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Glaciers in High Mountain Asia are an important freshwater resource for large
populations living downstream who rely on runoff for hydropower, irrigation, and
municipal use. Projections of glacier mass change and runoff therefore have important
socio-economic impacts. In this study, we use a new dataset of geodetic mass balance
observations of almost all glaciers in the region to calibrate the Python Glacier Evolution
Model (PyGEM) using Bayesian inference. The new dataset enables the model to
capture spatial variations in mass balance and the Bayesian inference enables the
uncertainty associated with the model parameters to be quantified. Validation with
historical mass balance observations shows the model performs well and the uncertainty
is well captured. Projections of glacier mass change for 22 General Circulation Models
(GCMs) and four Representative Concentration Pathways (RCPs) estimate that by the
end of the century glaciers in High Mountain Asia will lose between 29 ± 12% (RCP 2.6)
and 67 ± 10% (RCP 8.5) of their total mass relative to 2015. Considerable spatial
and temporal variability exists between regions due to the climate forcing and glacier
characteristics (hypsometry, ice thickness, elevation range). Projections of annual glacier
runoff reveal most monsoon-fed river basins (Ganges, Brahmaputra) will hit a maximum
(peak water) prior to 2050, while the Indus and other westerlies-fed river basins will likely
hit peak water after 2050 due to significant contributions from excess glacier meltwater.
Monsoon-fed watersheds are projected to experience large reductions in end-of-
summer glacier runoff. Uncertainties in projections at regional scales are dominated by
the uncertainty associated with the climate forcing, while at the individual glacier level,
uncertainties associated with model parameters can be significant.

Keywords: glaciers, mass change, glacier runoff, High Mountain Asia, projections

1. INTRODUCTION

High Mountain Asia has the largest coverage of glaciers outside of the polar regions. The meltwater
from these glaciers provides valuable freshwater for hydropower, irrigation, and municipal use
to people living downstream (Biemans et al., 2019; Pritchard, 2019). Projections of glacier mass
change in this region from up to five global glacier evolution models for an ensemble of General
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Circulation Models (GCMs) and Representative Concentration
Pathways (RCPs) estimate by 2100 the glaciers could lose 45± 8%
(RCP 2.6) to 69 ± 14% (RCP 8.5) of their total mass relative
to 2015 (Hock et al., 2019). These results are consistent with
projections from Kraaijenbrink et al. (2017). As a result of
glacier mass loss, glacier runoff typically first increases as glacier
melt intensifies, but then reaches a peak beyond which annual
runoff declines (Jansson et al., 2003). Most river basins in High
Mountain Asia are expected to experience maximum glacier
runoff (“peak water”) by the middle of the century (Bliss et al.,
2014; Lutz et al., 2014; Huss and Hock, 2018). River basins
in Southwest and Central Asia will be more adversely affected
since the glacier runoff is a significant component of total runoff
especially in the dry season (Huss and Hock, 2018). Given the
large, growing populations living downstream of these glaciers
are already considered to be water stressed, the importance of
glacier meltwater is expected to grow in the future, especially in
times of drought (Pritchard, 2019). Advancing our understanding
of the timing and quantity of peak water is therefore crucial for
assisting regional water resources planning and management.

Despite the general consensus that High Mountain Asia is
expected to experience significant glacier mass loss by 2100,
there is considerable spatial variability and uncertainty associated
with these mass loss projections. The spatial variability is
predominantly driven by the complex interactions between the
summer monsoon and the winter westerly disturbances, which
fundamentally alter the timing and amount of precipitation
(Kapnick et al., 2014). For example, the balanced/positive mass
budgets observed in the Karakoram and Kunlun Shan (Brun
et al., 2017; Berthier and Brun, 2019; Shean et al., 2020)
are consistent with increasing trends in snow accumulation
attributed to stronger winter westerly disturbances (Forsythe
et al., 2017; Smith and Bookhagen, 2018). Unfortunately, existing
climate datasets are too coarse to accurately resolve precipitation
at high altitudes (Immerzeel et al., 2015; Dahri et al., 2016;
Wortmann et al., 2018), so most glacier evolution models
calibrate a model parameter that adjusts the precipitation (Radić
and Hock, 2014). As a result, a model’s ability to resolve spatial
variability in precipitation, and consequently mass change, is
strongly dependent on the calibration data (Rounce et al., 2020).

Previous models have been calibrated with sparse
measurements from less than 100 glaciers (e.g., Marzeion
et al., 2012) and/or regional-scale mass balance estimates
from a combination of glaciological, geodetic, gravimetric,
and altimetric data (e.g., Huss and Hock, 2015; Kraaijenbrink
et al., 2017). New datasets of systematic geodetic mass balance
observations of nearly all glaciers in High Mountain Asia (Brun
et al., 2017; Shean et al., 2020) provide unique opportunities to
more accurately resolve the spatial variations in mass balance to
inform future projections.

The dominant source of uncertainty in these future
projections of mass change comes from the GCMs (Hock et al.,
2019). Models quantify this uncertainty by running simulations
for an ensemble of GCMs and reporting the mean and variability.
The other main sources of uncertainty are simplified model
physics and inaccuracies in input data. Uncertainties associated
with model physics are difficult to quantify since all existing

glacier evolution models are over-parameterized due to the use
of limited calibration data. Hence, even if a specific process
is not included or poorly represented in a model, the model
parameters will likely compensate for it through the calibration.
For example, Kraaijenbrink et al. (2017) is the first study that
explicitly accounts for the changes in ablation rates due to debris
cover, supraglacial ponds, and ice cliffs, yet their projections of
glacier mass change are similar to previous studies (Hock et al.,
2019). Since the calibration data used in previous studies includes
debris-covered glaciers, these surface processes are inherently
compensated for by the model parameters. Previous studies have
sought to quantify uncertainty associated with model physics by
performing sensitivity analyses on the model parameters (e.g.,
Kraaijenbrink et al., 2017) or on specific components of the
model (e.g., Huss and Hock, 2015).

The purpose of this study is to project the mass changes
of all glaciers in High Mountain Asia and quantify spatial
variations and the resulting impacts on glacier runoff. We use
the global Python Glacier Evolution Model (PyGEM) and a new
dataset of geodetic glacier mass balances to more accurately
resolve the spatial variability of glacier mass change and runoff
projections and to quantify the uncertainty associated with
model parameters. The calibrated model is validated against
available historical direct observations. The calibrated parameter
sets are used to run simulations from 2015 to 2100 for an
ensemble of GCMs and RCPs. The spatial variability in mass
change and runoff are discussed, the timing and quantity of
peak water are investigated in detail, and the various sources of
uncertainties are evaluated.

2. DATA

2.1. Study Area and Glacier Inventory
Data
Our study region includes the three primary regions in High
Mountain Asia (Central Asia, South Asia West, and South
Asia East) from the Randolph Glacier Inventory (RGI; RGI
Consortium, 2017) spanning from 65–105◦E and 26–46◦N
(Figure 1). The entire region comprises 95,536 glaciers that cover
an area of 97,606 km2 (RGI Consortium, 2017). Meltwater from
these glaciers supplies upwards of 40% of the runoff in major
river basins (Immerzeel et al., 2010; Armstrong et al., 2019;
Zhang et al., 2019), which include the Brahmaputra, Ganges,
Indus, Amu Darya, and Tarim. Given the complex topography
and large-scale climate systems that affect the glaciers, studies
have reported the spatial variability in glacier mass change using
15 RGI subregions (Kraaijenbrink et al., 2017), 12 subregions
(Gardelle et al., 2013; Kääb et al., 2015) or 22 subregions (Bolch
et al., 2019). Our study uses the 22 subregions from Bolch et al.
(2019) for mass change and 14 major river basins for glacier
runoff. These river basins are defined based on Vörösmarty et al.
(2000) at a 6-min spatial resolution. The percent of the total basin
area that is glacierized ranges from less than 0.1 to 3.2% with a
mean of 1.2% (Huss and Hock, 2018).

RGIv6.0 is the starting point for PyGEM as it provides general
information about each glacier including its glacier Id (RGIId),
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FIGURE 1 | Map of High Mountain Asia showing subregions according to Bolch et al. (2019) (black) and some of the major rivers (blue). Inset shows the location of
High Mountain Asia with the three primary RGI regions (RGI Consortium, 2017). Background map data: Google, Digital Globe.

region, subregion, center latitude, center longitude, and terminus
type (RGI Consortium, 2017). Glacier area, ice thickness, and
width for every 10 m elevation bin of each glacier is estimated
by Huss and Farinotti (2012, updated to RGIv6.0). The total
volume for all glaciers in High Mountain Asia is estimated to be
7590 km3, which is well within the uncertainty associated with
the recent estimate of 7020± 1150 km3 by Farinotti et al. (2019).
Compared to all the glaciers in the world excluding the Antarctic
and Greenland ice sheets, glaciers in High Mountain Asia account
for 44% of the total number of glaciers, 14% of the glacier area,
and 4% of the glacier volume (Farinotti et al., 2019). Roughly 11%
of this glacier area and 18% of the volume is debris-covered, and
if one only considers the ablation area, 30% of the total glacier
volume is debris-covered (Kraaijenbrink et al., 2017).

2.2. Climate Data
The glacier evolution model is forced with monthly air
temperature, precipitation, and temperature lapse rate data from
gridded global climate data. For each glacier, the model uses
climate data from the nearest neighboring pixel relative to the
glacier’s center latitude and longitude. ERA-Interim reanalysis
data from the European Centre for Medium Range Weather
Forecasts is used as the reference climate data for model
calibration over the period 2000–2018. GCMs from the Coupled
Model Intercomparison Project Phase 5 (CMIP5) (Taylor et al.,
2012) are used for future simulations over the period 2000–2100.

ERA-Interim reanalysis data provide monthly near-surface
(2 m) air temperature (monthly means of daily means), air
temperature at various pressure levels (300–1000 hPa), and

precipitation (monthly totals of daily data) from 1979 to present
at a native resolution of ∼0.7◦, which is bilinearly interpolated
to a resolution of 0.5◦ (Dee et al., 2011). The near-surface air
temperature is used to calculate the positive degree days and
distinguish snow from rain (see Section 3.1), while the pressure
level data are used to calculate the monthly temperature lapse
rates in the free atmosphere. Precipitation data are converted
to monthly precipitation by multiplying the precipitation by the
number of days in each month.

Data from 22 GCMs and several RCPs (RCP 2.6, RCP 4.5,
RCP 6.0, and RCP 8.5) are used to quantify uncertainty in
projections due to the climate model and emission scenario
(Supplementary Table S1). The RCP is an emission scenario
that is named after the approximate increase in radiative forcing
relative to pre-industrial levels that is reached before (RCP 2.6,
RCP 4.5), after (RCP 6.0), or near (RCP 8.5) the end of the
21st century. In total, 81 combinations of models and RCP
scenarios are used. The resolution of these GCMs ranges from
0.94 to 3.75◦. All simulations use the r1i1p1 ensemble member.
Monthly temperature lapse rates for the GCMs are estimated
from the mean monthly lapse rate from the reference climate data
(ERA-Interim) over the calibration period.

Since the model is calibrated with ERA-Interim climate data
(see Section 4.1), the GCM temperature and precipitation data
are adjusted for each glacier to account for any biases between
the two datasets over the calibration period (2000–2018). GCM
temperatures from 2000–2100 are adjusted using an additive
correction factor ensuring the mean monthly temperature for
the period 2000–2018 is equal and the interannual variability

Frontiers in Earth Science | www.frontiersin.org 3 January 2020 | Volume 7 | Article 331

https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-07-00331 January 18, 2020 Time: 17:50 # 4

Rounce et al. Future Mass Change in HMA

in temperature for each month is similar to ERA-Interim
following Huss and Hock (2015). Precipitation is adjusted
using a multiplicative correction factor ensuring that the
monthly mean precipitation is equal and the variability in
the monthly mean precipitation is similar. For some glaciers,
the mean monthly GCM precipitation is near zero (<10−3

m), which can result in large multiplicative correction factors
that cause unrealistic values of monthly precipitation (>10 m).
Since precipitation may increase or decrease in the future,
the maximum adjusted precipitation in any given month is
considered to be the maximum monthly precipitation from
the reference period adjusted for future increases or decreases
based on the normalized interannual variations. If the monthly
precipitation exceeds this maximum adjusted precipitation, the
value is replaced by the monthly mean precipitation from
the reference period adjusted by the normalized interannual
variation for that given year.

3. GLACIER EVOLUTION MODEL

The Python Glacier Evolution Model (PyGEM; Rounce et al.,
2020) is an open-source glacier evolution model coded in
Python1 that estimates the transient evolution of glaciers. PyGEM
has a modular framework that allows different schemes to be
used for model calibration or model physics (e.g., climatic
mass balance, glacier dynamics). The user-specified schemes
and parameterizations selected to run the model depend on
data availability, computational resources available, and the
focus of the study. The minimum data required to run the
model is a glacier inventory (glacier attributes, area, and ice
thickness) and climate data (temperature and precipitation).
This study also uses glacier thickness, area, and width data
for the glacier dynamics scheme. Model parameters need to
be calibrated and results should be validated using some
form of mass balance (altimetric, glaciological, geodetic, or
gravimetric), runoff, snowline, or equilibrium line altitude
data. The model has been developed to seamlessly integrate
with publicly available glaciological and geodetic measurements
(WGMS, 2018), although we have opted to use geodetic
measurements from Shean et al. (2020) as they provide an
unprecedented level of spatial coverage at a high resolution in
the study region.

Here we present an application of PyGEM using model
parameterizations for the mass balance and glaciers dynamics
that rely heavily on Radić and Hock (2011) and Huss and Hock
(2015). Each glacier is modeled independently using a monthly
timestep using 10 m elevation bins. The major advance in this
study is the application of a Bayesian model (Rounce et al.,
2020) to calibrate every glacier in High Mountain Asia and
quantify the uncertainty associated with the model parameters.
Furthermore, the model is open-source and the bias correction
for the precipitation has been modified to avoid unreasonably
high values for glaciers located in dry regions. Details of the
model parameterizations are described below.

1https://github.com/drounce/PyGEM

3.1. Mass Balance Components
The specific climatic mass balance (m w.e.) for each elevation
bin (10 m) is computed each month as the sum of the ablation,
accumulation, and refreezing. Mass loss is negative, while mass
gain is positive. Ablation is calculated using a degree-day model
based on the monthly mean temperature and number of days
per month. The degree-day factors for snow, ice, and firn are
assumed to be related to one another to reduce the number of
model parameters. The ratio of the degree-day factor for snow
to the degree-day factor of ice is 0.7 (Kayastha et al., 2000; Singh
et al., 2000; Yong et al., 2006; Huss and Hock, 2015; Lutz et al.,
2016), and the degree-day factor of firn is assumed to be the
mean of the degree-day factors for snow and ice. This study
does not explicitly account for debris cover, but rather treats such
surfaces as clean ice.

Temperature for each elevation bin is assigned by selecting the
temperature from the gridded climate data (see Section 2.2) based
on the nearest neighbor, which is adjusted based on the calibrated
temperature bias and then downscaled to each elevation bin
based on the temperature lapse rate (Huss and Hock, 2015). As
the glacier evolves, the ice thickness in a bin may increase or
decrease thereby changing the bins elevation and air temperature.
This feedback may greatly alter the glacier’s evolution, so the
bin temperature is further adjusted based on the temperature
lapse rate derived from ERA-Interim air temperatures at various
pressure levels, and the difference between the present ice
thickness and the initial ice thickness.

Precipitation at each elevation bin of the glacier is computed
using the scheme from Huss and Hock (2015). Precipitation
from the gridded climate data (see Section 2.2) based on the
nearest neighbors downscaled to each elevation bin using a
calibrated precipitation factor and a precipitation gradient on the
glacier. The precipitation gradient is assumed to be 0.01% m−1.
Additionally, for glaciers with an elevation range that exceeds
1000 m, the precipitation in the uppermost 25% of the glacier’s
elevation is reduced using an exponential function to account
for reduced air moisture and wind erosion. Accumulation is
calculated by partitioning the precipitation into liquid and
solid based on the air temperature and snow temperature
threshold (assumed to be 1◦C). Within ±1◦C of the snow
temperature threshold, the liquid and solid precipitation ratio is
linearly interpolated.

Following Radić and Hock (2011), refreezing is calculated as a
function of its weighted annual mean air temperature according
to Woodward et al. (1997) and cannot be negative. The model
assumes that refreezing occurs in the snow pack as opposed to
being superimposed ice, so refreezing cannot exceed the snow
depth. In October of each year, any melt is assumed to refreeze
up to the maximum refreeze potential; after which the snow
and refreezing completely melts and the model can melt the
underlying ice or firn.

3.2. Surface Type
The glacier surface is classified as snow, firn, or ice. Initially, the
surface type is defined based on the glacier’s median elevation
(Braithwaite and Raper, 2009), with higher elevations classified
as firn and lower elevations classified as ice. The surface type
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evolves based on the 5-year running average of the glacier bin’s
annual climatic mass balance (Huss and Hock, 2015). If the
5-year running average is positive, the surface is classified as firn;
if negative, the surface is classified as ice. The surface type is
classified as snow when snow accumulates on the surface.

3.3. Glacier Area and Elevation Changes
Glacier geometry changes in large-scale glacier evolution models
typically rely on volume-area-length scaling (e.g., Radić and
Hock, 2011), mass redistribution using empirical equations
(e.g., Huss and Hock, 2015), or simplified glacier flow models
(e.g., Maussion et al., 2019; Zekollari et al., 2019). These
methods all allow the glacier to evolve over time in response
to the total glacier-wide mass balance. The benefit of volume-
area-length scaling and mass redistribution is that they are
computationally inexpensive.

This study uses the mass redistribution curves developed by
Huss and Hock (2015) based on Huss et al. (2010). The approach
is only applied to glaciers that have at least three elevation bins. At
the end of each mass-balance year the glacier-wide annual mass
change is redistributed over the glacier using empirical equations
that set the normalized surface elevation change as a function
of the glacier’s elevation bins. The glacier bed is assumed to be
parabolic. Here, we explicitly solve for the updated glacier area
(A), width (W), and ice thickness (H) based on mass conservation
and similar shapes as follows:

Hbin_t+1 =

(
H1.5
bin_t +

1Vbin ·H0.5
bin_t

Abin_t

)2/3

(1)

Abin_t+1 = Abin_t

(
Hbin_t+1

Hbin_t

)0.5
(2)

Wbin_t+1 =Wbin_t

(
Hbin_t+1

Hbin_t

)
(3)

This avoids any mass loss or gain that can result from not solving
for the area and ice thickness simultaneously, which was the case
for Huss and Hock (2015) and required them to perform an
additional correction of the ice thickness after updating the area
in order to enforce mass conservation.

Modeled glacier retreat occurs when the volume change in an
elevation bin causes the ice thickness for the next time step to be
less than zero. In this case, the ice thickness is set to zero and the
remaining volume change is redistributed over the entire glacier
according to the mass redistribution described above.

Following Huss and Hock (2015), modeled glacier advance
occurs when the ice thickness change exceeds the ice thickness
advance threshold of 5 m. When this occurs, the ice thickness
change is set to 5 m, the area and width of the bin are calculated
accordingly, and the excess volume is recorded. The model then
calculates the average area and thickness associated with the
bins located in the glacier’s terminus, which is defined by the
lowest 20% of glacier area. Another minor modification to our
implementation of Huss and Hock (2015) is that our calculation
of the average area and thickness excludes the bin located at the
terminus because prior to adding a new elevation bin, the model
checks that the bin located at the terminus is “full.” Specifically,

the area and ice thickness of the lowermost bin are compared to
the terminus’ average, and if the area and ice thickness is less
than the average, then the lowermost bin is first filled until it
reaches the terminus average. This ensures that the lowermost
bin is full and prevents adding new bins to a glacier that may
only have a relatively small excess volume in consecutive years.
In other words, if this criterion did not exist, then it would
be possible to add new bins over multiple years that had small
areas, which would appear as though the glacier was moving
down a steep slope.

If there is still excess volume remaining after filling the
lowermost bin to the terminus average, then a new bin is added
below the terminus. The ice thickness in this new bin is set to be
equal to the terminus average and the area is computed based on
the excess volume. If the area of this bin would be greater than
the average area of the terminus, this indicates that an additional
bin needs to be added. However, prior to adding an additional
bin the excess volume is redistributed over the glacier again. This
allows the glacier’s area and thickness to increase and prevents
the glacier from having a thin layer of ice that advances down-
valley without thickening. The one exception for when a glacier
is not allowed to advance to a particular bin is if the bin is over a
known discontinuous section of the glacier, which is determined
based on the initial glacier area. For example, it is possible,
albeit unlikely, that a glacier could retreat over a discontinuous
section and then advance in the future. This discontinuous area is
assumed to be a steep vertical drop, hence why a glacier currently
does not exist, so a glacier is not allowed to form there in the
future. The glacier instead skips over this discontinuous bin and
a new bin is added below it.

3.4. Glacier Runoff
Following Huss and Hock (2018), we define glacier runoff, Q, as
all water that leaves the initial glacierized area, which is computed
from rain (pliquid), ablation (a), and refreezing (R) as follows:

Q = pliquid + a− R (4)

This is equivalent to the runoff that would be measured at a
fixed-gauge station at the initial glacier terminus. For clarity we
use the term “fixed-gauge” glacier runoff throughout the text.
When discussing fixed-gauge glacier runoff, we separate it into
two components: (i) the runoff from the changing glacierized
area, which we refer to as “moving-gauge” glacier runoff as this
is equivalent to the runoff that would be measured at a gauging
station that moved with the terminus (Bliss et al., 2014), and (ii)
the runoff from the ice-free portion of the initially glacierized
area once the glacier has retreated, which we refer to as “off-
glacier” runoff.

The off-glacier runoff is computed as the sum of rain, seasonal
snow melt, and refreezing from the non-glacierized portion of the
initial glacier area. No other processes, e.g., evapotranspiration
or groundwater recharge, are accounted for in these off-glacier
areas. In the case of glacier advance, runoff is computed over
the present glacier area, which may exceed the initial glacierized
area. Given that most glaciers are retreating, the increase in
glacier runoff due to the additional glacier area is considered
to be negligible.
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Excess meltwater is defined as the runoff caused by the net
glacier mass loss. A glacier that melts completely contributes its
entire mass as excess meltwater, while a glacier in equilibrium
or with consistently positive mass balances produces no excess
meltwater. First, we compute the total excess meltwater for each
glacier over the period 2000–2100, which is equivalent to the total
net mass change over this period or the sum of all (positive and
negative) annual mass balances. Since interannual glacier mass
change is highly variable, i.e., a glacier can lose, gain, and then
lose mass again, we determine the amount of excess meltwater for
each individual mass-balance year retroactively (Supplementary
Figure S1). We distribute the total amount of excess meltwater in
sequential order, starting from the first year, to all mass-balance
years that are negative and where the lost mass is not regained
in the future. This way the amount of excess meltwater over the
entire period is maintained, even when the glacier experiences
some positive mass-balance years. If the total mass change is zero
or positive, excess meltwater is zero for all years.

From the projected time series of annual glacier runoff,
peak water is calculated based on 11-year moving averages
following Huss and Hock (2018).

4. MODEL CALIBRATION AND
VALIDATION

4.1. Model Calibration
Geodetic mass balance observations from 2000 to 2018 of 95,086
glaciers (99.6% of the total glacier area) from Shean et al. (2020)
are used for model calibration. These mass balance observations
were primarily derived from time series of Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) DEMs.
They were quality controlled by identifying outliers using a 3-
sigma filter for (a) the uncertainty of the glacier mass balance
compared to the uncertainty of all glacier mass balances, and (b)
the glacier mass balance compared to its corresponding regional
mass balance (Rounce et al., 2020). Any glaciers that were not
initially observed or were deemed outliers (1401 glaciers; 0.5%
of the total glacier area) were replaced with the regional specific
mass balance and uncertainty. This dataset was used instead of
Brun et al. (2017), since it has fewer data gaps, integrates an
additional 2 years of ASTER DEMs and more than 2 years of
high-resolution DEMs from WorldView/GeoEye imagery, and
calculates the mass balance for nearly every glacier in High
Mountain Asia regardless of its size (Shean et al., 2020).

The three model parameters that require calibration are the
temperature bias, precipitation factor, and degree-day factor of
snow. The temperature bias and precipitation factor are meant to
account for any biases or inability of the climate data to properly
resolve the temperature and precipitation on the glacier, while the
degree-day factor of snow is meant to account for any variations
in the relation between the temperature and ablation. In reality,
these three model parameters also compensate for any physical
processes that are poorly accounted for or missing in PyGEM
(e.g., debris cover, firn development, glacier dynamics).

Calibration is performed using a Bayesian model (Rounce
et al., 2020), which combines mass balance observations with
prior information of the model parameters to estimate the

model parameters and their uncertainty for every glacier. The
Bayesian model is applied using Markov chain Monte Carlo
methods. These methods produce a chain of model parameter
sets that is formed by iteratively sampling combinations of model
parameters (Carlin and Louis, 2008). Sets of model parameters
that agree well with the mass balance observations are more
frequently accepted than those that agree poorly; however, some
of the poorer sets are also accepted such that the chain of model
parameters properly reflects the uncertainty associated with the
observations. The theory behind Markov chain Monte Carlo
methods is that if the chain is long enough, i.e., enough iterations
are performed, the chain will converge to a unique stationary
distribution such that the model parameters in the chain are from
the joint posterior distribution (Carlin and Louis, 2008). In other
words, once the chains are sufficiently long, we can be confident
that the parameter sets are representative of the true distribution
of potential sets of model parameters based on the observations
and prior information. A detailed description of the calibration
methods is presented in Rounce et al. (2020).

We calibrate each glacier independently using the geodetic
mass balance observations from 2000 to 2018 (Shean et al., 2020)
and the calibration scheme described above. The calibration
scheme generates at least 100 independent sets of model
parameters, which are used in the model simulations to quantify
the uncertainty associated with the model parameters. For each
GCM and RCP scenario, 100 simulations are run based on these
sets of model parameters.

4.2. Model Validation
Model performance is evaluated at both a regional and glacier
level comparing simulations forced by ERA-Interim from 1980
to 2017 with available observations not used in the calibration.
Since the glacier volume at the start of the simulation in 1980
is not known (the input ice volumes refer approximately to
the year 2000) the period 1980–2017 is split into two periods.
For the period 1980-2000 the model is run in reverse (2000,
1999, . . . , 1980), and for the period 2000–2017 the model is
run normally (2000, 2001, . . . , 2017), and both simulations are
then merged. This ensures that the modeled glacier volume and
area at year 2000 is consistent between the simulations used for
validation (1980–2017) and calibration (2000–2018) and thus
avoid any uncertainty that could be introduced from changes in
glacier geometry between 1980 and 2000.

At the regional scale, the model is compared to regionally
averaged time series of annual mass balance from 1980 to 2016 for
each of the three primary RGI regions (Zemp et al., 2019) derived
primarily from geodetic mass balances covering 51–72% of the
total glacier area in each region, but also from glaciological mass
balances covering 1–3% of the total glacier area in each region. At
the glacier scale, the model is compared to all publicly available
glacier-wide geodetic and glaciological observations (WGMS,
2018) between 1980 and 2017. This includes 41 observations of 17
different glaciers for the geodetic data and 112 annual, 154 winter,
and 158 summer observations of 24 different glaciers for the
glaciological data. In addition, model results are compared with
observed equilibrium line altitudes from approximately year 2000
derived from end-of-summer snow lines averaged over 15–26
glaciers in various subregions (Gardelle et al., 2013).
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All modeled and observed values are compared using the
root-mean-square-error (RMSE) and regression analysis, where
perfect agreement would result in a correlation coefficient (r) of
1.0 and a slope of 1. Geodetic mass balance data from Brun et al.
(2017) are not used for validation because these mass balances
agree well with the calibration data (Shean et al., 2020). Hence,
good agreement would merely reflect the similarities between
datasets, i.e., both were derived using time series of ASTER
DEMs from 2000 to 2016 or 2018, and not properly evaluate
model performance.

4.3. Propagation of Model Parameter
Uncertainty
While the model generates output for every glacier in High
Mountain Asia, the model results are typically aggregated to
regions or river basins. When the root sum of squares method
is used to estimate regional uncertainties based on the individual
glaciers, the uncertainties are unrealistically low (e.g., <0.01 m
w.e. yr−1) due to the large sample size. Shean et al. (2020)
performed an analysis of the spatial autocorrelation of the glacier
elevation change uncertainty and found a characteristic length
of 32 km. For their regional estimates, they first aggregated
the elevation change uncertainty into 55 km hexagonal cells
assuming the glaciers are perfectly correlated. The regional
elevation change uncertainty was then estimated by aggregating
the uncertainty of each hexagon within a given region using
the root sum of squares method, i.e., assuming the hexagons
are independent. Lastly, the regional mass balance uncertainty
was estimated by aggregating the regional elevation change
uncertainty with the density and area uncertainty in quadrature.
For consistency with the calibration data, we apply the same
methods to propagate the glacier mass balance uncertainty
to regional scales. Since PyGEM outputs the glacier mass
balance and uncertainty, we first isolate the elevation change
uncertainty by assuming the dimensionless fractional uncertainty
is 0.10 for the area and 0.071 for the density according to
Shean et al. (2020, eq. (4)).

The propagation of uncertainty is also important for
comparisons with the mass balance observations, since monthly
mass balances must be aggregated. In these cases, the uncertainty
associated with the two extreme cases is reported, i.e., assuming
each month is independent or perfectly correlated. The actual
uncertainty is likely somewhere between these two end members.
Note that for projections we report the uncertainty as the multi-
GCM mean± standard deviation instead of the model parameter
uncertainty (see Section 6.3.1 for a comparison of the two sources
of uncertainties).

5. RESULTS

5.1. Model Performance
The calibration of the glacier evolution model using geodetic
mass balance observations of more than 95,000 glaciers enables
the model to resolve spatial variability in mass balance at an
unprecedented level of detail. Regional mass balances, aggregated
by the three RGI regions, show the model and observations
agree reasonably well between 1980 and 2016, especially when

uncertainty is considered (Zemp et al., 2019) (Figures 2A–C).
By comparison, the uncertainty associated with the modeled
results is much less due to the large sample size. Agreement
is best in Central Asia (RMSE = 0.18 m w.e. yr−1, r = 0.44)
followed by South Asia West (RMSE = 0.24 m w.e. yr−1, r = 0.40)
and South Asia East (RMSE = 0.31 m w.e. yr−1, r = 0.44)
(Supplementary Table S2). This reflects the methods used to
extrapolate long-term trends in High Mountain Asia, which
were solely based on glaciological measurements in Central Asia
(Zemp et al., 2019).

Comparison with equilibrium line altitudes (Gardelle et al.,
2013) shows good agreement (RMSE = 86 m, r = 0.98;
Supplementary Table S2) with all regions lying close to the
1:1 line (Figure 2D). The good agreement provides confidence
that the modeled accumulation and ablation areas are well
represented in the model, which suggests the sets of model
parameters generated by the calibration procedure are good.

The comparison of mass balances derived from geodetic and
glaciological measurements (WGMS, 2018) show relatively good
agreement around the 1:1 line with a fair amount of scatter
(Figures 2E,F and Supplementary Table S3). For all geodetic
and glaciological measurements, the mean ± standard deviation
of the difference between the observed and modeled annual
and seasonal mass balances is −0.12 ± 1.00 m w.e. yr−1. The
agreement is much better when only considering the geodetic
mass balances (−0.01 ± 0.46 m w.e. yr−1) or only the annual
glaciological balances (−0.21 ± 0.52 m w.e. yr−1). The mean
uncertainty (expressed as the standard deviation) of the modeled
mass balances ranges from 0.35–0.74 m w.e. yr−1 assuming
that the monthly modeled values are uncorrelated or perfectly
correlated, respectively. In other words, the modeled uncertainty
derived from the sets of calibrated model parameters is
comparable to the differences between the observed and modeled
mass balances, which suggests that the model’s uncertainty at the
glacier scale is reasonably quantified.

The model performed poorly at the seasonal scale and typically
had less negative summer balances (−0.71 ± 1.3 m w.e. yr−1)
and less positive winter balances (0.53 ± 0.50 m w.e. yr−1).
Hence, the good agreement with annual observations provides
confidence that the model can reasonably resolve interannual
variability in the mass balance, while the poorer agreement with
seasonal observations suggests caution should be used when
interpreting results on a sub-annual time scale. While the model’s
intended use is for large-scale applications, the relatively good
agreement on a glacier scale when considering model uncertainty
highlights the unprecedented level of detail that is resolved by
calibrating every glacier with a mass balance observation. At the
regional level, the comparison with equilibrium line altitudes and
historic mass balance estimates also suggest the model performs
well at this scale.

5.2. Projections
The calibrated model parameters were used to estimate the glacier
mass change and runoff of every glacier in High Mountain Asia
from 2015 to 2100 for 22 GCMs forced by three to four RCPs
each. All GCMs were run for RCP 2.6, RCP 4.5, and RCP 8.5,
while only 15 of the GCMs had input data for RCP 6.0. Since
projections are heavily dependent on the climate forcing, results
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FIGURE 2 | Validation of model performance via comparison of (A–C) RGI regional annual specific mass balances (m w.e. yr-1) from 1980 to 2016 with Zemp et al.
(2019), (D) equilibrium line altitudes (ELA, m a.s.l.) with Gardelle et al. (2013), and mass balances from (E) geodetic (Bgeo, m w.e. yr-1) and (F) annual, winter, and
summer glaciological balances (Bglac, m w.e.) (WGMS, 2018). Uncertainty reported by the observations and for the model (standard deviation) are shown for (A–D).

are reported as multi-GCM means± standard deviation of all the
GCMs for a given RCP scenario.

5.2.1. Mass Change Projections
Projections estimate that from 2015 to 2100, glaciers in High
Mountain Asia will lose 1900 ± 748 Gt (29 ± 12%, RCP
2.6), 3003 ± 705 Gt (46 ± 11%, RCP 4.5), 3200 ± 698
Gt (50 ± 11%, RCP 6.0), and 4327 ± 648 Gt (67 ± 10%,
RCP 8.5). As expected, mass loss by 2100 increases for higher
emission scenarios. While all regions are projected to experience
significant mass loss, the relative mass loss (fraction of initial
glacier mass) varies greatly by region (Figure 3). Some of the
smallest regions (Dzhungarsky Alatau, Gangdise Mountains, and
Tanggula Shan) are expected to experience the most relative
mass loss (more than 67% even for RCP 2.6), while Karakoram
and Western Kunlun Shan are projected to experience the
least relative mass loss (less than 55% for RCP 8.5). Despite
experiencing the least relative mass loss, Karakoram and Western
Kunlun Shan contribute 24–34% of the total mass loss depending
on the RCP scenario due to their large initial glacier mass.

Mass change for 12 regions from Kääb et al. (2015) and the
three primary RGI regions are provided in Supplementary
Figures S2, S3, respectively.

The spatial variability in projected mass loss is dependent on
present-day mass balance, projected changes in air temperature
and precipitation, and various glacier attributes (e.g., glacier
hypsometry, ice thickness). Since the model was calibrated with
mass balance data for every glacier, the model is able to resolve
subregional variations. The mass balance evolution of every
glacier greater than 1 km2 for RCP 4.5 shows significant spatial
and temporal variability exists due to spatial variations in the
temperature and precipitation projections (Figure 4). By the
end of the century, temperature in all regions is projected
to increase by 2–3◦C, relative to the 2000–2015 mean, with
Eastern Hindu Kush and Gandise Mountains experiencing the
greatest increase closer to 3◦C. Changes to precipitation are more
variable with some regions projected to increase by∼10% (Altun
Shan, Eastern Kunlun Shan, Gandise Mountains, Qilian Shan),
while others show no significant change (Eastern Hindu Kush,
Western Himalaya).
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FIGURE 3 | Regional multi-GCM means (±1 standard deviation) of normalized mass remaining, relative to 2015, for up to 22 GCMs and 4 RCP scenarios from 2015
to 2100. Uncertainty only shown for RCP 2.6 and RCP 8.5 for clarity. Numbers in lower left corner of each subplot refer to the region’s initial glacier mass (Gt).
Subplots of regions from Bolch et al. (2019) are roughly ordered by geographic location. C, Central; E, Eastern; N, Northern; W, Western; Int, Interior; Mtns,
Mountains.

The glaciers’ response to temperature and precipitation is
complex. For example, Eastern Himalaya, which had the most
negative specific mass balance from 2000 to 2018 (Shean et al.,
2020), is projected to experience less relative mass loss by 2100
for RCP 4.5 compared to other regions in part due to increases in
precipitation and comparatively smaller increases in temperature
(Figures 4, 5). Conversely, Pamir Alay, which had an almost
balanced present-day mass budget, is projected to experience
more mass loss than other regions as it gets warmer but not
wetter. While the climate forcing is likely responsible for a
significant amount of these changes, the glacier’s hypsometry,
ice thickness, and elevation range will also impact how quickly
the glacier is able to retreat in search of a new equilibrium.
Hence, mass balance and overall mass change may significantly
differ between regions even if they appear to have similar climate
forcing (e.g., Eastern Kunlun Shun and Gandise Mountains).

Figure 4 also shows substantial variations in specific mass
balance projections within a region due to differences in changes
to the temperature and precipitation. This is most apparent in
Karakoram, Nyainqentangla, Western Himalaya, and Western
Pamir, where parts of these regions experience an increase in
precipitation that coincides with a strong increase in temperature,
while other parts of these regions experience a decrease in

precipitation that coincides with a smaller temperature increase.
Interestingly, the parts of these regions that appear to become
warmer and wetter appear to have less negative mass balances
near the end of the century compared to the beginning of the
century (Figure 4). In most subregions the individual glaciers’
specific mass balances tend to become considerably less negative
throughout the 21st century, indicating that glaciers retreat to
higher elevations. However, in some regions (e.g., Dzhungarsky
Alatau, Altun Shan, Tanggula Shan, and the Eastern Tibetan
Mountains) the trend is reversed with increasingly negative
specific mass balances.

The same regional and subregional variations are also
apparent in the projections of mass balance, temperature, and
precipitation for RCP 2.6, RCP 6.0, and RCP 8.5 (Figure 5 and
Supplementary Figures S4–S6). For RCP 2.6, the temperature
is projected to increase ∼1◦C by the middle of the century and
stabilize, which allows many glaciers to reach a new equilibrium
(Supplementary Figure S4). RCP 6.0 projects a relatively steady
temperature increase of 3–4◦C by 2100, while precipitation
change is highly variable by region, leading to higher rates of
total mass loss by 2100 compared to RCP 4.5 (Supplementary
Figure S5). Lastly, RCP 8.5 projects a constant increase in
temperature throughout the century such that all regions increase
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FIGURE 4 | Mass balance and bias adjusted temperature and precipitation changes relative to the mean from 2000 to 2015 for each glacier greater than 1 km2 from
2015 to 2100 for RCP 4.5. Each row is a glacier and glacier number refers to the number greater than 1 km2 in each region. Glaciers are ordered according to the
RGIId in each subregion. Lines show the normalized regional mass remaining relative to 2015, and the area-weighted bias adjusted temperature and precipitation
changes relative to the mean from 2000 to 2015. White color for the mass balance indicates the glacier has completely melted. Regions are from Bolch et al. (2019).
C, Central; E, Eastern; N, Northern; W, Western; Int, Interior; Mtns, Mountains. RCP 2.6, RCP 6.0, and RCP 8.5 are shown in the Supplementary Figures S2–S4.

by 5–6◦C. While the precipitation is also projected to increase
in most regions, it does not compensate for the severe mass loss
rates (<−1.5 m w.e. yr−1) and many glaciers subsequently melt
completely by 2100 (Supplementary Figure S6). For glaciers that
do not completely melt, the mass balance at the end of the century
is very negative (<1 m w.e. yr−1) indicating these glaciers are
still far from equilibrating with the new climate and continue to
rapidly retreat.

5.2.2. Glacier Runoff Projections
Similar to the regional variations in the mass balance projections,
projected peak water varies significantly among large-scale river
basins (Figure 6). The projections of fixed-gauge annual glacier
runoff indicate that, on average, a peak has already been
reached or will be reached within approximately two decades,
followed by declining glacier runoff, in several major river basins
(Brahmaputra, Ganges, Ili, Salween, and Syr Darya) regardless
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FIGURE 5 | Spatial distribution of bias adjusted (see Section 2.2), multi-GCM mean temperature change (1T) (A–C) and precipitation change (1P) (D–F) from
2085–2100, relative to 2000–2015, aggregated by 0.5◦ grid cells for (A,D) RCP 2.6, (B,E) RCP 4.5, and (C,F) RCP 8.5. Note the difference in the colorbar scales for
the temperature change subplots. The circles are scaled by the initial glacier area (km2) within the cell. Outlines of major river basins are shown for reference.

of the RCP scenario. Glacier runoff in all river basins will have
reached peak water by∼2080 for all RCP scenarios.

Higher RCP scenarios will delay peak water due to increasing
excess glacier melt, while lower RCP scenarios will allow many
glaciers to approach a new equilibrium and therefore reduce
glacier runoff earlier in the century. In some basins (e.g.,
Indus and Tarim), the timing of glacier melt is projected
to cause peak water to be later for RCP 6.0 than RCP 8.5,
but the percentage increase in total runoff at the time of
peak water will be less for RCP 6.0 than RCP 8.5. The later
timing may also be a consequence of the smaller sample of
GCMs for RCP 6.0 (15 instead of 22). The basin averaged
increases in annual glacier runoff when peak water occurs
can be substantial, e.g., in the Tarim basin glacier runoff
increases by ∼80% of the initial glacier runoff, while glacier
runoff on the Tibetan Plateau and Amu Darya increase by
more than 50% (multi-GCM mean for RCP 8.5). The relative
increases in glacier runoff tend to be more pronounced for

higher emission scenarios in most basins, and in basins where
peak water is later.

Spatial variations within these large-scale drainage basins are
most apparent in the Indus and Tarim (Figure 7), where some
sub-basins have already reached peak water for all emission
scenarios, while others (Karakoram and Kunlun) will reach peak
water much later, e.g., after 2080 for RCP 8.5 (Figure 7C). Given
that these latter subregions contain ∼42% of the total glacier
mass in High Mountain Asia, mass loss from these regions drives
the peak water within their river basins. In general, these sub-
basins are located in the interior (e.g., Karakoram) and their
bias adjusted, multi-GCM mean temperature change from 2085–
2100, relative to 2000–2015, is projected to be higher than the
exterior (e.g., Western Himalaya) sub-basins for all emission
scenarios (Figures 5A–C). The differences in precipitation are
much less pronounced, although the interior appears to become
slightly wetter than the exterior (e.g., Western Himalaya and
Eastern Hindu Kush) sub-basins for RCP 8.5 (Figure 5F).
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FIGURE 6 | Time series of multi-GCM means (±1 standard deviation) of annual fixed-gauge glacier runoff (i.e., the runoff from the initially glacierized area) in eleven
river basins for each RCP scenario from 2015 to 2100, relative to the mean annual fixed-gauge glacier runoff from 2000 to 2015 (given in bottom right in Gt yr-1).
Uncertainty only shown for RCP 2.6 and RCP 8.5 for clarity. Dashed lines show peak water for each RCP. Center map shows major river basins in study area
(Vörösmarty et al., 2000). Abbreviations in center map are Sw, Salween; TP, Tibetan Plateau; Yz, Yangtze.

Given that temperature drives both the ablation rates and
accumulation rates (since the temperature dictates whether
precipitation falls as rain or snow), these higher temperature
changes promote more negative mass balances.

Conversely, peak water in Southeast Asia (e.g., Ganges and
Brahmaputra) shows significantly less variability with almost all
sub-basins reaching peak water by 2050 for all emission scenarios
(Figure 7). This may reflect that glaciers in these river basins
have already been experiencing high mass loss rates since 2000
(Shean et al., 2020). The subregional spatial variations in the
timing of peak water are consistent for the various emission
scenarios, although the spatial variations are more pronounced
for the higher emission scenarios (Figure 7).

The spatial variability and timing of peak water is driven by
the amount of excess meltwater, i.e., the additional runoff due
to annual glacier net mass loss, and the relative importance of
meltwater compared to other components of the fixed-gauge
glacier runoff in each river basin (Figure 8). Excess meltwater
is essentially the release of a long-term water supply that is not
replenished. River basins that have significant amounts of excess
meltwater (e.g., Amu Darya, Indus, Tarim) cause peak water to
occur later in the century. As these glaciers continue to melt, the
excess meltwater becomes depleted thereby reducing the amount
of glacier runoff. Unsurprisingly, glacier meltwater in these river
basins is the largest contributor to the fixed-gauge glacier runoff
(upwards of 80%) as they receive most of their precipitation as
snow from the winter westerlies.

River basins fed by the summer monsoons (e.g., Brahmaputra
and Ganges) receive 50% or more of their fixed-gauge
glacier runoff from precipitation (Figure 8 and Supplementary
Figures S7–S9) and their annual runoff only decreases a little
by 2100 regardless of the emission scenario (Figure 6). Excess
meltwater in these river basins appears to have already peaked
and therefore does not drive the timing of peak water to
the same extent.

For all river basins, as the glaciers retreat the glacier melt
is replaced by off-glacier (seasonal snow) melt, which becomes
an increasingly important component of the fixed-gauge glacier
runoff (Figure 9 and Supplementary Figures S10–S12). Since
these off-glacier areas replace portions of the glaciers that have
already retreated, they are inherently located at lower elevations
and will be the first to experience snow melt each year. Figure 9
shows the relative components of fixed-gauge glacier runoff for
each month near the end of the century (2085–2100) for RCP 4.5
relative to the monthly runoff from 2000 to 2015. All river basins
show a clear lag in the timing of snow melt followed by glacier
melt later in the summer. The relative importance of the glacier
melt varies based on the climate system.

For RCP 4.5, in monsoon-fed river basins (e.g., Brahmaputra
and Ganges), glacier melt contributes ∼20% in August, while
precipitation contributes ∼70% of the fixed-gauge glacier runoff
(Figure 9). In westerlies-fed river basins (e.g., Amu Darya
and Tarim), glacier melt is a much greater contributor (50%
or more). Interestingly, despite relying on glacier runoff less,
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FIGURE 7 | Spatial distribution of peak water (i.e., the year of maximum annual fixed-gauge glacier runoff) aggregated by 0.5◦ grid cells for (A) RCP 2.6, (B) RCP
4.5, and (C) RCP 8.5. The circles are scaled by the multi-GCM mean annual glacier runoff (Gt yr-1) from 2000 to 2015 within the cell. Major river basins are shown
(Sw, Salween; TP, Tibetan Plateau; Yz, Yangtze).

monsoon-fed river basins are expected to experience the most
significant reductions in fixed-gauge monthly glacier runoff
(∼40% in August). Conversely, some westerlies-fed river basins
are projected to be reduced by ∼20% (Amu Darya), while

the Tarim basin is expected to see an increase in fixed-gauge
glacier runoff by the end of the century due to contributions
from excess meltwater despite its steady decrease after peak
water around 2060 (Figure 8). In general, monthly runoff
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FIGURE 8 | Multi-GCM mean of annual fixed-gauge glacier runoff and the relative contribution from various components for RCP 4.5 from 2015 to 2100 relative to
the mean annual fixed-gauge glacier runoff from 2000 to 2015 (given below region name in Gt yr-1). Results for RCP 2.6, RCP 6.0, and RCP 8.5 are shown in the
Supplementary Figures S7–S9.

reductions are considerably higher for RCP 8.5 reaching 65%
or more in four basins (Ili, Mekong, Salween, Syr Darya;
Supplementary Figure S12).

6. DISCUSSION

6.1. Mass Change Projections
Glaciers in High Mountain Asia are projected to lose 29 ± 12%
(RCP 2.6), 46 ± 11% (RCP 4.5), 50 ± 11% (RCP 6.0), and
67± 10% (RCP 8.5) of their total mass by 2100. These projections
generally fall within the range of those from previous studies
considering uncertainties (Kraaijenbrink et al., 2017; Hock et al.,
2019). The major advance in this study is the availability of
geodetic mass balance data for almost every glacier to calibrate
each glacier individually. Given that the model physics are almost
identical to those from Huss and Hock (2015), a comparison
shows the added value of the calibration data.

Huss and Hock (2015) was calibrated using regional data from
Gardner et al. (2013). A comparison between Shean et al. (2020)
and Gardner et al. (2013) reveal there are significant differences in
the present-day mass balance. For example, in Eastern Himalaya,
the specific mass balance used in our study is half as negative as
that used by Huss and Hock (2015). Unsurprisingly, the mass
loss in South Asia East (RGI region 15) was 18–31% less in our
study (Supplementary Figure S3). Similarly, in Karakoram and
Tien Shan, where the most mass in High Mountain Asia resides,

Gardner et al. (2013) is significantly more negative than Shean
et al. (2020). Consequently, we project 15–30% less mass loss in
Central Asia (RGI region 13) and South Asia West (RGI region
14). These differences illustrate that advances in the systematic
measurement of indirect glacier mass balance (e.g., Brun et al.,
2017; Shean et al., 2020) are important for future projections.

The calibration of every glacier enabled the model to capture
the spatial variability that is present within subregions (Figure 4).
While quantifying mass change for large regions is helpful for
water resources planning at the scale of major river basins,
our model’s ability to resolve subregional differences provides
important data for much smaller river basins such as those
containing hydropower plants. The comparison with geodetic
and annual glaciological measurements from WGMS (2018)
showed that the model agreed well with observations (Figure 2).
Since PyGEM is currently designed for large-scale applications
and its model physics are consequently relatively simple to
enable rapid calculations over large areas (e.g., use of mass
redistribution curves), caution should be used when analyzing the
results of individual glaciers, especially for smaller glaciers (see
Section 6.3; Figure 10C).

6.2. Glacier Runoff Projections
Glacier runoff projections provide critical information for the
planning and management of water resources. Two approaches
have been used for projecting glacier runoff: (1) using an
imaginary fixed-gauge station at the initial glacier terminus (e.g.,
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FIGURE 9 | Mean monthly fixed-gauge glacier runoff averaged over 2000–2015 and 2085–2100 for RCP 4.5. Runoff for both period averages is normalized relative
to the maximum monthly runoff from 2000 to 2015. Relative contribution from various components are shown for the runoff from 2085 to 2100. Maximum monthly
decrease (or, when all months show an increase, maximum increase) of runoff between June and September is given in parentheses. Results for RCP 2.6, RCP 6.0,
and RCP 8.5 are shown in the Supplementary Figures S10–S12.

Huss and Hock, 2018) or (2) using a moving-gauge station
that tracks the glacier terminus over time (e.g., Bliss et al.,
2014). Figure 8 shows the difference in fixed-gauge glacier runoff
(solid line) versus the moving-gauge glacier runoff that does
not account for off-glacier runoff (dashed line). If off-glacier
runoff is not included, both the timing and amount of peak
water is severely underestimated, indicating that glacier runoff
calculations should always use a fixed-gauge station approach.
The major limitation for the fixed-gauged station approach
starting with the initial glacierized area is how to account
for glaciers that advance, since theoretically the glacier runoff
associated with the glacier area that exceeds the initial area should
not be counted. In this study, we have not removed any runoff
for advancing glaciers, which is considered to have negligible
implications on the total runoff since projections show glaciers
are rapidly retreating (Figure 3).

The spatial distribution of the timing of peak water in this
study for RCP 4.5 (Figure 7) is fairly consistent with Huss
and Hock (2018, Figure 2), which estimates peak water to
be later in the Karakoram and Kunlun and much earlier in
Southeast Asia. However, the exact timing of peak water does
show significant variations. For the major monsoon-fed river
basins (Ganges, Brahmaputra, Salween, and Mekong), our study

estimates peak water will occur in 2030, 2016, 2015, and 2023,
respectively, which is 14, 33, 34, and 26 years prior than Huss
and Hock (2018), respectively. For westerlies-fed river basins, our
study estimates peak water will occur in 2053 for the Indus, 2061
for the Tarim, and 2047 for the Aral Sea (the combination of Amu
Darya and Syr Darya). The timing of peak water in the Indus
and Tarim are 8 and 10 years later than Huss and Hock (2018),
respectively, while the Aral Sea is 2 years earlier.

Given the nearly identical model physics between our study
and Huss and Hock (2015), we attribute the differences in the
timing of peak water to differences in the calibration data. The
use of mass balance data for every glacier to calibrate our study
enables us to resolve subregional variations in mass change and
provides improved estimates of the timing and amount of peak
water. Kraaijenbrink et al. (2017), who used subregional mass
balance data for calibration, mention meltwater peaks around
2050 for RCP 8.5 and earlier around 2030 for the other RCPs,
but did not account for any other components of the fixed-
gauge glacier runoff. Our study finds for RCP 8.5 meltwater can
peak as late as 2080 (Supplementary Figure S9) and as early
as 2020 for RCP 2.6 (Supplementary Figure S7), although this
varies considerably based on the river basin. Given our study
does not account for debris cover, future work should assess
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FIGURE 10 | (A–C) Examples of the normalized mass remaining from 2015 to 2100, relative to 2015, for various RCP scenarios for a large (61 km2) glacier (A,B)
and a small (0.4 km2) glacier (C) showing the uncertainty for RCP 2.6 and RCP 8.5 (shaded colors) associated with the model parameters and GCMs for various
RCP scenarios, and (D) the uncertainty associated with the mass balance data (σB) used for calibration (Shean et al., 2020) versus glacier area.

how the response of debris-covered glaciers affects the timing
of glacier runoff.

The timing of peak water, which is driven by excess meltwater,
is more important in westerlies-fed river basins than monsoon-
fed river basins, since glacier meltwater contributes a significantly
higher percentage of the fixed-gauge glacier runoff (Figure 8).
Consequently, the annual glacier runoff in the two major
monsoon-fed river basins (Brahmaputra and Ganges) only
declines by∼20% (−10.4 Gt yr−1 and−4.3 Gt yr−1, respectively)
by the end of the century relative to the mean over 2000–
2015. As Huss and Hock (2018) highlighted, the glacier melt
contribution to end-of-summer (August, September) fixed-gauge
glacier runoff is significant (Supplementary Table S4). The
Brahmaputra and Ganges are projected to experience a decline in
the end-of-summer glacier runoff of 35–54% and 32–41% (RCP
2.6 – RCP 8.5), respectively (Supplementary Figures S10–S12).
These declines are much higher than those projected by Huss
and Hock (2018), which varied from 21 to 35% and 19 to
23%, respectively.

The Indus and Amu Darya are also expected to experience
declines in August fixed-gauge glacier runoff ranging from
23–7% and 22–33% (RCP 2.6 – RCP 8.5), respectively. The
Tarim differs from other river basins as excess meltwater will
actually cause an increase in glacier runoff in all months
by the end of the century relative to 2000–2015 by at least

11% for RCPs 4.5, 6.0, and 8.5 (Figure 8, Supplementary
Figures S11, S12, and Supplementary Table S4) despite steady
declines following peak water; however, for RCP 2.6 many
glaciers would reach an equilibrium (Supplementary Figure S7)
and cause a decline in end-of-summer months of up to 24%
(Supplementary Figure S10). These projections for the Tarim
for RCP 4.5 and RCP 8.5 are much different than Huss and
Hock (2018) who report glacier runoff will decline in August
by 18–24%. Nonetheless, while these increases in glacier runoff
may be beneficial in the short-term, projections show glacier melt
and excess meltwater significantly decline toward the end of the
century, so these increases will likely not remain after 2100.

6.3. Uncertainties
6.3.1. Uncertainties Associated With Model
Parameters and Climate Forcing
One of the major advances in this study is the use of Markov chain
Monte Carlo methods, which enable the uncertainty associated
with the model parameters to be quantified for every glacier
based on the uncertainty associated with the mass balance data
used for calibration. This uncertainty was used to assess the
model performance (see Section 5.1). The model projections
on the other hand reported the multi-GCM mean ± standard
deviation, which we refer to as the uncertainty associated
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with the climate forcing (see Section 5.2). Figure 10 shows
that for a large glacier, RGI60-15.03473, the uncertainty in
future projections associated with the model parameters for
a single GCM (±10%) is approximately half as much as the
uncertainty in future projections associated with the climate
forcing (±20%) (Figures 10A,B). However, for a small glacier,
RGI60-15.03854, the uncertainty associated with the model
parameters is much greater than the uncertainty associated with
the climate forcing (Figure 10C).

The considerable difference in the sources of uncertainty is
due to the glacier’s initial mass and the uncertainty associated
with the mass balance data used for calibration. Since the mass
change is shown relative to 2015, glaciers with more initial mass
are inherently less sensitive to uncertainty associated with the
model parameters. Additionally, the uncertainty associated with
the mass balance data is larger for smaller glaciers (<1 km2)
(Figure 10D). For example, the mass balance of the smaller
glacier, RGI60-15.03854, is −0.39 ± 1.09 m w.e. yr−1. Since the
Markov chain Monte Carlo methods generate parameter sets
corresponding to the 99.7% confidence interval (−3.66 to 2.88 m
w.e. yr−1) and the initial mass is small (8.8 × 10−3 Gt), the
uncertainty associated with the model parameters will cause the
glacier to completely melt or experience tremendous growth.

One issue caused by these large uncertainties is that the mean
mass change is inherently skewed toward these positive values
because a glacier’s maximum mass loss is limited by its initial
mass, while there is no limit for how large a glacier can grow.
Hence, reporting mass or runoff change and its corresponding
uncertainty for model parameters and/or climate forcing would
be better represented using the median and normalized median
absolute deviation. Fortunately, when these smaller glaciers
are aggregated with other glaciers to subregions, the regional
mass change signal and its uncertainty are dominated by larger
glaciers, so these issues associated with the uncertainty of smaller
glaciers become minor.

6.3.2. Other Sources of Uncertainty
Uncertainty associated with glacier projections comes from
the climate forcing (GCM and RCP scenarios), calibration
data/scheme, model physics, and input data. The dominant
source of uncertainty in this study is the climate forcing. Even at
large-scales, the uncertainty associated with the climate forcing,
expressed by the standard deviation of multiple GCMs, can range
from 10 to 15% of the initial volume. Given the difference in
multi-GCM means for RCP 2.6 and RCP 8.5 ranges from 20
to 50% depending on the region (Figure 3), this amount of
uncertainty is considerable.

While the uncertainty associated with the model parameters
is smaller than the uncertainty associated with the climate
forcing, it is considerable for individual glaciers (Figure 10).
The use of Bayesian inference to quantify the uncertainty
associated with the model parameters (Rounce et al., 2020)
is a major advance for large-scale glacier evolution models
and provides a framework to integrate multiple datasets in
the future. As more systematic observations of mass balance
are performed, it is likely that every glacier in the world will
be able to be calibrated independently. While these systematic

observations of mass change (e.g., Brun et al., 2017; Shean
et al., 2020) are an excellent source of data that enable models
to resolve the spatial variability in projections (Figure 4)
and can significantly improve those projections (see Section
5.2.1), all existing models are still over-parameterized. Until
this over-parameterization issue is solved, glacier projections
will likely only be as good as their model physics and
calibration data.

For example, Kraaijenbrink et al. (2017) is the first study to
incorporate debris cover. Our study projects 7% less net mass
loss by 2100 for RCP 2.6, 3% less for RCP 4.5, 1% less for RCP
6.0, and 3% more mass loss for RCP 8.5. While these differences
are well within the range of reported uncertainties, the change
from estimating less net mass loss for RCP 2.6 to estimating
more net mass loss for RCP 8.5 may be because we did not
account for debris and therefore do not capture the delayed
response of debris-covered glaciers (Kraaijenbrink et al., 2017). If
true, this suggests that accounting for debris is more important
for higher emission scenarios. One possible explanation could
be that glaciers are able to reach a new equilibrium for lower
emission scenarios (e.g., RCP 2.6; Supplementary Figure S4),
but are unable to do so for higher emission scenarios (e.g., RCP
8.5; Supplementary Figure S6); hence, the lag in the response of
debris-covered glaciers becomes more important. However, given
the differences in model physics, calibration data, GCMs used,
and bias correction methods applied to the GCMs by each study,
this is highly speculative. Future work should seek to quantify
the impact debris-covered glaciers have on projections of glacier
mass change and runoff. This type of analysis requires accurate
debris thickness estimates that can resolve thick (>0.5 m) debris
(e.g., Rounce et al., 2018), and advanced glacier dynamic modules
(e.g., Maussion et al., 2019; Zekollari et al., 2019) that can
capture feedbacks between spatial variations in subdebris melt
and reduced driving stresses (Kraaijenbrink et al., 2017).

Model intercomparisons like GlacierMIP (Hock et al., 2019)
can help identify sources of uncertainty and develop additional
controlled experiments to quantify these uncertainties. However,
as long as models are over-parameterized, it will remain
difficult to assess the relative importance of a specific physical
process because calibration schemes may inherently account for
them. This issue applies to glacier dynamics, firn development,
avalanching, and any other physical processes that may be
missing or poorly represented in models. Until the over-
parameterization issue is resolved, the only way to definitively
quantify these uncertainties will be to control all input data (e.g.,
glacier inventories, climate data, calibration data) and methods
(e.g., calibration scheme, model physics, GCM bias adjustments),
which is albeit impossible to coordinate amongst multiple
research groups. As more glacier evolution models become open-
source like PyGEM and the Open Global Glacier Model (OGGM;
Maussion et al., 2019), these controlled experiments will be
easier to perform.

Fortunately, recent advances in systematic observations of
elevation change (Brun et al., 2017; Shean et al., 2020) and
surface velocities (Dehecq et al., 2019) that could be paired
with consensus ice thickness estimates (Farinotti et al., 2019),
provide unique opportunities to estimate climatic mass balance
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(e.g., Brun et al., 2018; Rounce et al., 2018) and potentially
minimize the over-parameterization issue in the near future.
Given that changes in glacier velocities in High Mountain Asia
are mainly driven by changes in ice thickness (Dehecq et al.,
2019), combining these new observations with new schemes for
glacier dynamics (e.g., Maussion et al., 2019; Zekollari et al., 2019)
and modules accounting for debris cover (e.g., Kraaijenbrink
et al., 2017) may greatly improve future projections.

7. CONCLUSION

This study used a new dataset of glacier mass balances in
conjunction with Bayesian inference to calibrate every glacier in
High Mountain Asia independently and quantify the uncertainty
associated with the model parameters. This enabled us to resolve
spatial and temporal variability in mass change and glacier runoff
with an unprecedented level of detail. The comparison with
historical mass balance observations shows the model captures
regional variations well and even agrees well at the glacier-level
with longer (>1 year) observations when one considers the
uncertainty associated with the model parameters.

Projections of mass change show glaciers in High Mountain
Asia are expected to lose between 29 ± 12% for RCP 2.6 and
67 ± 10% for RCP 8.5 by 2100 relative to 2015. While the
Karakoram and Western Kunlun Shan will contribute the most
mass loss due to their large initial glacier volume, significant
regional variability exists and the smallest glacierized regions
are projected to experience the most mass loss in terms of
percent of their initial mass. The glaciers’ response to future
climate forcing is complex as considerable variability in the
temperature and precipitation changes, and glacier attributes
(thickness, hypsometry, elevation range) will alter how each
glacier responds.

Projections of glacier runoff show the timing of peak water
is driven by excess meltwater, especially in river basins fed by
the winter westerlies. These river basins are expected to hit peak
water in the latter half of the century, while most monsoon-
fed river basins are expected to hit peak water before 2050.
Interestingly, these monsoon-fed river basins that appear to
rely on glacier meltwater the least are expected to be most
negatively impacted in the future due to declining estimates of
runoff in the end-of-summer months. This could have major
implications for future water resources and is an important
area of future work.

The new calibration scheme used in this study shows that at
regional scales the uncertainty associated with GCMs dominates

the uncertainty associated with model parameters. While the
use of this new mass balance dataset enabled the model to
resolve spatial variations in mass change, the model is still over-
parameterized. Future work should seek to continue generating
systematic datasets that may be used to solve this issue. Once this
issue is resolved, models will be able to assess how much of an
impact accurately accounting for various physical processes (e.g.,
debris cover, glacier dynamics) have on projections, which will
likely greatly improve these projections as well.
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Radić, V., and Hock, R. (2014). Glaciers in the earth’s hydrological cycle:
assessments of glacier mass and runoff changes on global and regional scales.
Surv. Geophys. 35, 813–837. doi: 10.1007/s10712-013-9262-y

RGI Consortium. (2017). Randolph Glacier Inventory-A Dataset of Global Glacier
Outlines: Version 6.0. Technical Report, Global Land Ice Measurements from
Space, Colorado: Digital Media.

Rounce, D. R., Khurana, T., Short, M. B., Hock, R., Shean, D. E., and Brinkerhoff,
D. J. (2020). Quantifying parameter uncertainty in a large-scale glacier
evolution model using Bayesian inference: application to High Mountain Asia.
J. Glaciol. doi: 10.1017/jog.2019.91

Rounce, D. R., King, O., McCarthy, M., Shean, D. E., and Salerno, F. (2018).
Quantifying debris thickness of debris-covered glaciers in the Everest region
of Nepal through invesion of a subdebris melt model. J. Geophys. Res. 123,
1094–1115. doi: 10.1029/2017JF004395

Shean, D. E., Bhushan, S., Montesano, P., Rounce, D. R., Arendt, A., and
Osmanoglu, B. (2020). A systematic, regional assessment of High-Mountain
Asia glacier mass balance. Front. Earth Sci. 7:331. doi: 10.3389/feart.2019.
00363

Singh, P., Kumar, N., and Arora, M. (2000). Degree-day factors for snow and ice
for Dokriani Glacier, Garhwal Himalayas. J. Hydrol. 235, 1–11. doi: 10.1016/
s0022-1694(00)00249-3

Smith, T., and Bookhagen, B. (2018). Changes in seasonal snow water equivalent
distribution in High Mountain Asia (1987 to 2009). Sci. Adv. 4:e1701550. doi:
10.1126/sciadv.1701550

Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An overview of CMIP5 and the
experiment design. Bull. Am. Meterol. Soc. 93, 485–498. doi: 10.1175/BAMS-D-
11-00094.1

Vörösmarty, C. J., Fekete, B. M., Meybeck, M., and Lammers, R. B. (2000).
Geomorphometric attributes of the global system of Rivers at 30-minute spatial
resolution. J. Hydrol. 237, 17–39. doi: 10.1016/s0022-1694(00)00282-1

WGMS, (2018). Fluctuations of Glaciers Database. Zurich: World Glacier
Monitoring Service.

Woodward, J., Sharp, M., and Arendt, A. (1997). The Influence of Superimposed-
Ice formation on the sensitivity of glacier mass balance to climate change. Ann.
Glaciol. 24, 186–190. doi: 10.1038/s41598-019-50398-4

Wortmann, M., Bolch, T., Menz, C., Tong, J., and Krysanova, V. (2018).
Comparison and correction of high-mountain precipitation data based on
glacio-hydrological modeling in the tarim River Headwaters (High Asia).
J. Hydrometeorol. 19, 777–801. doi: 10.1175/jhm-d-17-0106.1

Yong, Z., Shiyin, L., and Yongjian, D. (2006). Observed degree-day factors and
their spatial variation on glaciers in western China. Ann. Glaciol. 43, 301–306.
doi: 10.3189/172756406781811952

Frontiers in Earth Science | www.frontiersin.org 19 January 2020 | Volume 7 | Article 331

https://doi.org/10.3189/172756410790595930
https://doi.org/10.3189/172756410790595930
https://doi.org/10.1038/ngeo2999
https://doi.org/10.5194/tc-12-3439-2018
https://doi.org/10.5194/tc-12-3439-2018
https://doi.org/10.1016/j.scitotenv.2016.01.001
https://doi.org/10.1016/j.scitotenv.2016.01.001
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.828
https://doi.org/10.1038/s41561-018-0271-9
https://doi.org/10.1038/s41561-019-0300-3
https://doi.org/10.1038/NCLIMATE3361
https://doi.org/10.1038/NCLIMATE3361
https://doi.org/10.5194/tc-7-1263-2013
https://doi.org/10.1126/science.1234532
https://doi.org/10.1017/jog.2019.22
https://doi.org/10.1029/2012JF002523
https://doi.org/10.1029/2012JF002523
https://doi.org/10.3389/feart.2015.00054
https://doi.org/10.1038/s41558-017-0049-x
https://doi.org/10.5194/hess-14-815-2010
https://doi.org/10.1126/science.1183188
https://doi.org/10.1126/science.1183188
https://doi.org/10.5194/hess-19-4673-2015
https://doi.org/10.5194/hess-19-4673-2015
https://doi.org/10.1016/S0022-1694(03)00258-0
https://doi.org/10.5194/tc-9-557-2015
https://doi.org/10.5194/tc-9-557-2015
https://doi.org/10.1038/NGEO2269
https://doi.org/10.1038/NGEO2269
https://doi.org/10.1038/nature23878
https://doi.org/10.1371/journal.pone.0165630
https://doi.org/10.1371/journal.pone.0165630
https://doi.org/10.1038/nclimate2237
https://doi.org/10.1038/nclimate2237
https://doi.org/10.5194/tc-6-1295-2012
https://doi.org/10.5194/gmd-12-909-2019
https://doi.org/10.1033/s41586-019-1240
https://doi.org/10.1038/ngeo1052
https://doi.org/10.1038/ngeo1052
https://doi.org/10.1007/s10712-013-9262-y
https://doi.org/10.1017/jog.2019.91
https://doi.org/10.1029/2017JF004395
https://doi.org/10.3389/feart.2019.00363
https://doi.org/10.3389/feart.2019.00363
https://doi.org/10.1016/s0022-1694(00)00249-3
https://doi.org/10.1016/s0022-1694(00)00249-3
https://doi.org/10.1126/sciadv.1701550
https://doi.org/10.1126/sciadv.1701550
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1016/s0022-1694(00)00282-1
https://doi.org/10.1038/s41598-019-50398-4
https://doi.org/10.1175/jhm-d-17-0106.1
https://doi.org/10.3189/172756406781811952
https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-07-00331 January 18, 2020 Time: 17:50 # 20

Rounce et al. Future Mass Change in HMA

Zekollari, H., Huss, M., and Farinotti, D. (2019). Modelling the future evolution
of glaciers in the European Alps under the EURO-CORDEX RCM ensemble.
Cryosphere 13, 1125–1146. doi: 10.5194/tc-13-1125-2019

Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., et al.
(2019). Global glacier mass changes and their contributions to sea-level
rise from 1961 to 2016. Nature 568, 382–386. doi: 10.1038/s41586-019-
1071-0

Zhang, F., Thapa, S., Immerzeel, W., Zhang, H., and Lutz, A. (2019). Water
availability on the Third Pole: a review. Water Sec. 7:100033. doi: 10.1016/j.
wasec.2019.100033

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Rounce, Hock and Shean. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Earth Science | www.frontiersin.org 20 January 2020 | Volume 7 | Article 331

https://doi.org/10.5194/tc-13-1125-2019
https://doi.org/10.1038/s41586-019-1071-0
https://doi.org/10.1038/s41586-019-1071-0
https://doi.org/10.1016/j.wasec.2019.100033
https://doi.org/10.1016/j.wasec.2019.100033
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles

	Glacier Mass Change in High Mountain Asia Through 2100 Using the Open-Source Python Glacier Evolution Model (PyGEM)
	1. Introduction
	2. Data
	2.1. Study Area and Glacier Inventory Data
	2.2. Climate Data

	3. Glacier Evolution Model
	3.1. Mass Balance Components
	3.2. Surface Type
	3.3. Glacier Area and Elevation Changes
	3.4. Glacier Runoff

	4. Model Calibration and Validation
	4.1. Model Calibration
	4.2. Model Validation
	4.3. Propagation of Model Parameter Uncertainty

	5. Results
	5.1. Model Performance
	5.2. Projections
	5.2.1. Mass Change Projections
	5.2.2. Glacier Runoff Projections


	6. Discussion
	6.1. Mass Change Projections
	6.2. Glacier Runoff Projections
	6.3. Uncertainties
	6.3.1. Uncertainties Associated With Model Parameters and Climate Forcing
	6.3.2. Other Sources of Uncertainty


	7. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


