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The Brazilian Equatorial Margin (BEM) is a transform passive margin with long fracture
zones and several seamounts, including the largest one, the Ceara Plateau (CP). This
is a complex and poorly studied area, with few available geophysical data. Gravity and
magnetic data from the Equant | Project, seismic published lines and other previous
studies are used to make several models and analyses. We related the basement,
internally comprised of two magmatic highs, to gravity and magnetic anomalies since
there are a positive density and susceptibility contrast between sedimentary and
basement rocks. Through gravity and magnetic forward modeling, we estimated the
basement surface between 800 and 6000 m and the MohoroviCi¢ discontinuity about
22-23 km below the CP. We also present and discuss the position of the continent-
ocean boundary 40 km away from the continental shelf, placing the plateau at the
oceanic crust domain, and the area of the transitional crust, with an extension of
40-50 km, formed during the rifting phase of the Atlantic Ocean opening.

Keywords: Ceara Plateau, Brazilian Equatorial Margin, gravity modeling, magnetic modeling, crustal structure

INTRODUCTION

After the Atlantic rifting the Brazilian margins have been characterized by two different evolutions:
(1) the East Brazilian Margin evolved into a passive margin, due to orthogonal crustal extension
(Chang et al., 1992), (2) the Brazilian Equatorial Margin (BEM) formed during the strike-slip
motion between Brazil and Africa, resulting in complex shear-dominated basins (Gorini, 1977;
Zalan, 1984; Azevedo, 1986; Szatmari et al., 1987; Guiraud and Maurin, 1992; Mascle et al., 1998).
The BEM, where the Ceard Plateau (CP) is located, formed during the opening of the Equatorial
Atlantic Ocean. Rifting initiated in the early Barremian with average plate divergence rates of
2.5 cm/year (Pérez-Diaz and Eagles, 2014), leading to the accretion of an oceanic crust by the late
Aptian (Basile et al., 2005). The transpressional tectonic regime gives rise to fracture zones which
dominate the seafloor morphology in the BEM (Attoh et al., 2004).

The BEM morphology is also characterized by the numerous seamounts, compared to the East
Brazilian Margin. There are several hypotheses for the origin of the BEM seamounts magmatic
source: (1) deep hotspot source for magmatism related to the Fernando de Noronha hotspot
(Morgan, 1983; Rivalenti et al., 2000; Mizusaki et al., 2002); (2) Edge-Driven Convection (King
and Anderson, 1995, 1998); (3) the tectonic formation influenced by the fracture zone, due to a
related weakness (Lowrie et al., 1986; Carracedo, 1994).
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This study aims to better comprehend the structure of the
CP by correlating the physical properties derived from gravity
and magnetic data with a geological model. The emphasis is
on the basement and the plateau location with regards to
oceanic or transitional crust. The continental and the oceanic
crust have distinct physical characteristics, such as density and
magnetic susceptibility, which allows gravimetric and magnetic
data associated with seismic profiles to act as a tool to distinguish
between both types of crust. Here, we use gravity and magnetic
data collected by the Equant I Project in 1987 (Ness et al.,
1989) and seismic published interpreted profiles (Jovane et al.,
2016) to correlate the physical properties with a geological model
for the CP region.

The crustal structure model of the CP region can be used by
diverse kind of studies, for example, as a proxy for sediment
deposition processes, since it provides the volume and the
distribution of the sediments, to prepare dredge and drilling
campaigns in the area. The Continental-Ocean Boundary (COB)
position can be used by tectonic surveys, as margin numerical
modeling, reconstruction of continents, thermal and dynamic
model processes (Karner and Driscoll, 1999; Brune et al., 2014).
The COB locates by this work, in particular, can be used by
future studies about the formation of the BEM and its seamounts.
Previous studies have placed the COB in different positions,
but none of them have debated particularly the region of the
CP (Oliveira, 2008; Heine et al., 2013 - Figure 1), except for a
geologic study that proposes the plateau above the oceanic crust
(Costa and Kowsmann, 1979).

The CP represents an outstanding feature for
paleoceanographic studies because (1) it maintains the same
Equatorial position throughout the Cenozoic, (2) it is situated
between North and South Atlantic where the superficial North
Brazil Current moves toward north and the Deep Western
Boundary Current moves toward south, (3) it is in a proximal
position linking terrestrial and oceanic systems, and (4) its
sediment are interested by processes that are related to changes
of the Atlantic Meridional Overturning Circulation, Intertropical
Convergence Zone and South American monsoon system (Wang
et al., 2004; Rodrigues et al., 2007; Zhang et al., 2011, 2015).
Those characteristics make of the CP a potential site to perform
global studies of sea-level, CO, and carbonate compensations
depth (CCD) variations throughout the Cenozoic.

GEOLOGICAL SETTING

The CP has an area of about 850 km?, a relative height of 2 km
above the ocean floor and an irregular flat top relief at a water
depth of around 300 m (Jovane et al., 2016). The flat topography
seems to be a consequence of an ancient hemipelagic sediment
deposit. The plateau is located 100 km offshore from Fortaleza
city, Ceara State, in the Potiguar Basin (Figure 1), 40 km from the
continental slope. The Iracema Guyot, located northwest from
the plateau has the same height as the CP and lies 400 m below
the sea surface.

Dredge samples from the CP, recovered by the REMAC
project in 1972, suggest the predominance of rodolites and

limestone. Dredges in three different heights characterize
phosphatic limestone: between 305-270 m, 1371-391 m and 800-
583 m (Guazelli et al., 1977; Guazelli and Costa, 1978; Costa
and Kowsmann, 1979). The dredges returned no terrigenous
or volcanic rocks along with the limestones (Costa and
Kowsmann, 1979). Costa and Kowsmann (1979) argued about
the nature of the basement as oceanic, volcanic and related
to the other seamounts of the Fernando de Noronha Fracture
Zone (Gorini and Bryan, 1976), such as the Rocas Atoll
and the Fernando de Noronha Island. They also propose
a Cretaceous volcanic basement based on sediment samples
(Guazelli et al, 1978), geophysical analysis (Fainstein and
Milliman, 1979) and sedimentary depositional dynamics (Gorini,
1977). Dating of the Fernando de Noronha-Mecejana phonolite
places peak volcanic activity between the Oligocene and
Pleistocene (Guazelli and Costa, 1978). Jovane et al. (2016)
support a Cretaceous volcanic basement and describe six
seismic horizons, with age based on the description of the well
CES-112 (Figure 2).

MATERIALS AND METHODS

Data

We use bathymetric, gravity and magnetic data (Figures 3, 8A)
collected by the Equant I Project aboard the Prof. W. Besnard
vessel in 1987, by the Oceanographic Institute of the University
of Sdo Paulo. The survey tracks (Ness et al., 1989) are NS profiles,
9 km apart and the data interval of about 800 m. The onboard
gravity data was collected by a LaCoste and Romberg stabilized
platform shipboard gravimeter, corrected for latitude, drifting
of the equipment and the Eotvos effect. The geomagnetic total
field data were obtained using the Geometrics G-801/03 and
G-811/13 marine proton-precession magnetometers. Diurnal
magnetic corrections were applied using temporary, shore-
based magnetic base-station data and Brazilian observatory data
(Ness et al., 1989). The IGRF-85 reference field values were
removed from the observed magnetic data. The magnetic profiles
data are micro leveled and filtered to remove the noise from
the anomalies. We also use published interpreted 2D seismic
reflection profiles acquired by the Plano de Levantamento da
Plataforma Continental Brasileira (LEPLAC) III in 1989 by the
Brazilian Navy Diretoria de Hidrografia e Navegagio (DHN)
and other lines have been provided by the Agencia Nacional
do Petréleo, Gés Natural e Biocombustiveis (ANP) after being
collected by Petrobras (Figure 2) (Jovane et al., 2016)".

The Edge Effect

We propose a COB location for the study area by using
gravimetric and magnetic anomalies originated by the lateral
heterogeneity between the ocean and continental crusts, which
we name edge effect anomalies. A similar approach was first
applied to free air, isostatic gravity anomalies and magnetic
residual anomalies by Rabinowitz and LaBrecque (1979). In

Uhttp://rodadas.anp.gov.br/arquivos/Round11/Seminarios_r11/tec_ambiental/
Bacia_Potiguar.pdf
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FIGURE 1 | Brazilian Equatorial Margin topobathymetric map. The red rectangle indicates the study area. Bathymetric contours shown at 1000 m intervals. MA:

Maranh&o state, PI: Piaui state, CE: Ceara state, RN: Rio Grande do Norte state. Topobathymetric data by SRTM15PLUS (Shuttle Radar Topography Mission) 15
arc-sec resolution (Olson et al., 2014).

FIGURE 2 | SW-NE interpreted seismic profile from ANP survey, line POT44 (Jovane et al., 2016) (location on Figures 1, 3). Depth in seconds, TWT (Two-Way travel
Time). Horizon 5 is the interpreted volcanic basement of the CP, the other horizons are sedimentary deposits related to geologic ages (from Jovane et al., 2016).
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FIGURE 3 | Free-air gravity anomaly map and the location of the data in the study area. Dashed profiles #1 to #10 shows the position of bathymetric, gravity and
magnetic marine survey, the red line shows the position of the seismic profile of Figure 2. Bathymetric contours shown at 500 m intervals.

this study, we use the free-air and Bouguer residual gravity
anomalies and the magnetic residual anomaly, as presented by
Blaich et al. (2008, 2011).

2D Forward Gravity Modeling

The 2D forward models along the Equant I profiles are performed
with the GRAVMAG software (Pedley et al., 1993 and updated
by Jones, 2012). The software calculates the gravity effect for
structures of infinite strike length and polygonal cross-section
using the solution of Talwani et al. (1959). The parameters
calculated here or from previous studies are described in the
Supplementary Material.

3D Forward Magnetic Modeling

The CP area is near to the Magnetic Equator, which hinders the
magnetic analyses, since the intensity of the magnetic field is low
in this region. During the survey in 1987, it was about 26770 nT.
We haven’t applied the usual forward modeling approach because
the lack of information about the composition of the CP, since
the susceptibility values vary orders of magnitude, its estimation
is not possible as the density. As an alternative to calculate
the forward magnetic modeling, we used a magnetized layer
modeling proposed by Maia et al. (2005), based on some sub-
routines from Blakely (1996). Then, we compare the result model
with the observed data. The layer has a constant thickness of
3 km and its top part is the basement surface, estimated by the
gravity modeling in this work. The parameters are described in
the Supplementary Material.

RESULTS
The COB Positioning

We assume that the observed edge effect anomaly, signaled
in the blue strips of Figure 4, mark the position of the
COB. They correlate a low in the free air anomaly with a
high in the Bouguer anomaly and a magnetic anomaly that
separates a smooth signal over the continental shelf in the
south, from a noisier region in the north. The strips have 9 km
extent, related to the wavelength of the anomalies and also the
method uncertainty.

Further north, the profiles cross the CP, terminating 10-20 km
away from the edge of the plateau, which prevented us from
searching for similar anomaly patterns away from the CP to
propose another location for the COB.

Gravity Modeling

The geologic geometry used in the model (Figure 5 and
Supplementary Figures S1-S6) is based on published
gravity model profiles from the African Equatorial Margin
(Jilinski et al., 2013). The position of the COB is based on the
edge effect anomaly, as presented in this paper (Figure 4).
The assumption that there is a transitional continental crust
with a higher density, compared to a normal continental
one, between the oceanic and the continental crust is widely
accepted in rift margins, such as the Brazilian-African margin
(Matos, 1999; Moulin, 2003; Nobrega, 2011; Magalhdes, 2015).
The high density is explained by the intrusive dikes that are
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FIGURE 4 | Profiles 2, 3, 4, 5, 6, 7, 8, and 9 from Equant | with the COB position (blue rectangles).
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FIGURE 5 | Gravimetric model of the profile 8 (S-N) with 2.5x vertical exaggeration (location is shown in Figure 3). Densities in g/cm?®.

formed during the late-stage rifting (Ligi et al., 2011; Keir et al.,
2013). The presence of a shallow modified mantle between
the oceanic crust and transitional crust (orange polygon) is
also an outcome of the Atlantic Ocean opening, related to
the divergent phase of the margin formation (Péron-Pinvidic
et al., 2017). The seven profiles modeled with the free-air
gravity anomaly of the CP region are interpolated to create the
surfaces of the basement (Figure 6) and of the Mohorovici¢
discontinuity (Figure 7).

The Mohorovici¢ discontinuity for the continental crust is
defined in 26 km based on previous lithosphere flexure models
for the area (Oliveira, 2008). This assumption resulted in a
Mohorovi¢i¢ discontinuity depth for the area that accords with
previous studies (Castro, 1990; Assumpgao et al., 2013).

Magnetic Modeling

The sources of the magnetic anomalies above the CP seem
to be correlated with the gravity anomalies, because of the
fit between positive gravity anomalies and negative magnetic
anomalies. Near the magnetic Equator the center of the source
of the magnetic anomaly is negative, it places the source
of the gravity and magnetic anomalies in the same location.
According to the gravity model the surface of the basement
(Figure 6) is different from the bathymetry (Figure 1). In
order to model the basement effect, which probably contributes

more than the sedimentary layer to the magnetic anomaly,
it is used the basement surface for the magnetic layer
modeling (Figure 8B).

For the modeling, a magnetization average of 5 A/m has been
calculated by measurements of volcanic rocks formed during
the Cretaceous Superchron (Juarés et al, 1998). Setting the
magnetization 5 A/m, empirically we calculate 3 km for the length
of the layer, comparing the results with the observed data. Other
model parameters are described in the Supplementary Material.

DISCUSSION

Comparison Between the Gravimetric

and Magnetic Anomalies

The gravity data indicate a heterogeneous structure below the
flat sedimentary surface on the CP (Figure 3). The seismic
interpretation (Jovane et al., 2016; Figure 2) and previous works
(Costa and Kowsmann, 1979; Fainstein and Milliman, 1979)
corroborate the volcanic origin hypothesis of the CP basement,
composed by two volcanic edifices.

We analyze the subsurface density variations with a Bouguer
correction analyses. We calculated the regional by removing
10 km upward continuation from the Bouguer anomaly, resulting
in a residual Bouguer anomaly (Figure 9), which highlights the
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FIGURE 6 | Basement of the Ceara Plateau area from the gravity 2D model. COB: Continental Ocean Boundary, TC: Transitional Crust.

-37°00'

two positive anomalies noticed with the free-air anomaly and
a third one located south of the CP. Note that the Iracema
Guyot is expressed as a Bouguer anomaly low, surrounded
by positive anomalies; while the opposite is true for the CP.
Although we are not dealing in detail with this guyot in this
paper we speculate that the CP and the Iracema Guyot may have
different origin or age.

The magnetic anomaly above the CP also suggests a complex
and heterogeneous inner structure (Figure 8A). The low
magnetic latitude of the area, about 3°S, is characterized by the
anomaly minimum over the magnetic source. In fact, there is
a coupling of magnetic anomaly lows with the gravimetric high
anomalies (Figure 9B), implying that the geological sources from
the CP are likely high density and have a higher magnetization
in comparison with the surrounding rocks, suggesting a volcanic
origin of the plateau basement.

Crustal Structure

Using the gravity and magnetic edge anomalies we located
the COB between the CP and the continental shelf, placing
the CP at the oceanic crust. We also base this proposition
with the Bouguer residual anomaly map (Figure 9), which
highlights a 50 mGal SW-NE anomaly, separating the continental
shelf and the CP. This anomaly is indicative of lateral density
differences, and we support that it represents the transition

between the continental crust and the oceanic crust. We do not
discard the continental basement hypothesis since the profiles
are limited near the CP edge, but the residual Bouguer anomaly
(Figure 9A) calculated with the WGM2012 (Bonvalot et al,
2012) sustain the argument about the indicative of lateral
density differences.

Magnetic Data Indications
The magnetic data enhances compositional or age differences
on the inner structure. The analytic signal amplitude (ASA)
of the magnetic anomaly enhances the outlines of the sources,
independently from the inclination and the declination of
the local magnetic field (Nabighian, 1972; Roest et al., 1992).
The application of this method in the CP data (Figure 10)
highlights almost the whole structure. The ASA is indicative
of a higher magnetization of the CP structure compared
to the surrounding rocks. We can also notice that the
southern part has a higher ASA than the northern one,
which could be related to the age or the composition of the
structure, since the age modifies the intensity and direction
of the magnetic field, and the composition modifies the
magnetic mineral amounts, which are the source of the
magnetic anomaly.

The magnetic anomaly model (Figure 8B) corroborates the
basement surface proposed in this paper (Figure 6), but the
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FIGURE 7 | Mohorovici¢ discontinuity of the Cearé Plateau area from the gravity 2D model. COB: Continental Ocean Boundary, TC: Transitional Crust.
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FIGURE 8 | Magnetic anomaly maps. (A) Observed data and (B) modeled anomalies calculated with 3 km layer below the basement surface. Dashed profiles #1 to
#10 shows the position of bathymetric, gravity and magnetic marine survey, the red line shows the position of the seismic profile of Figure 2. Grid interval of 30 s

(approximately 900 m). Bathymetric contours shown at 500 m intervals.

Frontiers in Earth Science | www.frontiersin.org 8

December 2019 | Volume 7 | Article 309



https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles

Moura et al.

Coinstraints on the Crustal Structure of the Ceara Plateau

== COB-1 (Oliveira, 2008)
== LaLOC (Heine et al., 2013)
== COB (this work)

== Study area

N
== Data profiles 1‘

mGal

FIGURE 9 | Residual Bouguer anomaly map (A) of the BEM and (B) of the Cearé Plateau area. The same methodology is followed in both data, reinforcing our
interpretation about the COB location for an extended area. Dashed profiles #1 to #10 shows the position of bathymetric, gravity and magnetic marine survey. The
regional data used to perform the BEM area is from the global model WGM2012 (Bonvalot et al., 2012).
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FIGURE 10 | Analytic signal amplitude of the magnetic anomaly of the Ceara
Plateau.

differences between the modeled and the observed anomalies also
reveal that the subsurface has a more complex structure than
the gravity modeling can provide in this study. The difference
between the observed and the modeled data (Figure 11)
illustrates the simplicity of our magnetic model. However,
we assume that the basement structure originates the long

distance (km)
55

0 110
r 400
- 200
< 2
Y -200
r vw -400

—4.0 -3.0

-3.5
latitude (degrees)
~—— Observed magnetic anomaly
— Modeled magnetic anomaly

—== Assumed central dipole

FIGURE 11 | Magnetic anomaly of the profile 8. Green: observed data
(Figure 4). Blue: modeled data (Figure 9). Dotted red: assumed central
dipole.

wavelength anomaly present in the observed magnetic data
(red line), which could be calculated by the magnetized layer
modeling method.

The Iracema Guyot

The Iracema Guyot delimits a negative Bouguer and residual
Bouguer anomaly (Figure 10) and a weak magnetic anomaly
(Figure 8A), but has a distinct positive ASA (Figure 11)
indicating it as a magnetic source. The anomaly characterizes
a low-density structure, which could be related to a local
root or a seamount low-density composition. In order to
use the same densities used to model the CP, the seamount
is modeled as a sedimentary structure. The high magnetic
anomaly amplitude, about 300 nT, supports a magnetization
similar to a volcanic one. We propose that the Iracema
Guyot could have had different volcanism episodes while
sedimentation was taking place, resulting in magmatic rocks
closer to the top of the guyot. This would result in a
magnetic high amplitude anomaly and a negative Bouguer
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anomaly. However, there are no seismic profiles available crossing
it to sustain or to refute this hypothesis.

CONCLUSION

After our modeling and analysis of the area, we propose that:

- The basement surface is located between 800 and 6000 m,
approximately, and the Mohorovic¢i¢ discontinuity about 22—
23 km below the CP.

- The region of transitional crust is estimated between a less
altered continental crust and the oceanic crust, with an
extent of 40-50 km.

- The COB is between the continental shelf and the CP,
approximately 40 km from the continental shelf, placing the
plateau at the oceanic crust.

- The basement of the plateau is shaped by two magmatic
structures. The basement highs are probably different since
the apparent magnetization of the southern structure is higher
than the northern one.

- The Iracema Guyot has a sedimentary range density, but the
ASA of the magnetic anomaly is characteristic of a magmatic
structure. We propose a composite sediment-magmatic group
of layers for the structure.
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