by cutting 1 x 1 cm holes at the bottom, which
were approximately 12 cm apart. The box was mounted with
a 2-cm clearance to a tabletop. Light penetrating through each
hole inside the box had an illuminance of 0.64-0.37 Ix. Each
sample set for the two light conditions included living and dead
O. quekettii with and without coral plates. Four replicates were
prepared for each treatment. Algae sampling was carried out
after 6 and 60 days.

The Fluo-4™ AM staining kit was used to image intracellular
variability of calcium levels of the O. quekettii cytosol. For
staining, 50 pg of desiccated dye was dissolved in 20 pL of
dimethyl sulfoxide (DMSO) to produce a 2.3 mM stock solution.
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For staining, approximately 50-pL algae volume was added to
2295 nL of SWES medium and 5 pL of Fluo-4 AM stock
solution (final Fluo-4 concentration was 5 wM). Subsequently,
the samples were kept in the dark for 30 min. After staining,
the algae tissue was placed shortly on Whatman™ filter paper
and placed on a microscopy glass slide and covered with a glass
slip. Epifluorescence microscopy imaging was carried out using
an enhanced green fluorescent protein (EGFP) filter cube.

Microscopy and SEM

Coral subsamples and algae cultures were imaged using a Zeiss
Axiolmager.M2 and a 12-BitAxio Cam MRm Rev.3 camera at
GEOMAR. The software package ZEN 2.3 (Blue edition) was
used for image acquisition and processing. SEM was carried
out using a Zeiss Merlin Compact scanning electron microscope
at IOW. For conductivity, samples were sputter-coated with a
10-nm chromium layer. Images were obtained using secondary
electron emission.

X-Ray Diffraction

For XRD analysis, the obtained powder was ground in
an agate mortar and distributed evenly on a silicon disk.
Analyses were run from 4 to 75 2-theta (degree) angle at
0.5/min on a Philips X-ray diffractometer PW 1710 with
monochromatic Co anode at GEOMAR. The XRD detection
limit for aragonite and calcite is 2.9 and 0.9 mol.%, respectively
(Kontoyannis and Vagenas, 2000).

Confocal Raman Microscopy

Confocal Raman microscopy (CRM) is an ideally suited analytical
method to determine mineral phases within biogenic materials
with high (micrometer range) spatial resolution (e.g., Nehrke and
Nouet, 2011). CRM measurements in this study were performed
at the AWI by means of a WITec alpha 300 R instrument
connected to a diode laser having an excitation wavelength of
488 nm. Raman spectra have been obtained using a Zeiss 20x
Epiplan lens (NA 0.4) and an UHTS300 ultra high-throughput
spectrometer (WITec GmbH, Ulm, Germany) equipped with
a 1800 mm~! grating blazed at 500 nm. Raman spectra were
measured and analyzed using the WITec ProjectFOUR software.
An optical clear calcite single crystal (Iceland-spar from Mexico)
and a clear aragonite crystal (from Aragon in Spain) have been
used as well-defined (XRD) in-house standards to obtain Raman
reference spectra under the same conditions the samples have
been measured at.

Electron Microprobe (EMP) Element
Mapping

A JEOL JXA 8200 electron microprobe (EMP) was used at
GEOMAR to generate element distribution maps for Ca and Sr
on cross-sections of the coral skeleton. Each sample was carbon
coated before the measurements. Measurements were carried
out at an acceleration voltage of 15.0 kV, a beam current of
20 nA, a beam diameter of 2 wm, a dwell time of 500 ms,
and 10 accumulations for each image. Calibration of Sr and
Ca concentrations was done using four standards with known

average concentrations [VG-2 (Jarosewich et al., 1980), KAN-1
(Reay etal., 1993), strontionite (Jarosewich and White, 1987), and
calcite (Jarosewich and MaclIntyre, 1983)]. Results are illustrated
as maps of quantitative element abundance in mass% and atomic
Sr/Ca. The JEOL JXA 8200 was also used to generate the
secondary electron images of the mapped area.

NanoSIMS Element Mapping

The samples were coated with a 40-nm carbon layer using
a Cressington carbon coater 108 carbon/A (Watford,
United Kingdom). Areas of interest were selected based on
the approximate position based on previous microscopy analyses
and the appearance in the NanoSIMS CCD-Camera (4x
magnification). SIMS imaging was performed using a NanoSIMS
50L instrument (Cameca, Paris, France). The '33Cs* primary
ion beam was used to erode and ionize atoms of the sample. The
electron flood gun was employed for compensation of charging
effect in the area of the analysis. Maps of 1*C~, 807, 325~ and
12CHN~ abundances were recorded simultaneously as indicators
for organic material within the coral. Less abundant ions (*C™,
1807) were employed because the signals of the main ions were
too high for detection in parallel with the sulfur signal. Prior
to the analysis, sample areas of 50 x 50 pwm were sputtered
for 7 min with 600 pA to erode the carbon coating, clean the
surface, and reach the steady state of secondary ion formation.
The primary ion beam current during the analysis was 5-20 pA,
depending on the signal intensities. For areas of 25 x 25 pm, 60
planes were analyzed.

Different spots with similar optical appearance were analyzed
with the NanoSIMS Oxygen source (Duoplasmatron). Different
spots were selected to avoid potential bias by the implanted Cs
and already eroded surface. The pictures presented for Sr/Ca and
Mg/Ca were derived from location at the surface of the same pore.
Measurements in other pores substantiated the findings (data not
shown). Prior to the analysis, sample areas of 50 x 50 pm were
sputtered for 3 min with 600 pA to erode the carbon coating, 18-
to 20-pum squares were analyzed, and 2*Mg*, 3K+, °Ca™, and
88Sr* ions were recorded. The primary ion beam current during
the analysis was 50 pA. Thirty planes were analyzed.

For analyses with both sources, the ions were detected with
mass detectors equipped with electron multipliers (Hamamatsu).
The scanning parameters were 512 x 512 pixels with a dwell
time of 250 s per pixel. The mass resolving power was adjusted
to be sufficient to suppress interferences at all masses allowing,
e.g., the separation of S~ from interfering ions such as °0,~.
The instrumental drift was checked by repeated analysis of one
sample spot in the course of the measurements. No systematic
drift was revealed.

Data analysis was performed with the Look@NanoSIMS
software package (Polerecky et al, 2012). The planes were
checked for signal instabilities, drift corrected, and accumulated.
Ratio images were produced based on the ion count pictures.

It is worth noting that SIMS analyses are a destructive
technique. Thus, a volume of the sample is consumed and several
layers are eroded. However, the sample erosion by the Cs source
was shown to be small enough to resolve cell size features
[5.7 nm/pane for a less intense primary ion beams focused to
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a smaller area (Saka et al., 2014)]. In addition, the planes were
inspected carefully for signal changes with depth. Thus, we have
no hint that a change of the sample with depth by, e.g., reaching
edges of aragonite did occur and altered the results.

Micro-Computed Tomography

To image two entire coral slabs (Figures 2B,D), a VivaCT 80
(Scanco Medical AG, Briittisellen, Switzerland) wCT scanner,
usually used for preclinical in vivo imaging, was used, which
permits a scan diameter of 80 mm with a scan length of up
to 150 mm. The used low-noise medium-resolution protocol
(70 kVp, 113 pA, 799 mm FOV, 125 proj./180°, 500 ms
integration time, 6 X 6 sw-binning, standard filtered back
projection reconstruction algorithm including beam hardening
correction for the density range of interest) sampled to an
isotropic voxel size of 156 pwm. The data were exported to
calibrated 16-bit grayscale DICOM image stacks for further
processing with the AVIZO 9.6 software. For both slabs,
appropriate orthogonal slices from a vertical plane were selected
and adjusted for optimal contrast and converted to 8-bit
grayscale images.

Intensity line profiles, running perpendicular to the coral
surfaces, were obtained using the Image] 2.0.0 software
package. Clearly distinguishable intensity minima were used for
consecutive counting of annual coral growth cycles.

Detailed wCT imaging was carried out with a Skyscan
1172 (Bruker, Kontich, Belgium) at CAU. A coral volume of
approximately 8 x 8 x 30.0 mm was cut out of the BB3
coral slab using a slow speed saw. Subsequently, the coral piece
was sonicated and dried as described in the sample treatment
section. For pCT-data acquisition, the sample was mounted on
a device-specific specimen holder. Scanning was conducted with
an acceleration voltage of 100 kV and a current of 100 LA, and
X-ray projections were captured over a full 360° rotation (0.25°
increments). Voxel edge length was 8.82 pum.

The obtained w-CT data sets were reconstructed using
the NRecon software package (Bruker, Kontich, Belgium).
Segmentation,  visualization, and volume calculations
were carried out with the AVIZO 9.6 software package
(Thermo Scientific).

SST and Sr Partition Coefficient
Calculations

The 8!'80-SST calculations were carried out using the calibration
equation by Grumet et al. (2000) for modern Porites from
Tanzania:

SST (°C) = —8.44 — 7.75 x O (% VPDB). (1)

For the Sr/Ca-SST calculations, the equation of Correge (2006)
for Porites was used:

SST (°C) = 16.4745 (10.553 — Sr/Ca (mmol/mol)). (2)

The U/Ca-SST was calculated using the calibration equation of
Min et al. (1995) for Porites:

SST = —18.4 x U/Ca (nmol/mol) + 45. (3)

The Porites Mg/Ca-SST was calculated after Wei et al. (2000):
SST = —14.13 + 8.846 x Mg/Ca (mmol/mol). (4)

The SST for Li/Mg was calculated using the calibration equation
of Hathorne et al. (2013) for Porites from the Ogasawara
Islands (Japan):

SST (°C) = 20.9205 x (2.76 — Li/Mg (mmol/mol)).  (5)

The Sr partition coefficient for aragonite (Ds; ,) was calculated
according to:

Dgra = (Sr/ca)aragonite/(Sr/ca)seawater- (6)

As no adequate data for modern seawater Sr/Ca are available for
the Indian Ocean, the combined mean of the Atlantic and Pacific
Ocean of 8.539 (mol/mol) (+0.45% SD) was used (De Villiers,
1999). As the total range of Sr/Ca of both oceans combined is
<1.5%, we consider this value also representative for the Indian
Ocean. As a consequence, we assume also an uncertainty of 1.5%
for the calculated Dy, .

RESULTS

Coral Age and Morphological Features
Prepared sections of the Porites microatolls BB1 and BB3
showed macroscopically visible green bands with an approximate
thickness between 2 and 5 mm (Figures 3A,E). The consecutive
counting of low-intensity bands from CT-based orthogonal slices
from the most inner part to the recent coral surface yielded
approximate coral life spans of 12 years for both microatolls (see
Supplementary Figure S1). The annual linear extension varied
between 0.3 and 0.9 cm year™! with a mean linear extension of
0.7 cm (SD 0.2 cm, n = 11) cm year_1 for BB1 and 0.6 cm (SD
0.2 cm, n = 11) cm year~! for BB3.

Based on comparison with previous studies (e.g., Kornmann
and Sahling, 1980; Le Campion-Alsumard et al., 1995; Yamazaki
et al.,, 2008), thalli networks, which are characteristic for the
green algae genus Ostreobium, were identified in the green bands
using light and epifluorescence microscopy (Figure 3). The thalli
were siphonal filaments with a diameter of approximately 5 pm
and a length of several hundred micrometers (Figures 3B,C,EG).
Repeated branching in combination with knobby surface
irregularities, typical for Ostreobium, was frequently observed.
The prevailing structures could be clearly distinguished
from endolithic cyanobacteria as characteristic septa between
consecutive vegetative cells were not present. The sole presence
of terminal sporangia (Figures 3C,F) also discriminates the
observed thalli from cyanobacteria, as the latter produce
heterocysts. Although organic deterioration impeded genetic
characterization, the combination of distinct morphological
features strongly advocates for members of the Ostreobium
group. Electron backscatter imaging perpendicular to the coral
surfaces revealed strong heterogeneities of skeleton porosity.
Areas inhabited by endolithic algae were characterized by
numerous boring voids with diameters matching the cell
diameter of O. quekettii, indicative for metabolically induced
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FIGURE 3 | Algae green bands (white arrows) with Ostreobium thalli found in
green bands of BB1 (A-D) and BB3 (E-G) and images from cultured

O. quekettii (H-J). Different stages of sporangia development were observed
in the coral samples (D — premature algae sporangium from BB1) and in the
cultures (H — mature algae sporangium). Pure cultures of O. quekettii show
thalli networks (I,J) similar to the ones found in coral green bands. Scale bars,
20 wm. Electron backscatter images of BB3 cross-section show coral
skeleton parts inhabited (K) and devoid (L) of endolithic algae with different
degrees of secondary porosity. Scale bars, 100 wm.

secondary porosity. For the image in Figure 3K, a total area
loss of 4% due to microporosity was calculated. In contrast,
Figure 3L represents a typical region devoid of endolithic algae,
characterized by massive coral carbonate.

Visual Diagenesis Indications

Light as well as SEM revealed the presence of additional algae
bands to the ones macroscopically visible. All of these showed
increased porosity compared to the skeleton parts without algae
bands (Figures 3K,L). At the outermost part of the BB1 section,

three concentric bands inhabited by Ostreobium were apparent
(Figure 3A). Three consecutive zones also with increased
secondary porosity, but without algae remnants, were located in
the inner part of the coral. These zones were termed former algae
bands (see Supplementary Figure S2). The BB3 section showed
five consecutive Ostreobium bands running perpendicular to the
coral’s growth direction. In addition, another band was situated
in close proximity to the coral surface partly overgrown by the
younger skeleton section (see Supplementary Figure S2).

Imaging of coral subsamples with SEM confirmed spatial
heterogeneity of the pore space surfaces. In the coral surface part,
as well as in the algae-free sections, pore space lining appeared as
smooth texture (Figure 4A). As this appearance was observed in
the youngest and in all algae-free sections, the smooth surface is
considered the pristine state.

In contrast, pore space surfaces from algae-band sections
showed an area-wide irregular surface consisting of blocky
crystals growing on top of the smooth surface. This mineral phase
showed strut bundles with blunt or flat apices (Figures 4B,C)
protruding between 5 and 10 pm into the pore space volume
(Figure 5). These infillings were present also several hundred
micrometers away from the cutting edge. In pristine areas,
smooth surfaces were present also at the saw-cut edge.
Consequently, mineral infilling as a consequence of sawing
artifacts can be excluded.

X-ray diffraction small-amount (10-20 mg) bulk
measurements as well as high-resolution Raman spectroscopy
performed in situ by focusing onto the blocky mineral phase
within the pores unambiguously identified the corals as
being purely aragonite {Raman peaks for the two lattice
modes (translation mode T,, 152 cm™! and librational mode
La, 206 cm™!) and the two internal modes [in-plane band
vy, ~705 ¢cm~! (double peak) and symmetric stretch v,
1085 cm™']}.

Coral Skeleton and Pore Space Volume
Variability

For comparison of the coral/pore space (v%/v%) inside and
outside of algae bands, a rod-shaped subsample of the BB3 sample
(Figure 6) was scanned with w-CT. The subsample was cut
perpendicular to the surface including coral surface material with
remains of the polyp tissue followed by three alternating algae-
free areas with two intermittent algae bands. The voxel feed
size of the used scan was chosen to be 8.82 wm, thus masking
the vast majority of the vermiform Ostreobium burrows, as they
were too small in diameter to be resolved. As a result, the algae-
induced secondary porosity did not add to the calculated pore
space volume. This advantage was used to constrain volume ratio
variabilities between coral skeleton carbonate and primary pore
space [coral/pore space (v/v)]. The youngest section of the coral,
defined by the presence of coral tissue remnants (Figure 6), and
the three algae-free zones showed a coral/pore space relative
volume ratio varying between 47:53 and 48:52 (v%/v%), which
was assumed to represent pristine conditions. In contrast, the two
algae bands were distinguished by higher ratios of coral material
of 50:50 and 54:46 (v%/v%), respectively.
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FIGURE 4 | Secondary electron emission (SEM) images of BB3 pore space
surfaces. (A) Original surface with smooth texture in algae-free area close to
the coral surface. (B,C) Secondary aragonite precipitation (black arrows)
widely covering primary coral pore space surfaces (white arrows). Secondary
precipitates appear as bundles of short and stumpy struts. Scale bars, 10 wm.

Spatially Resolved Stable Isotope and

Element Ratio Variations

In total, 13 samples were taken for the combined analysis of '80,
$13C, and molar Sr/Ca, U/Ca, Mg/Ca, and Li/Mg (Table 1) from
both corals. Six of the samples were obtained within green algae
bands; the remaining were from regions outside of algae bands
(for drill sample position, see Supplementary Figure S2).

FIGURE 5 | Scanning electron microscopy backscattered electrons image of
BB1 cross-sections. (A) Pristine pore space surface. (B) With algae burrows
in the coral skeleton and adjacent secondary aragonite precipitates (white
arrows). Scale bar for A and B, 100 wm.

coral/porespace

FIGURE 6 | Overview of rod-shaped subsample of BB3 (left) with coral tissue
(bottom-orange) and two consecutive algae bands (green). The subsample
was 1-CT scanned (right). Subsequently, percent ratios of coral carbonate
and pore space were calculated for each of the six indicated volumes.

The mean 3'%0 values within the algae bands were more
negative (mean -4.66, SD 0.35, n = 6) than outside (mean -4.55,
SD 0.29, 1 = 7). The corresponding 8!>C values showed variability
in both groups with amplitudes exceeding -5%¢ within algae
bands and -4%o outside, with most negative values found within
the algae bands. The mean 8!*C and 3'30 values of samples from
algae bands showed no significant differences to those obtained
outside the bands (8!30, ¢ test unpaired, p-value = 0.53; 313C,
t-test unpaired, p-value = 0.21). The mean Sr/Ca (mmol/mol)
was about 2.5% higher in the bulk samples taken within the algae
bands [mean Sr/Ca (mmol/mol) 8.99, SD 0.08 (mmol/mol)],
showing a significant difference of the group mean values (-
test unpaired, p-value = 0.01). The corresponding U/Ca values
were also higher in the algae band samples, with overlapping
standard deviation. In addition, no significant difference was
observed (t-test unpaired, p-value = 0.19). The mean Mg/Ca was
lower in the algae bands (4.21 mmol/mol, SD 0.4) compared to
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TABLE 1 | Bulk sample values for 8'80, 8'3C, Sr/Ca, U/Ca, Mg/Ca, and Li/Mg of the microatolls BB1 and BB2.

Coral Location/drill position 3$13C 3180 Sr/Ca mmol/mol U/Ca pmol/mol Mg/Ca mmol/mol Li/Mg mmol/mol
(vPDB (VPDB)
BB1 Algae band 2 —1.65 £ 0.07 —4.64 £+ 0.05 8.96 + 0.05 1.17 £ 0.01 4.09 + 0.01 1.56 + 0.03
BB1 Algae band 3 —2.24 +£0.07 —4.33 £ 0.05 9.02 £ 0.09 1.28 + 0.01 3.90 £ 0.01 1.66 + 0.02
BB1 Algae band 5 —0.44 £ 0.07 —4.82 +£0.05 9.11 £ 0.06 1.31 £ 0.01 3.76 £ 0.08 1.69 £+ 0.01
BB3 Algae band 9 —-5.70 £ 0.07 —4.99 £+ 0.05 8.93 + 0.02 1.07 £ 0.01 4.73 £ 0.01 1.49 £ 0.04
BB3 Algae band 10 —5.25 +£0.07 —5.02 £ 0.05 8.92 £ 0.02 1.05 £+ 0.01 4.65 £+ 0.01 1.47 £ 0.02
BB3 Algae band 13 —3.35 +£0.07 —4.18 £ 0.05 9.01 £0.04 1.22 £ 0.01 413 +0.02 1.5 +0.02
Mean
Algae band —-3.11 —4.66 8.99 1.18 4.21 1.56
SD 2.07 0.35 0.07 0.11 0.40 0.09
BB1 Outside 1 —4.81 £0.07 —5.03 £ 0.05 8.96 + 0.08 1.07 £ 0.01 4.74 £ 0.01 1.34 £ 0.01
BB1 Outside 4 —0.96 + 0.07 —4.37 £ 0.05 8.79 £ 0.02 1.28 + 0.01 4.93 + 0.06 1.25 + 0.01
BB3 Outside 6 —1.36 +£ 0.07 —4.81 £ 0.05 8.89 + 0.038 1.07 £ 0.01 497 +£0.07 1.33 +£0.03
BB3 Outside 7 —1.56 + 0.07 —4.39 + 0.05 8.99 + 0.03 1.09 + 0.02 4.84 +0.02 1.39 + 0.02
BB3 Outside 8 —1.94 +£0.07 —4.48 +£ 0.05 8.79 £ 0.06 1.07 £ 0.01 4.69 £+ 0.02 1.35 +0.04
BB3 Outside 11 —1.36 £ 0.07 —4.19 £ 0.05 8.81 £0.08 1.08 £+ 0.01 4.45 +0.02 1.48 £ 0.01
BB3 Outside 12 —0.75 £ 0.07 —4.57 £ 0.05 8.84 £ 0.05 1.12 £ 0.01 4.55 + 0.01 1.37 £ 0.01
Mean
Outside —-1.32 —4.47 8.85 1.12 4.74 1.36
SD 0.42 0.21 0.08 0.08 0.21 0.08
t-test unpaired
p-value 0.21 0.53 0.01* 0.19 <0.01* <0.01*
Df 11 11 11 11 11 11
t-value —-1.34 —0.65 2.91 1.41 -3.14 5.01

*Denotes significant difference (p > 0.05) between group means (algae band vs. outside algae band). Standard deviation (SD) of 813C and §180 individual measurements
of were smaller than for the in-house standard. To be conservative the in-house standard SD values for 813C and 8180 are given. Drill positions are reported given in

Supplementary Figure S2.

the samples taken outside (4.74 mmol/mol, SD 0.21), showing
a highly significant difference (¢-test unpaired, p-value < 0.01).
Also, the mean Li/Mg within the algae band samples was about
14% higher (1.58 mmol/mol) compared to the samples outside
the bands, showing a significant difference (f-test unpaired,
p-value < 0.01).

High-Resolution Variability

Nano-SIMS ~ mappings of 38Sr/4%Ca  and 2*Mg/*°Ca
showed that Sr/Ca was partially elevated by a factor of
approximately two in the blocky aragonite present within
algae bands (Figure 7). The corresponding Mg/Ca was
lower by a factor of two to three. In contrast, Sr/Ca
showed no increased values at coral pore space surfaces
outside algae bands. The Mg/Ca was < factor 1 lower
at the outermost 2 pum of the coral skeleton, compared
to the inner part.

A quantitative EMP map (Figure 8, left) showed that the
majority of the primary skeleton was characterized by Sr/Ca
(mmol/mol), ranging between 8 and 9; the blocky aragonite could
be distinguished by higher ratios between 9 and 10. As the Nano-
SIMS maps also confirmed higher Sr/Ca, an EMP edge effect
can be excluded.

Plotting the distribution coefficient of Sr in aragonite (Ds; )
of the maximum and minimum Sr/Ca obtained from the

blocky aragonite and the inner coral part against the calculated
SST (Correge, 2006) (Figure 8, right) showed that the Dg; ,
values from the blocky aragonite yielded cooler temperatures,
outside the instrumental record, while the Ds; ,/SST relationship
obtained for the inner coral skeleton was in agreement.

Calculating the according temperature dependence of the
Ds; . of the blocky aragonite based on inorganic aragonite
calibration (Kinsman and Holland, 1969; Dietzel et al., 2004)
resulted in a shift back toward warmer temperatures in the range
of the instrumental record for SST.

High-Resolution Variabilities of 13C, 180,
323’ and 12C14N

Using Nano-SIMS, the variabilities in total counts of '*C,
180, 328, and 2C!"N as indicator for organics were mapped
in sub-micron scale by mapping the isotopes across the
coral skeleton (Figure 9). Comparing the primary and the
secondary precipitates, no obvious differences in isotope
concentrations were apparent. However, at the transition area,
a fine layer with increased counts of '*C, 32S, and 2CMN
and a simultaneous decrease in '80 counts was detected.
This layer matches in position with the less dense layer
observed using electron backscatter imaging (Figure 8, left). In
contrast, a similar layer is absent at coral surfaces devoid of
secondary precipitates.
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FIGURE 7 | Nano-SIMS maps of 88Sr/40Ca and 2*Mg/*9Ca of blocky
secondary aragonite fringe (A,B) and pristine pore space surface (C,D). SA,
secondary aragonite; PA, primary aragonite. Space outside corals is
resin-filled.

Calcium Transport Within Algae Cells

In contrast to the impact on SST records of endolithic algae
activity, the fundamental mechanisms are less well constrained.
To study the fate of elements being dissolved due to the boring
activity, we set up an experiment using cultures of O. quekettii,
belonging to a ubiquitously present group in Porites corals.
Living algae were kept under two light intensities (low light,
high light) on and without chips of coral skeleton for 60 days in
seawater medium. The medium was spiked with Fluo-4 AM, a
fluorescent dye suitable to image intracellular concentrations of
dissolved calcium.

After 6 days of incubations, the algae incubated on coral
chips at low-light conditions showed increased intracellular
calcium concentrations at the apical tips of the siphonal thallus
(Figure 10A), assuming that calcium uptake was taking place
here. In contrast, no increased concentrations were observed in
the other three treatments. After 60 days of incubation, markedly
increased calcium concentrations were present over several 100
mm within the algal cells incubated on coral chips (Figure 10E).
Assuming prolonged uptake of calcium ions by the apical tips,
an intracellular calcium transport over long distances can be
hypothesized. A beginning increase of intracellular calcium levels
at the apical tips was also observed in algae incubated under high-
light conditions on coral chips after 60 days (Figure 10H). The
remaining treatments showed no sign of increased intracellular
calcium concentrations throughout the entire duration of the
experiment (Figures 10B-D,EG).
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FIGURE 8 | Left: Scanning electron microscopy backscatter image (SEM
BSE) and corresponding Sr/Ca mapping of a BB1 microatoll section with
secondary aragonite. White arrows denote secondary precipitates on primary
skeleton surface and in voids, reflected by green to orange mapping color
code. Black arrows show an optical less dense base layer, on which
secondary precipitates grow. Fine white line in color map indicates the pixel
resolution revised contour between coral (left) and embedding resin (right).
Right: Plot of Dg; 5 and calculated Sr/Ca-SST for primary coral material
(minimum and maximum) and secondary aragonite precipitates (minimum and
maximum); applying the vital effect including coral specific calibration of
Correge (2006) suggests unrealistic low formation temperatures for the
secondary precipitates, whereas applying an inorganic calibration (Dietzel

et al., 2004) on the Dg; 4 values of the secondary precipitates results in a
temperature shift well into the SST range observed for the study area. The
black (Dietzel et al., 2004) and gray (Kinsman and Holland, 1969) lines show
the systematic offset of temperature-dependent Dg; 5 for inorganic aragonite
precipitation. Values exceeding a Sr/Ca of 10 are attributed to areas of
embedding resin. Scale bar, 10 wm.

DISCUSSION

Effects of Environmental Factors on
Microatoll Morphology and

Geochemistry
Microatolls grow in the intertidal zone, causing coral vertical
growth restriction and a dead top due to prolonged emersion
during low tides (Scoffin and Stoddart, 1978). As a direct
result of emersion, the microatoll top is susceptible to jointly
mediated destruction by biological (Perry et al., 2012), chemical
(Revelle and Emery, 1957), and mechanical (Jones, 2012) erosion.
The consequential increase in coral skeleton porosity at the
microatoll top allows for the intrusion of seawater. During
emersion periods, increased seawater evaporation can lead to
the sequential precipitation of secondary minerals within a
microatoll starting with carbonates and followed by gypsum,
anhydrite, halite, potassium, and magnesium salts (Berner and
Berner, 1987; Boggs, 2014). In the temperature range between
8 and 40°C, aragonite is likely the dominant carbonate phase
(Marion et al., 2009). As highest temperatures occur during the
summer months, it can be speculated that abiotic secondary
mineral precipitation takes place primarily during this time
of year. Consequentially, emersed parts of a microatoll might
show variable deviations in bulk geochemistry from non-
emersed coral sections.

Microatolls grow under increased heat stress compared to
their subtidal counterparts, which can slow down coral growth
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FIGURE 10 | Incubation experiments of O. quekettii with Fluor-4 AM for
intracellular Ca imaging after 6 (A-D) and 60 days (E-H). Increased
fluorescence indicates increased intracellular Ca levels. (A,E) O. quekettii
incubated on coral chip at low-light conditions. Beginning Ca uptake after

6 days (A) and increased Ca levels within large parts of the siphonal thallus
(E). (B,F) Incubation without coral chip at low-light conditions. No apparent
increase of intracellular Ca-concentration was detected during the entire
incubation period. (C,G) O. quekettii incubated without coral chip at high-light
conditions. No apparent increase of intracellular Ca-concentration in algal
thalli was detected during the entire incubation period. (D,H) Incubation on
coral chip at high-light conditions. After 60 days (H), beginning Ca uptake was
observed. Scale bar, 20 pm.

(Cantin et al., 2010). Therefore, annual bands might be spaced
narrower than in subtidal colonies. Although details regarding
a potential change in coral skeleton morphology as a result
of heat stress are not constrained, several effects are plausible.
During times of highest temperature, a growth hiatus could
be initiated, which could occur repeatedly during the annual
summer time or erratically during periods of exceptionally high
temperatures. Both scenarios would result in a complete loss of
climate information during hiatus duration.

Natural skeletal density changes cause the characteristic
annual coral banding, with a maximum skeletal density
associated with the hottest period of the year (Weber et al,
1975). Compared to subtidal colonies, microatolls are subjected
to extended periods of high temperatures. Consequently, their
average skeletal density might generally be higher compared
to subtidal corals. This, in turn, might increase the microatoll
resilience against erosion.

Secondary Aragonite Morphology,

Geochemistry, and Mode of Precipitation
According to Nano-SIMS and EMP measurements, the observed
blocky aragonite has a Sr/Ca higher than observed for smooth,
pristine pore space surfaces (Figure 7). If the blocky aragonite
was the result of coral dissolution, a Sr-Ca exchange must have
occurred. This process, however, is highly unlikely as Ca is always
preferred to Sr to be incorporated into the aragonite lattice.
Consequently, the observed blocky aragonite is a secondary
mineral, precipitated as a result of early diagenesis.

The occurrence of secondary carbonate minerals in tropical
corals has been repeatedly reported since the early 1970s for
modern, Holocene, and fossil corals (Macintyre and Towe, 1976;
Bar-Matthews et al., 1993; Henderson et al., 1993; Obert et al,,
2019). The secondary aragonite growing on the smooth pristine
pore surfaces of our the studied microatolls are morphologically
similar to the blunt aragonite fibers described by Ribaud-
Laurenti et al. (2001) for Holocene Acropora corals and the
aragonite laths cement reported for modern and Miocene corals
(Griffiths et al., 2013). Living corals harbor a range of secondary
carbonates, often in the form of cement (Sayani et al., 2011). The
encountered carbonate phases include high-magnesium calcite,
low-magnesium calcite (Macintyre and Towe, 1976), as well as
aragonite (Hendy et al., 2007). The latter occurs in a variety
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of morphologies ranging from encrusted filaments, botryoids,
rods, and needles (Nothdurft and Webb, 2009), and blocky
cement (Griffiths et al., 2013). Our study contributes to the
suite of diagenetic features in tropical corals, showing that the
observed secondary aragonite blocky cement can be the result
of earliest diagenesis under marine conditions during a coral’s
life span, possibly induced by the activity of endolithic green
algae. However, the mechanisms inducing alternative aragonite
morphologies other than acicular needles are currently not
well constrained.

An interesting feature, which, to our knowledge, has not been
documented before is a peculiar thin layer of approximately
1- to 2-pm thickness marking the transition between the
primary coral skeleton and the secondary aragonite overgrowth.
This layer appears less dense than the surrounding mineral
phases in images of electron backscattering (Figure 8, left).
Nano-SIMS mapping of this transition area of primary and
secondary aragonite showed that this layer differed by increased
counts of 1*C, ¥2S, and !>C!*N and a decreased '®0 signal,
compared to both aragonite phases (Figure 9). The opposing
trend in *C and 'O counts and the increased counts of the
2CMN ion clearly indicate the presence of a thin organic layer
(Remusat et al., 2012). Numerous studies have confirmed that the
presence of organic templates is directly involved in the microbial
nucleation of non-skeletal marine carbonates (Braissant et al.,
2003; Degens, 2012; Krause et al, 2012). In contrast, the
role of non-coral organic compounds for secondary carbonate
precipitation within the coral skeleton is poorly constrained.
Endolithic organisms such as O. quekettii are known to excrete
organic metabolic products potentially beneficial for the coral
host tissue (Forsterra and Héaussermann, 2008). Consequently,
it can be assumed that secondary aragonitic cement with
morphologies other than acicular needles nucleated under
variable influence of present organic compounds within the
coral. The individual composition and concentration of organic
molecules might then facilitate a variety of crystal morphologies.
In the present coral samples, aragonitic overgrowth was
observed in the form of blocky cement as documented before
(Nothdurft and Webb, 2009). As the secondary aragonite
was exclusively observed in green algae bands, it is plausible
that the organic compounds, potentially involved in secondary
aragonite nucleation, were excreted by the adjacent algae thalli
(Duerden, 1902; Fine and Loya, 2002). Nonetheless, other
sources of organic compounds, including coral polyp-derived
skeletal organic matrix (Abelson, 1955), adsorbed organics from
ambient seawater (Isdale, 1984), and organic matter from bacteria
(DiSalvo, 1969) or fungi (Bak and Laane, 1987) cannot be
excluded completely.

Bulk and spatial high-resolution analyses showed that
the secondary aragonite showed increased Sr/Ca, U/Ca, and
Li/Mg, while depleted in Mg/Ca. This result supports the
results of previous studies for secondary aragonite (Enmar
et al., 2000; Quinn and Taylor, 2006; Griffiths et al,, 2013).
As the strontium partition coefficient for the secondary
aragonite (Ds;,) fitted exactly on the Dg,/temperature
correlation for inorganic aragonite (Kinsman and Holland,
1969; Dietzel et al, 2004), we can safely assume that the

secondary aragonite largely followed inorganic precipitation
mechanisms, which is explanatory for the observed difference
in element ratios between the primary coral and the
secondary aragonite.

Although not statistically significantly different (¢-test
unpaired, p-value = 0.21), numerous carbonate bulk samples
within algae bands showed more negative 8!*C values than those
outside the bands. As green algae have a §'°C range between
-20.3%0 (VPDB) and -8.8%0 (VPDB) (Maberly et al., 1992), it
can be speculated that organic algal compounds might have been
incorporated into the secondary aragonite.

However, current opinions about secondary carbonate
precipitation in corals include precipitation from diffusing
seawater as a consequence of microbial redox reactions (Tribble
et al,, 1990), the presence of intra-coral microenvironments
chemically differing from seawater (Nothdurft and Webb, 2009),
or a catalytic function of extracellular carbonic anhydrase (CA)
activity (Chen et al., 2018). Microbial redox reactions leading
to pH increase and/or alkalinity production (sulfate reduction
and denitrification) favoring carbonate precipitation require
hypoxic or anoxic conditions (Jergensen, 1977; Zumft, 1997).
These requirements are not met in endolithic algae bands as
oxygen concentrations show considerable diurnal fluctuations,
reaching hyperoxia during light time (Shashar and Stambler,
1992). Also, the absence of any iron-sulfide minerals supports
the assumption of prolonged oxic conditions during secondary
aragonite precipitation.

The chemical environment within algae bands is currently
not well characterized, and presumably the precipitation of
secondary aragonite is governed by more than one factor.
Due to the combined boring and photosynthetic activity of
the green algae, we can assume that pH in the algae bands
shows heterogeneity, potentially promoting secondary aragonite
precipitation in regions with elevated pH. Also, evidence exists
that the enzyme CA is present within endolithic photosynthetic
algae (Shashar and Stambler, 1992). Within coral skeletons,
CO; concentrations are generally lower than in the ambient
seawater (Shashar and Stambler, 1992). In order to counteract
CO, limitation for endolithic photosynthesis, CA converts
bicarbonate to CO,, according to the following reaction:

HCO; + H' < CO, + H,0.

Consequently, in case of the reaction driven to the right, the
H™ removal increases pH, which favors carbonate precipitation.
Whether extracellular CA is also involved in liquid-phase pH
modulation is currently unknown.

Another factor to be considered for secondary aragonite
precipitation is seasonality. The stoichiometric solubility product
(K*sp) for aragonite is principally dependent on temperature
(Zeebe and Wolf-Gladrow, 2001), resulting in a negative
correlation between mineral solubility and temperature. As
a consequence, secondary aragonite precipitation could be
facilitated during periods of annual peak temperatures. Although
the obtained Sr/Ca values for the abiotic secondary aragonite
of the present study do not indicate intensified precipitation
at notably hot temperatures, further studies focused on
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seasonal resolution are required to elucidate the role of annual
temperature fluctuations for microatoll secondary aragonite.

Influence of Endolithic Green Algae on

Coral Skeleton

We showed that hot spots of diagenesis were clearly associated
with skeleton regions colonized by endolithic green algae
resulting in skeleton dissolution and potentially also the
precipitation of secondary blocky aragonite within pore spaces of
algae bands. The observed skeleton dissolution is in accordance
with previous studies identifying endolithic green algae as
important agents for coral skeleton erosion (Chazottes et al.,
1995; Tribollet and Golubic, 2011). Each of the microatolls
showed individual macroscopically visible boreholes of 2-3 mm
in diameter, presumably caused by macroborers. Numerous
studies also confirmed the important role of macroborers
for coral erosion, including lithophagine bivalves (Wizemann
et al, 2018) and polychaetes (Davies and Hutchings, 1983).
While faunal organisms generally contribute substantially to
coral erosion (Zubia and Peyrot-Clausade, 2001; Tribollet and
Golubic, 2011), they might be less abundant in microatolls as a
consequence of increased heat stress (Przeslawski et al., 2008)
at the water surface. Therefore, temperature-tolerant endolithic
algae (Fine et al, 2005) might be largely responsible for the
observed microatoll internal erosion. From the analysis of two-
dimensional coral cross-section images, we can infer that around
4% of the internal skeleton area within an algae band was lost as
a direct consequence of boring activity (Figure 3K).

The volumetric calculations suggested a volume gain of 3
and 7%, respectively, within the algae bands. Although it is
generally not approved to compare two- and three-dimensional
data, it appears plausible that the values obtained for internal
coral skeleton dissolution and the coral/pore volume percent
ratio reside in the same order of magnitude. This in turn leads
to the conclusion that the majority of the dissolved primary coral
skeleton could have reprecipitated within a short spatial distance
inside the same algae band. Nonetheless, natural variability of
coral skeleton to pore space ratio (density) is known for almost
five decades (Knutson et al., 1972). In addition to annual, fine
monthly and irregular bands are also produced (Barnes and
Lough, 1993). Consequently, one can argue that a diagenetic
density change is indistinguishable from natural coral density
banding. Conventionally, variations in coral skeletal density are
routinely analyzed by two-dimensional X-ray radiographs of
prepared coral slices (Buddemeier et al., 1974). In order to derive
coral density from X-ray density, elaborate calibration algorithms
have to be applied involving defined standard material (Chalker
etal,, 1985). However, a precise quantification of coral skeleton to
pore space ratio is virtually impossible. The used p-CT approach
has the advantage of providing such data in a non-destructive
way, irrespective of individual sample mineralogy and thickness.
Our p-CT approach demonstrates an increased coral/pore space
in both areas inhabited by endolithic algae; whether this is
entirely caused by secondary aragonite precipitation, natural
coral density variability, or a mixture of both is beyond the scope
of this study. However, Ribaud-Laurenti et al. (2001) also found

the presence of secondary aragonite to be responsible for pore
space volume reduction of up to 50% in fossil Acropora corals.

The incubation experiments carried out during this study
showed uptake of dissolved calcium by the algae O. quekettii
from the apical tips and subsequent increased calcium levels
throughout the siphonal thallus. This observation points to an
active uptake of calcium by the algae and subsequent transport
toward the distal part of the siphonal thallus. This mechanism
prevents increasing calcium concentrations in the borehole,
which might lead to spontaneous reprecipitation of carbonate
and bore hole clogging.

Active calcium removal from the site of carbonate excavation
has so far, to our knowledge, only been observed for
cyanobacteria (Garcia-Pichel et al., 2010), but not for green algae.

In our experiments, the intensity of calcium uptake was
negatively correlated with light intensity. We can therefore
conclude that low-light conditions act as a trigger, initiating
boring activity to avoid light limitation. In contrast, calcium
incorporation was considerably less intense under high-light
conditions. Consequently, it can be assumed that excessive
calcium uptake is an energy-demanding process only carried
out when necessary. Currently, the exact boring mechanism of
endolithic green algae and the fate of the dissolved inorganic
carbonate species are unknown. The mechanism could involve an
acid-generating metabolism as the boring tip of the thallus or the
uptake of calcium ions from the liquid phase at the boring locality
to decrease the local carbonate saturation state to an extent to
induce spontaneous dissolution (Garcia-Pichel et al., 2010).

As calcium concentrations are usually strictly controlled in
all types of organisms (White and Broadley, 2003; Dominguez,
2004; Brini et al., 2013) due to its toxic effects (Smith, 1995),
passive diffusion of Ca?™ ions within the algal thallus is highly
unlikely. Instead, once taken up, the majority of calcium ions
might have been attached to calcium-binding proteins acting
as concentration buffers (La Verde et al., 2018). In contrast,
calcium transport within cyanobacteria filaments is supposedly
mediated by transmembrane calcium pumps (Garcia-Pichel
et al., 2010). Once inactivated, the calcium can be transported
intracellularly over long distances without adverse physiological
effects. Although not observed directly, from the analysis of the
coral slabs, we can infer an eventual release of calcium ions
into the coral primary pore space volume, inducing secondary
precipitation in case of carbonate supersaturation.

Geochemical Implications

Under the environmental conditions microatolls grow in,
including higher temperature and solar radiation, compared
to the subtidal environment, endolithic green algae might be
an important driver for earliest coral skeleton diagenesis. The
obtained results are not straightforward transferrable to other
Porites morphotypes, as dome-shaped colonies, growing in
several meters of water depth. Due to light attenuation with water
depth, endolithic algae colonizing subtidal corals are subjected
to less solar energy per area, limiting the photosynthetic activity.
Although light limitation is partly compensated by an increased
ratio of Chlorophyll b to Chlorophyll a (Schlichter et al., 1997),
endolithic green algae generally grow slower under reduced solar
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radiation (Verbruggen and Tribollet, 2011). Consequently, under
current conditions observed, algae-facilitated coral dissolution
and secondary carbonate precipitation are highly likely to be less
prominent in corals growing in subtidal environments.

A reason for focusing on coral microatolls is that they
might serve as a model for endolithic algae activity in future
climate scenarios, including ocean warming and acidification.
Both factors are known to exert environmental stress on
corals (Hoegh-Guldberg, 1999; Anthony et al., 2008). As these
parameters involve simultaneous heat and CO; flux across
the atmosphere-sea surface boundary, microatolls are currently
exposed to an increased heat and CO, load, which are likely to
extend deeper into the ocean in the near future. In fact, ocean
acidification has been shown to aggravate biogenic carbonate
dissolution by endolithic green algae as Ostreobium sp. stimulated
by increased levels of pCO; (Tribollet et al., 2009).

The present study indicates that endolithic green algae-
mediated secondary, abiotic aragonite precipitation can have a
noticeable influence on the robustness of microatoll SST proxies,
generally shifting derived temperatures toward lower values
(Table 2). For element ratios, this phenomenon is caused by the
differing partition coefficients between the biogenic original and
abiotic secondary aragonite. A comparison shows the variable
impact of the secondary aragonite on the reliability of the
individual proxy approaches.

For the 3'80-SST, no principle difference between locations
inside and outside the algae bands was observed. Assuming a
mass change < 4% between primary and secondary aragonite,

the precipitated amount was too small detect significant
8180 overprinting.

The $!80 fluctuation throughout the coral is presumably
caused by the natural variability (Grottoli, 1999) rather
than diagenesis. The §!%0-SST approach generally yielded
temperatures between 24 and 32°C, which agree with the
instrumental record, and thus can be regarded as a robust SST
approach for microatolls.

Among the trace element proxies, Sr/Ca proved to be the
most robust one as obtained SST values were generally in good
agreement with the 380 data and the instrumental records.
Based on p-CT, microscopy, and Nano-SIMS analyses, the
secondary aragonite fringe has a thickness between 5 and 10 pm.
The high-resolution mapping illustrated that the secondary
aragonite was characterized by increased Sr/Ca (Figures 7, 8),
resulting in unreliably low SSTs when calculated using the coral
proxy calibration equation. Although significantly different (¢-
test unpaired, p-value < 0.01), the mean Sr/Ca within and outside
the algae bands differed by <1°C. According to our approach to
constrain a mass balance, we can infer that the contribution of
secondary aragonite to the total carbonate is at best between 3 and
7%, which is too low to have a measureable influence on the Sr/Ca
SST proxy derived from the bulk samples of the current study.

The U/Ca of the bulk samples inside and outside the algae
bands showed similar average values. Therefore, the secondary
aragonite did not influence this proxy approach to a measureable
degree. Considering abiogenic aragonite, it has been shown that
U/Ca is independent of temperature and pH in the range of

TABLE 2 | Sea surface temperature values derived from bulk samples 880, Sr/Ca, U/Ca, Mg/Ca, and Li/Mg of the microatolls BB1 and BB2.

Coral Location/drill position §180 Sr/Ca U/Ca Mg/Ca Li/Mg
SST (°C)? SST (°C)® SST (°C)° SST (°C)d SST (°C)®
BB1 Algae band 2 27.56+0.3 26.2 + 0.1 235 +0.2 221+ 0.1 251+ 05
BB1 Algae band 3 25,1 +0.3 2563+ 0.3 21.4+0.2 20.4 + 0.1 23.0+ 0.3
BB1 Algae band 5 28.9+ 0.3 23.8+0.3 20.9+0.2 19.1+0.2 22.4 + 041
BB3 Algae band 9 30.2+0.3 26.7 +£ 0.1 25.3+0.2 27.7 £ 0.1 26.6 £ 0.7
BB3 Algae band 10 30.5+0.3 26.9 £ 0.1 25,7 +£0.2 27.0+0.1 27.0+ 0.3
BB3 Algae band 13 24.0+0.3 25.4 + 0.1 226 +£0.2 22.4 £ 0.1 26.4+0.3
Mean
Algae band 27.7 25.7 23.2 23.1 25.1
SD 2.7 1.2 2.0 3.5 2.0
BB1 Outside 1 30.5+ 0.3 26.24+0.2 253 +0.2 27.8 £ 0.1 29.7+£0.2
BB1 QOutside 4 254+ 0.3 29.0 £ 0.1 21.4+0.2 295+ 0.4 31.6+0.2
BB3 Outside 6 28.8+0.3 27.4 £ 041 253 +0.2 29.8 £ 0.4 29.9+ 0.6
BB3 Outside 7 25.6 +£0.3 25.7 £ 0.1 249 +05 28.7 +£ 0.1 28.7+0.4
BB3 Outside 8 26.3+0.3 29.0+£0.2 253+0.2 274+ 0.1 29.5+ 0.8
BB3 Outside 11 24.0+0.3 28.7 £ 0.1 251 +0.2 252+ 0.1 26.8+0.2
BB3 Outside 12 27.0+0.3 28.2+0.2 244 +£0.2 26.1 £ 0.1 29.1+0.2
Mean
Outside 26.8 27.8 245 27.8 29.3
SD 2.2 1.3 1.4 1.7 1.5

Standard deviation (SD) for individual measurements are given. Drill positions are given in Supplementary Figure S2. 43180 SST calculated after Grumet et al. (2000);
bSr/Ca SST calculated after Corrége (2006); ©U/Ca calculated after Min et al. (1995); “Mg/Ca SST calculated after Wei et al. (2000); eLi/Mg calculated after Hathorne
etal. (2013).
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20-40°C and 7.8-9, respectively, and negatively correlated with
the [CO327] of the precipitating fluid (DeCarlo et al., 2015).
At seawater [CO327] of approximately 250 wmol kg~! (Zeebe
and Wolf-Gladrow, 2001), the U/Ca of abiogenic aragonite
exceeds a value of 4 (umol/mol) (DeCarlo et al., 2015), while
the U/Ca of the microatolls in this study varied between 1.05
and 1.31 (umol/mol). Although the dissolved inorganic carbon
(DIC) concentration of the precipitating fluid of the secondary
aragonite in our study is unknown, we can speculate that an
increased concentration of DIC and pH contributed to elevated
[CO32~]. Under this condition, U/Ca would shift toward lower
values reaching values < 2 at [CO3%7] starting around 2300
(pmol kg’l) (DeCarlo et al., 2015). As no noticeable difference
in U/Ca occurred between bulk samples inside and outside algae
bands, we can speculate that the calcifying fluid for the secondary
aragonite was high in [CO32~], diminishing the difference of
U/Ca in biogenic and abiogenic aragonite. The U/Ca of coral
skeletons shows strong seasonal variability (Cardinal et al., 2001;
Quinn and Sampson, 2002; Felis et al., 2009). For the modern
microatolls of the present study, it is impossible to discriminate
between natural and diagenetically caused U/Ca variability.

Although variable, mean Mg/Ca within algae bands was
significant different (t-test unpaired, p-value < 0.01), yielding
lower SSTs than samples outside the bands. The mean value
outside the bands (27.8 & 1.7°C) was in accordance with the
instrumental record, while corresponding mean SST within the
algae bands was 23.1 (£ 3.5°C). Among the proxy approaches
used, Mg/Ca showed the largest mean temperature difference
between samples obtained inside and outside the algae bands.
The variability of Mg/Ca in coral skeletons for SST is about four
times that of Sr/Ca (Mitsuguchi et al., 1996), resulting in a higher
sensitivity for temperature reconstructions. Cross and Cross
(1983) showed that the Mg concentration decreases during coral
diagenesis, while the mechanism remained unconstrained. The
bulk and high-resolution analyses of the present study show that
Mg/Ca was decreased in the secondary aragonite, suggesting that
the diagenetic mechanism proposed in the current study might be
causative or contributing to the observed diagenetic change in Mg
concentration. Nano-SIMS Mg/Ca maps suggested a maximum
decrease in Mg/Ca > 50% in the secondary blocky aragonite
cement, yielding unrealistic negative SST excursions. As a result,
also small contributions of abiogenic aragonite might lead to a
noticeable bias of Mg/Ca-SST in bulk samples. Therefore, Mg/Ca
variability might serve as a sensitive indicator for the onset of
secondary aragonite precipitation during earliest coral marine
diagenesis, while other SST proxies are rather insensitive to small
contributions of secondary aragonite.

Similar to Mg/Ca, the Li/Mg SST proxy yielded statistically
significant deviating values within the studied corals, indicating
cooler temperatures (mean Li/Mgsst 25.1 £ 2.0°C) within
algae bands. According to a recent conceptual model of
biomineralization (Marchitto et al., 2018), Li/Mg of the coral
precipitating fluid is controlled by a Ca-uptake mechanism
strongly discriminating against Li. Due to Rayleigh fractionation
during ongoing aragonite precipitation, most Li and Mg remain
in the calcifying fluid with a Li/Mg close to seawater. As a
consequence, Li/Mg of coral aragonite is rather unbiased by

biogenic element partitioning during precipitation. Therefore, it
can be assumed that the mean Li/Mg increase of the bulk samples
from within the algae bands is primarily the result of contributing
secondary aragonite and also serves as a sensitive indicator for
secondary aragonite formation as a result of earliest diagenesis.

CONCLUSION

The present study shows evidence that endolithic algae can
induce early diagenesis of primary coral aragonite starting
almost immediately after skeleton formation. Diagenesis does
not only include coral dissolution and generation of secondary
porosity, but likely also facilitates the reprecipitation of secondary
aragonite within close proximity. In contrast to the biologically
controlled formation of the primary skeleton, the secondary
aragonite is precipitated under abiotic conditions, leading to
characteristic shifts in element ratios. While $'%0, $!3C, and
U/Ca did not show statistically significant differences between
bulk samples from inside and outside algae bands, mean Sr/Ca
and Li/Mg within algae bands were statistically significant higher,
while Mg/Ca was lower. Among these three element ratios,
Mg/Ca and Li/Mg showed the highest sensitivity toward the
contribution of secondary aragonite, which might make them
a useful tool to detect early diagenetic secondary carbonate
formation within microatolls.

Based on laboratory experiments, we propose a novel
precipitation mechanism largely governed by an active Ca
transport within the siphonal thallus of endolithic green algae as
O. quekettii from the site of dissolution into the primary coral
pore space volume. We also detected the presence of a thin,
presumably organic, layer acting as a nucleation template for
secondary aragonite.

Coral microatolls might serve as model organisms to study
the potential diagenetic impact of endolithic green algae
under changing climatic conditions, including ocean warming
and acidification.
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