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Terrestrial time-lapse photogrammetry is a rapidly growing method for deriving

measurements from glacial environments because it provides high spatio-temporal

resolution records of change. Currently, however, the potential usefulness of time-lapse

data is limited by the unavailability of user-friendly photogrammetry toolsets. Such data

are used primarily to calculate ice flow velocities or to serve as qualitative records.

PyTrx (available at https://github.com/PennyHow/PyTrx) is presented here as a Python-

alternative toolset to widen the range of monoscopic photogrammetry (i.e., from a

single viewpoint) toolsets on offer to the glaciology community. The toolset holds core

photogrammetric functions for template generation, feature-tracking, camea calibration

and optimization, image registration, and georectification (using a planar projective

transformation model). In addition, PyTrx facilitates areal and line measurements, which

can be detected from imagery using either an automated or manual approach. Examples

of PyTrx’s applications are demonstrated using time-lapse imagery from Kronebreen and

Tunabreen, two tidewater glaciers in Svalbard. Products from these applications include

ice flow velocities, surface areas of supraglacial lakes and meltwater plumes, and glacier

terminus profiles.
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1. INTRODUCTION

Terrestrial photogrammetry is a rapidly growing technique in glaciology as a result of its expanding
capabilities in the digital computing era, with applications inmonitoring change in glacier terminus
position (e.g., Kick, 1966), glacier surface conditions (e.g., Parajka et al., 2012; Huss et al., 2013),
supraglacial lakes (e.g., Danielson and Sharp, 2013), meltwater plume activity (e.g., Schild et al.,
2016; How et al., 2017; Slater et al., 2017), and calving dynamics (e.g., Kaufmann and Ladstädter,
2008; Ahn and Box, 2010; James et al., 2014; Whitehead et al., 2014; Pȩtlicki et al., 2015; Medrzycka
et al., 2016; Mallalieu et al., 2017; How et al., 2019). It provides adequate spatial resolution and
a temporal resolution that can surpass airborne and satellite-derived measurements, with flexible
data-capture that is relatively easy to control.

A prevailing application has been in deriving glacier surface velocity from sequential
monoscopic imagery using a displacement technique called feature-tracking, which offers highly
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detailed (both spatially and temporally) records (e.g.,
Finsterwalder, 1954; Fox et al., 1997; Maas et al., 2006;
Dietrich et al., 2007; Eiken and Sund, 2012; Heid and Kääb, 2012;
Rosenau et al., 2013). However, other than for glacier surface
velocity measurements, monoscopic time-lapse photogrammetry
remains an under-used technique in glaciology. This is because
there are few publicly-available toolsets, and an increasing
demand for efficient photogrammetry tools that can execute
large-batch processing quickly. The majority of monoscopic
photogrammetry toolsets are either distributed as programming
scripts or with graphical user interfaces, and for those without
prior knowledge in photogrammetry and computer coding, their
applications are largely limited to calculating glacier surface
velocities (e.g., Kääb and Vollmer, 2000; Messerli and Grinsted,
2015; James et al., 2016; Schwalbe and Maas, 2017). The future
of glacial photogrammetry lies in its valuable ability to examine
different aspects of the glacier system simultaneously, such
as glacier velocity, fjord dynamics, surface lake drainage and
calving dynamics. These can be studied using different image
capture frequencies and over different lengths of time. To achieve
this though, there needs to be greater focus on expanding the
capabilities of existing toolsets, and a marked effort to develop
new toolsets which widens the range of data products that can be
obtained from time-lapse imagery.

PyTrx (short for “Python Tracking”) is a new toolset,
which is presented here to widen the range of monoscopic
photogrammetry toolsets on offer to the glaciology community,
and expand the types of measurements that can be derived
from time-lapse imagery. The toolset is coded in Python, an
open-source computing language, and the PyTrx toolset is freely
available and easily accessible to beginners in programming
(available at https://github.com/PennyHow/PyTrx). PyTrx has
been developed with glaciological applications in mind, with
functions for deriving surface velocities via two feature-tracking
approaches, surface areas (e.g., supraglacial lakes and meltwater
plume expressions) with automated area detection, and line
profiles (e.g., glacier terminus position) with a manual point
selection method.

The common photogrammetry methods used in glaciology
will be outlined subsequently, followed by PyTrx’s key features
and unique characteristics compared to existing toolsets. PyTrx’s
capabilities will be demonstrated and evaluated using time-lapse
imagery from Kronebreen and Tunabreen, two tidewater glaciers
in Svalbard.

2. COMMON PHOTOGRAMMETRIC
METHODS IN GLACIOLOGY

Current photogrammetry tools for monoscopic approaches with
glacial imagery can generally be divided into those that perform
feature-tracking algorithms such as IMCORR (Scambos et al.,
1992), COSI-Corr (Leprince et al., 2007), and CIAS (Kääb and
Vollmer, 2000; Heid and Kääb, 2012); and those that perform
image transformation functions such as Photogeoref (Corripio,
2004) and PRACTISE (Härer et al., 2016). A common limitation
is that few tools unite all the photogrammetry processes needed to

compute real world measurements from monoscopic time-lapse
imagery (i.e., distance, area, and velocity). There are a handful
of toolsets that provide functions for all of these processes,
such as the Computer Vision System toolbox for Matlab and
the OpenCV toolbox for C++ and Python. However, these are
merely distributed as algorithms and a significant amount of time
and knowledge is needed to produce the desired measurements
and information.

ImGRAFT (available at imgraft.glaciology.net), Pointcatcher
(available at lancaster.ac.uk/...pointcatcher.htm) and
Environmental Motion Tracking (EMT) (available at
tu-dresden.de/geo/emt/) were the first toolsets made publicly
available that contain the processes needed to obtain velocities
from monoscopic time-lapse set-ups in glacial environments
(Messerli and Grinsted, 2015; James et al., 2016; Schwalbe and
Maas, 2017). These toolsets have been developed specifically for
glaciological applications, either distributed as programming
scripts (in the case of ImGRAFT) or with a graphical user
interface (in the case of Pointcatcher and EMT). These
toolsets have similar workflows and the steps involved will be
outlined subsequently.

2.1. Displacement Analysis
Displacements are measured through a sequence of images
using feature-tracking, by which pixel intensity features are
matched from one image to another with a cross-correlation
technique (Ahn and Howat, 2011). Pixel-intensity features are
typically defined in the image plane as templates, creating
a grid for feature-tracking and producing continuous surface
measurements (also referred to as dense feature-tracking) (e.g.,
Ahn and Box, 2010). Feature-tracking can be conducted by
creating and matching templates exclusively between each image
pair in an image set (e.g., Messerli and Grinsted, 2015), or by
matching the same templates through an entire image set (e.g.,
James et al., 2016).

When template matching between an image pair, the two
images have been referred to inmany ways, such as “image A” and
“image B” (e.g., Messerli and Grinsted, 2015), the “reference” and
“destination” images (e.g., James et al., 2016), and the “reference”
and “search” images (e.g., Ahn and Box, 2010). The terms
reference image and destination image will be used subsequently;
the reference image being the image in which the templates are
defined, and the destination image being the image in which
the templates are matched. Normalized cross-correlation is a
common approach for automated feature-tracking, with cross-
correlation referring to the correlation between two signals (i.e.,
the pixel intensity distribution in two images) (Zhao et al., 2006).
This technique is applied using the pixel intensity distribution
in a window within a given template in the reference image (T)
(Solem, 2012):

R(x, y) =

∑

x′ ,y′

(

T
(

x′, y′
)

· I
(

x+ x′, y+ y′
)

)

√

∑

x′ ,y′ T
(

x′, y′
)2

·
∑

x′ ,y′ I
(

x+ x′, y+ y′
)2

(1)

Where R is the correlation between the reference template and
the destination image, and I is the destination image. The
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function is applied to each possible position in the image (x, y),
thus defining the correlation for every template (x′, y′). The
highest correlation is defined as the best match between the
reference template and the destination image. The correlation
for each template in the image can also be determined using
different correlation methods such as the normalized square
difference, the least square sum and the least difference methods
(e.g., Lowe, 1999). Matching coherence through long-duration
sequences is frequently subject to severe lighting discrepancies
and shadowing, which cause false motion. In such cases, image
selection is of prime importance. Images with similar lighting and
limited shadowing variation must be selected, which may limit
the temporal resolution of the collected data.

2.2. Motion Correction
During image acquisition, the time-lapse camera platform
is often subject to movement caused by wind, ground
heave, thermal expansion of the tripod, and animal/human
intervention. This introduces false motion to the measurements
derived from an image sequence, which needs to be corrected
for in order to make accurate measurements through sequential
imagery. This process is referred to as image registration.

Feature-based registration methods are more commonly used
for glacial environments due to large variations in lighting and
glacier surface evolution over time, especially over long-duration
sequences (Eiken and Sund, 2012). Feature-based registration
aligns the images by matching templates containing static
features. These can be natural features, such as mountain peaks
(e.g., James et al., 2016), or man-made targets (e.g., Dietrich
et al., 2007). Observed movement of these templates signify false
motion. Ideally, static feature templates would be distributed
evenly across the image plane. Static features in the foreground
of an image are more sensitive and can be better for constraining
camera rotation angles (Eiken and Sund, 2012), but equally heavy
reliance on these can introduce false motion from image noise,
which can be produced by the image sensor and manifests as
imperceptible specks on the image (James et al., 2016).

The two-dimensional pixel displacements between template
pairs are subsequently used to align the image pair using a
transformation model, effectively mapping one image plane to
another. A planar projective transformation model is typically
used for time-lapse photogrammetry in glaciology because it
utilizes homogeneous coordinates, and transform an original
image planar surface to a continuous surface:





x′

y′

w′



 =





h1 h2 h3
h4 h5 h6
h7 h8 h9









x
y
w



 or x′ = Hx (2)

Where H is the homography matrix that represents the
transformation from one plane to another, and the h values
correspond to the homogeneous transformation of each point
within the planar surface, which is used to translate coordinates
from the original image (x, y,w) to the destination image
(x′, y′,w′). In other words, coordinates in the destination (x′)
are represented by the homography and the corresponding
coordinates in the reference image (Hx) (Hartley and Zisserman,

2004). The homography matrix can be applied to correct false
motion from subsequent measurements, which will improve the
signal-to-noise ratio of displacement information derived from
feature-tracking. Motion that cannot be accounted for from the
two-dimensional displacements is represented as a root-mean-
square (RMS) residual pixel value, which is used as a measure
of uncertainty.

2.3. Image Transformation
Image transformation is the process by which measurements in
the image plane are translated to 3D measurements. A popular
approach to image transformation is image georectification,
where the image plane is mapped directly to a 3D coordinate
system andmeasurements can be transformed even when defined
at an angle to the camera (e.g., James et al., 2016). The
planar projective transformation technique described previously
(Equation 2) is also used in georectification. A homography
model is calculated that represents the translation from the 3D
scene to the image plane (i.e., a projection), which can also be
used to create an inverse projection matrix that maps the image
plane to the 3D scene (Hartley and Zisserman, 2004). This is
determined using an assortment of information about the 3D
scene and how the camera captures this. A Digital Elevation
Model (DEM) is typically used to represent the 3D scene, along
with a camera model to represent the image acquisition through
the camera. The camera model commonly used in glaciology
utilizes the extrinsic (R, t) and intrinsic (K) information about
the camera (Xu and Zhang, 1996):

P =

[

R
t

]

K (3)

Where P is the camera model that mathematically represents
the transformation between the three-dimensional world scene
and the two-dimensional image; R, t are the extrinsic camera
parameters that represent the location of the camera in three-
dimensional space; and K are the intrinsic camera parameters
that represent the conversion from three-dimensional space to
a two-dimensional image plane.

The extrinsic and intrinsic camera parameters can be
considered as separate matrices. The extrinsic camera matrix
consists of a rotation matrix (r) representing the camera pose
with three degrees of movement, and a translation (t) vector
that describes the position of the origin of the world coordinate
system in image space (Zhang, 2000):

[

R t
]

=





r1,1 r1,2 r1,3 t1
r2,1 r2,2 r2,3 t2
r3,1 r3,2 r3,3 t3



 (4)

The location of the camera and its pose are needed to accurately
define this rotation and translation. Pose can be encapsulated as
yaw, pitch and roll, which defines the camera position around its
horizontal, vertical and optic axes (Eiken and Sund, 2012).

The intrinsic camera matrix (K) is a 3×3 matrix that contains
information about the focal length of the camera in pixels (fx, fy),
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the principal point in the image (cx, cy) and the camera skew (s)
(Heikkila and Silven, 1997):

K =





fx 0 0
s fy 0
cx cy 1



 (5)

The focal length (in millimeters) is usually included in
the EXIF information for an image, but it is advised to
calculate the focal length for zoom lenses and compact
cameras for greater accuracy. The principal point is also
referred to as the optical center of an image, and describes
the intersection of the optical axis and the image plane. Its
position is not always the physical center of the image due to
imperfections produced in the camera manufacturing process;
this difference is known as the principal point offset (Hartley
and Zisserman, 2004). The skew coefficient is the measure
of the angle between the xy pixel axes, and is a non-zero
value if the image axes are not perpendicular (i.e., a “skewed”
pixel grid).

The intrinsic camera matrix (K) assumes that the system
is a pinhole camera model and does not use a lens to gather
and focus light to the camera sensor (Xu and Zhang, 1996).
Camera systems that include a lens introduce distortions to the
image plane. These distortions are a deviation from a rectilinear
projection, in which straight lines in the real world remain
straight in an image. These distortions ineffectively represent
the target object in the real world, and therefore distortion
coefficients (k1, k2, p1, p2, k3 . . . k5) are needed to correct for this.
These coefficient values correct for radial (k1, k2, k3 . . . k5) and
tangential (p1, p2) distortions (Zhang, 2000):

xcorrected = x′
(

1+ k1r
2
+ k2r

4
+ k3r

6
+ k4r

8
+ k5r

10
)

ycorrected = y′
(

1+ k1r
2
+ k2r

4
+ k3r

6
+ k4r

8
+ k5r

10
) (6)

xcorrected = x′ +
[

2p1xy+ p2
(

r2 + 2x2
)

]

ycorrected = y′ +
[

p1
(

r2 + 2y2
)

+ 2p2xy
] (7)

Where x′, y′ are the uncorrected pixel locations in an image,
and xcorrected, ycorrected are their corrected counterparts. Radial
distortion arises from the symmetry of the camera lens, whilst
tangential distortion is caused by misalignment of the camera
lens and the camera sensor. Radial distortion is the more
apparent type of distortion in images, especially in wide angle
images, and those containing straight lines (e.g., skyscraper
landscapes) which appear curved. Severe tangential distortion
can visibly alter the depth perception in images.

The camera model and distortion coefficients can be
computed using geometric calibration, whereby images of
an object with a known and precise geometry are used
to estimate each intrinsic and extrinsic parameter (Heikkila
and Silven, 1997; Zhang, 2000). A commonly used object
is a black and white chessboard, with the positioning and
distance between the corners used as the x′, y′ coordinates.

Other objects which can be used are grids of symmetrical
circles (with the center of each circle forming the x′, y′

coordinates), and targets which are specified by programs
that perform camera calibration. However, some parameters
of the camera model are challenging to define prior to
installing the camera in the field, such as the camera pose
(yaw, pitch and roll). In such circumstances, parameters in
the camera model can be determined using an optimization
routine which estimates and refines them based on the known
parameters and a set of ground control points (GCPs). GCPs
are point locations in the image plane with corresponding 3D
coordinates, typically located on stable, non-moving features
(e.g., mountain peaks), or features on the glacier whose positions
have been accurately measured at the time of image acquisition
(e.g., with GNSS). The positions of the GCPs in the image
plane and projected from the 3D scene are used in the
optimization routine to refine the camera model, minimising
differences between the image and projected GCP positions
(e.g., Messerli and Grinsted, 2015).

3. STRUCTURE OF PYTRX

PyTrx (available at https://github.com/PennyHow/PyTrx) has
been developed to further terrestrial time-lapse photogrammetry
techniques in glaciology, and offer an alternative to the
monoscopic toolsets currently available. Specifically, PyTrx has
achieved this with the following key features:

1. Two feature-tracking approaches, which compute accurate
velocities either as a set of discrete measurements using
Optical Flow approximation, or as a continuous surface using
cross-correlation template matching;

2. Approaches for deriving areal and line measurements
from oblique images, with automated and manual
detection methods;

3. Camera calibration and optimization functionality to calculate
and refine the camera model;

4. Written in Python, a free and open-source coding language,
and provided with simple example applications for easy use;

5. Engineered with object-oriented design for efficient handling
of large data sets;

6. Core methods designed as stand-alone functions which can be
used independent of the class objects, making it flexible for
users to adapt accordingly.

PyTrx is aimed at users with all levels of programming
experience. The rigid structure of the class objects is ideal for
beginners in programming who have little need to change the
scripts, whilst advanced users can use and adapt the stand-alone
functions for more complex applications.

PyTrx is compatible with Python 3 and largely utilizes the
OpenCV (Open Source Computer Vision) toolbox (v3.4 and
upwards), which is a free library designed to provide computer
vision and machine learning tools that are computationally
efficient and operational in real-time applications. The library has
over 2500 optimized algorithms including those for monoscopic
photogrammetry and camera calibration (Solem, 2012). A

Frontiers in Earth Science | www.frontiersin.org 4 February 2020 | Volume 8 | Article 21

https://github.com/PennyHow/PyTrx
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


How et al. PyTrx

number of other packages are also used by PyTrx, notably
GDAL, Glob, Matplotlib, NumPy, PIL, and SciPy; and these come
pre-installed with most Python distributions such as PythonXY
and Anaconda.

PyTrx is distributed as a series of files, which requires a driver
script to run. The toolset consists of eight Python files, which
handle the main classes and functions:

1. CamEnv.py – Handles the objects and functions associated
with the camera environment;

2. DEM.py – Handles the DEM and associated functions;
3. Images.py – Handles the objects and functions associated

with the image sequence and the individual images within
that sequence;

4. Velocity.py – Handles the Velocity and Homography objects,
and functions for correcting for camera motion, and deriving
velocity measurements;

5. Area.py – Handles the Area object and functions for deriving
areal measurements;

FIGURE 1 | PyTrx’s workflow, showing how each of the class objects interact with one another. An image and its associated information is encapsulated as a

CamImage object, with multiple CamImage objects compiled together as an ImageSequence object. The Homography, Velocity, Area, and Line objects inherit the

attributes of the ImageSequence object, thereby measurements can be computed through a series of images. The CamEnv object is composed of the DEM, GCPs

and CamCalib objects, which represents the camera model and used to transform measurements between the image plane and the 3D scene.
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FIGURE 2 | Maps showing the Svalbard archipelago (A), Kronebreen (B), and Tunabreen (C) with numbered camera sites installed over the 2014 and 2015 melt

seasons; and an example of one of the time-lapse camera installations in the field (D).

6. Line.py – Handles the Line objects and functions for
deriving line;

7. FileHandler.py – Contains the functions for importing and
exporting data;

8. Utilities.py – Contains the functions for plotting and
presenting data.

Within these files, ten class objects perform the core
photogrammetry processes that were outlined in the previous
section: GCPs, DEM, CamCalib, CamImage, ImageSequence,
Homography, Velocity, Area, Length, and CamEnv. They operate
according to the workflow presented in Figure 1.

The key features of PyTrx, which are different from
the general techniques discussed previously, will be outlined
comprehensively in the subsequent sections with reference to
PyTrx’s object-oriented workflow. Class objects, functions and
input variables in PyTrx will be highlighted in italics.

4. FEATURES AND APPLICATIONS OF
PYTRX

4.1. Field Set-Up
Examples are given throughout which demonstrate the
capabilities of PyTrx and its applications in glaciology. These
examples use time-lapse imagery collected from Kronebreen
(78.8◦N, 12.7◦E, Figure 2B) and Tunabreen (78.3oN, 12.3oE,
Figure 2C), which are two tidewater glaciers in Svalbard
(Figure 2A). These time-lapse camera systems consisted of a
Canon 600D/700D camera body and a Harbortronics Digisnap

2700 intervalometer, powered by a 12 V DC battery and a 10
W solar panel. The field of view from each camera is shown
in Figure 3, acquired through the use of EF 20 mm f/2.8 USM
prime lenses for the Kronebreen cameras (Figures 3A–C) and
an EF 50 mm f/1.8 II prime lens for the Tunabreen camera
(Figure 3D). The cameras were enclosed in waterproof Peli Case
boxes, modified with a porthole that could hold a sheet of optical
glass between two steel frames. Each box was fixed on a tripod,
anchored by digging the tripod legs into the ground, burying
the tripod legs with stones, and/or drilling guide wires into the
surrounding bedrock. An example of one of these set-ups is
shown in Figure 2D.

Accurate locations for the time-lapse cameras were measured
using a Trimble GeoXR GPS rover to a SPS855 base station,
which was positioned∼15 km away. Positions were differentially
post-processed in a kinematic mode using the Trimble Business
Centre software, with an average horizontal positional accuracy
of 1.15 m and an average vertical positional accuracy of
1.92 m. GCPs were determined for each camera set-up from
known locations that were visible in the field of view of
each camera. Each camera (and lens) was calibrated using the
camera calibration functions in PyTrx to obtain intrinsic camera
matrices and lens distortion coefficient values. The GCPs and
intrinsic camera matrices were then used to optimize the camera
pose, as part of the optimization functionality within PyTrx.

The DEM of the Kongsfjorden area originates from a freely
available DEMdataset provided by theNorwegian Polar Institute,
which was obtained from airborne photogrammetric surveying
in 2009 (Norwegian Polar Institute, 2014). This DEMwas chosen
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FIGURE 3 | Examples of images taken from each time-lapse camera used in

this study. The camera names correspond to those used in the examples

presented from PyTrx, and those in Figure 2. (A) shows the viewpoint from

KR1 of the terminus and proglacial area of Kronebreen, which is ideal for

examining processes at the ice-ocean interface. (B) shows the viewpoint from

KR2 of the terminus and near-terminus area of Kronebreen, which can be

used to measure near-terminus glacier dynamics such as glacier surface

velocity. (C) shows the viewpoint from KR3 of the upper glacier region of

Kronebreen, where supraglacial lakes can be identified and monitored. (D)

shows the viewpoint from TU1 of the terminus and proglacial area of

Tunabreen, which is optimum for examining terminus dynamics.

because of its higher accuracy over those closer to the acquisition
of the time-lapse imagery. The DEM of the Tempelfjorden
area originates from ArcticDEM, Scene ID WV01-20130714-
1020010 (14 July 2013). These DEMs are distributed with PyTrx
in a modified form, with each scene clipped to the area of
interest, downgraded to 20 m resolution, and smoothed using
a 3×3 low-pass filter in order to eliminate artifacts that do
not reflect the surface at the time of image acquisition. For
measurements derived at sea level (e.g., meltwater plume extent
and terminus profile), we transformed all low-lying elevations
(below 150 m) to 0 m a.s.l. in order to project them to a flat,
homogeneous surface.

4.2. Image Enhancement
An image is passed into PyTrx as an array, either using the
readImg function found in Filehandler.py or when initialising
the CamImage object which is in Images.py. Image enhancement
processes are executed by modifying the array that represents
the image. The image enhancement methods that are available in
PyTrx are histogram equalization, the extraction of information
from a single image band or grayscale, and simple arithmetic
manipulations on an image’s pixel values. Histogram equalization
is a point operator manipulation, used to achieve suitable pixel
contrast for distinguishing features for reliable matching (Soha
and Schwartz, 1978; Akcay and Avsar, 2017). An intensity
mapping function is calculated by computing the cumulative
distribution function (c(I)) with an integrated distribution
(h(I)) and the known number of pixels (N) in the image (I)
(Solem, 2012):

c(I) =
1

N

I
∑

i=0

h(I) = c(I − 1)+
1

N
h(I) (8)

This reduces the range of pixel values in an image, and smooths
drastic changes in lighting and color.

Grayscale, equalized images are used commonly in
photogrammetric processing in order to reduce processing

time (e.g., James et al., 2016). This means that the three color

channels (RGB) are reassigned to one, and each pixel represents

one single grayscale value. However, this can alter the image
and its uses for extracting measurements from. PyTrx has been
designed to overcome this limitation by providing a method

for extracting information from a specified band of an image.
An image can be passed either in grayscale, or with one of
the RGB bands. Although this is executed in the readImg
function or the CamImage object, it can also be defined in the
Velocity, Area, and Line objects with the band variable. The
string inputs r, g, b, and l denote whether the red, green, blue,
or grayscale bands should be retained. This does not affect
the processing time drastically, and enables effective detection
of areas of interest in images, such as meltwater plumes and
supraglacial lakes. The example in Figure 4 demonstrates how
each selected band affects the pixel intensity range associated
with a cluster of supraglacial lakes. These surface areas have
been detected automatically based on pixel intensity. Ideally,
regions of interest in an image are effectively detected when
they are represented by the smallest range in pixel intensity
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FIGURE 4 | An example of PyTrx’s ability to the extract pixel information from a specified image band using an example image from Kronebreen. The image shows a

cluster of supraglacial lakes, which were monitored through the 2015 melt season. (A) shows the original time-lapse image. The yellow box denotes the subset from

which pixel information is extracted from and displayed in the subsequent images: grayscale (B), the red image band (C), the green image band (D), and the blue

image band (E). The white plotted lines in these subsets show attempts to automatically detect the lake extent. The red image band yields the best detection as it

closely follows the lake extent.

(i.e., a homogeneous surface). In the example presented in
Figure 4, the red band of the image (Figure 4C) offers the
smallest pixel intensity range and thus the lakes are represented
as a homogeneous surface. This proves easiest to define on an
automated basis.

PyTrx offers an additional enhancement process to improve
the ability to detect areas of interest in an image automatically.
The enhanceImg function in Images.py uses simple arithmetic
to manipulate image brightness and contrast. This enhancement
method uses three variables to change the intensity and range of
the image array:

1. diff : Changes the intensity range of the image pixels. This
has two outcomes. Either it changes dark pixels to become
much brighter and bright pixels become slightly brighter, or it
changes dark pixels to become much darker and bright pixels
become slightly darker.

2. phi: Multiplies the intensity of all pixel values.
3. theta: Defines the number of “colors” in the image by

grouping pixel intensity regions together, also known as
image segmentation.

The result better distinguishes areas of interest, and makes it
easier for the subsequent detection. See Section 4.4 for more
information on how areal measurements are derived from images
using PyTrx.

4.3. Deriving Velocities From
Feature-Tracking
As previously outlined, a dense feature-tracking approach
computes glacier velocities over a grid of templates, which can
be interpolated to create a continuous surface of measurements.
However, this approach can limit the spatial resolution of
velocity measurements to the template size, and is also difficult
to perform on large datasets because matching is based on
the correlation between relative pixel differences which is a
computationally inefficient method. For this reason, PyTrx offers
two feature-tracking approaches: (1) a dense feature-tracking
approach similar to those outlined previously which computes
glacier velocities via template matching over a regular grid; and
(2) a sparse feature-tracking approach which computes glacier
velocities as a set of discrete measurements using a corner feature
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FIGURE 5 | An example of PyTrx’s dense feature-tracking and georectification functionality, with velocities determined from oblique time-lapse image pairs between

14 June and 7 July 2014 at Kronebreen camera KR2. Templates (represented here as points) were defined over a 50 × 50 m grid, which were matched between

image pairs using normalized cross-correlation and filtered by correlation (i.e., templates were retained where the correlation of the match was above 0.8). The results

have been plotted onto a coinciding Landsat 8 satellite image, with the red point denoting the location of the time-lapse camera (Kronebreen camera KR2). The

sequence shows an early season speed-up at the terminus of the glacier, where velocities increase from an average of 2.5 m/day (14–16 June, first panel) to 4.7

m/day (5–7 July, last panel). A subset of this example (28 June to 7 July) is provided with PyTrx at https://github.com/PennyHow/PyTrx.

detection method to define templates and Optical Flow to match
templates. The sparse feature-tracking approach serves as an
alternative method to dense feature-tracking, with an efficient
matching method that produces spatially detailed velocities.

The dense feature-tracking approach offered in PyTrx first
generates templates as a gridded array based on a defined spacing
and size, and then uses OpenCV’s matchTemplate algorithm to
match each template between an image pair. Dense feature-
tracking with PyTrx can be used to generate sequential velocity
maps over short time windows, as illustrated in Figure 5 where
an early season speed-up at the terminus of Kronebreen is
observed across image pairs spanning 14 June to 7 July 2014.
PyTrx’s template matching can be performed using one of
six correlation methods offered in PyTrx’s calcDenseVelocity
function—cross-coefficient, normalized cross-coefficient, cross
correlation, normalized cross-correlation, square difference, and

normalized square difference. Templates can be generated and
matched through a series of images by calling each one-by-
one through the ImageSequence object (found in Images.py).
An ImageSequence object holds the information about a series
of CamImage objects (as shown in Figure 1). It references the
CamImage objects sequentially (sorted alphabetically based on
file name) so that they can be called easily in subsequent
processing, such as the selection of single images and image pairs.

In the sparse feature-tracking approach, templates are first
defined in the image plane by identifying corner features
which provide distinctive pixel-intensity distributions that
can be matched easily between an image pair (Harris and
Stephens, 1988). Corner templates are generated in PyTrx’s
calcSparseVelocity function using the Shi-Tomasi Corner
Detection method (Shi and Tomasi, 1994). This is based on the
Harris Corner Detection method, which evaluates the difference
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FIGURE 6 | Corner feature coherency demonstrated using regions of a

time-lapse image of a crevasse field. The crevasse field (top image) is a subset

of a time-lapse image from Kronebreen, Svalbard. The regions highlighted

from this subset are examples of a homogeneous area (A), an edge feature

(B), and a corner feature (C). At the red point in (A), there is an indistinctive

pixel pattern that could not be matched from image to image. The red point in

(B) has a distinct boundary between different pixel intensities, but tracking may

drift along the boundary over time. The red point in (C) is a very distinctive

pixel pattern with a defined corner feature that is easy to track.

in intensity for a displacement of (u, v) in all directions for
a given region of an image (E) (Harris and Stephens, 1988).
Templates are selected based on the largest intensity differences:

E(u, v) =
∑

x,y

w(x, y)
[

I
(

x+ u, y+ v
)

− I
(

x, y
)

]2
(9)

Where w is the window function (rectangular or Gaussian)
defined as a width and height (x, y) and I is pixel intensity. The
first term within the square brackets, (I(x + u, y + v)) defines
the shifted intensity, and the second part (I(x, y)) calculates
the intensity at the center origin. A scoring function (R) is
subsequently used to define whether the pixel-intensity signature
in the template represents a corner, a flat area or an edge:

R = min
(

λ1λ2

)

(10)

Where λ1 and λ2 are the eigen values in the horizontal and
vertical axes of a given symmetric matrix (Shi and Tomasi, 1994).
This forms a descriptor for the matrix, which can be used to
evaluate the template:

1. A homogeneous (“flat”) region of the image is present if λ1 ≈
λ2 ≈ 0 (e.g., Figure 6A);

2. An edge is present if one of the eigenvalues is large and the
other is approximately zero (e.g., λ1 > 0 and λ2 ≈ 0) (e.g.,
Figure 6B);

3. A corner is present if λ1 and λ2 are both large positive values
(e.g., Figure 6C).

PyTrx’s featureTrack function returns the strongest corner
templates, as defined by the quality level which denotes the
minimum quality of a corner, measured as a value between 0
and 1. The function attempts to generate 50,000 templates with
a quality level of 0.1 and a minimum Euclidean distance of
three pixels in an image. These default settings produce a heavily
populated sparse template set in the image plane.

The set of sparse corner templates are matched between
image pairs in PyTrx’s calcSparseVelocity function using the
Lucas Kanade Optical Flow Approximation method (Lucas and
Kanade, 1981). Optical Flow is the pattern of apparent motion
of an object between two images, caused by the movement
of the object or the camera. It is a concept readily employed
in video processing to distinguish motion and has been used
in motion detection applications to predict the trajectory and
velocity of objects (e.g., Baker et al., 2011; Vogel et al. , 2012). It
is represented as a two-dimensional vector field, working on the
assumptions that the pixel-intensity distribution of an object does
not change between the image pair, and the neighbouring pixels
display similar motion (Tomasi and Kanade, 1991). Between two
images, the position of a pixel (I) will change (δx, δy) over time
(δt), assuming that the pixel intensity is unchanging (Zhang and
Chanson, 2018):

I(x, y, t) = I
(

x+ δx, y+ δy, t + δt
)

(11)

The Lucas-Kanade algorithm approximates Optical
Flow between an image pair using a template window,
assuming all pixels in the template display the same
motion (Lucas and Kanade, 1981). The Lucas Kanade
Optical Flow approximation algorithm is available in the
calcOpticalFlowPyrLK function in the OpenCV library, which is
employed in PyTrx’s calcSparseVelocity function because of its
computational efficiency.

Back-tracking verification (Kalal et al., 2010) is used
subsequently to assess matching coherency by matching
templates back from the destination image to the reference image
(e.g., Scambos et al., 1992; Jeong et al., 2017). This generates two
sets of templates in the reference image, the original template
and the corresponding back-tracked template. If a back-tracked
template is within a given distance of the original template then
it is deemed accurate and retained. Templates which exceed this
distance threshold are discarded, and the distance between the
original template and the back-tracked template can be used as
a reliable measure of error. An example of this sparse feature-
tracking functionality is shown in Figure 7, with a comparison to
the dense feature-tracking method.

Velocity.py contains all the processing steps for PyTrx’s
dense and sparse feature-tracking approaches. The stand-alone
functions calculate this information for an image pair (i.e.,
calcDenseVelocity and calcSparseVelocity), and theVelocity object
can be used to iterate these functions across a sequence of images
(i.e., calcVelocities). The dense feature-tracking method offered
in PyTrx is suitable for calculating glacier velocity as regional
averages, ensuring displacement measurements are conducted
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FIGURE 7 | PyTrx’s dense template matching method (A) and sparse Optical Flow matching method (B) implemented on an image pair (28–30 June) from

Kronebreen camera KR2 (A1,B1), including measures of error for each approach (A2,B2). The velocities derived from these two methods are plotted onto a

coinciding Landsat 8 satellite image. Velocities are calculated over a regular grid using the template matching method, providing a good basis for subsequent

operations such as interpolation (A1). 2,826 of 2,854 templates were successfully matched between the image pair in this example. The correlation of each template

matched between an image pair is a reliable measure of certainty (A2); in this example, the average template correlation between the image pair was 0.97. The

Optical Flow method produces a high concentration of velocity measurements in areas of high corner coherency. 16,181 templates were matched in the example in

(B1), with a high concentration of corner templates generated across the crevasse field nearest to the camera (B1). Matching errors are identified using back-tracking

verification, where the difference between an original template and its back-tracked position provides an absolute error value. In (B2), the average difference between

the position of a template and its back-tracked position is 0.15 m.

at regular intervals and matched using a correlation method
impervious to illumination change (Figure 7A). The sparse
feature-tracking method is effective at measuring displacements
as a detailed point set, suitable for measuring surface changes
over short time steps or for collecting intensive measurements
over a small area (Figure 7B).

4.4. Deriving Area and Line Objects
Current photogrammetric toolsets focus on deriving velocities
from time-lapse sequences, such as ImGRAFT (Messerli and
Grinsted, 2015), Pointcatcher (James et al., 2016) and EMT
(Schwalbe and Maas, 2017). Other measures of the glacial
system would be valuable, such as changes in the area of
supraglacial lakes, the expression of a meltwater plume, and
glacier terminus position. PyTrx has been developed to offer area
and line/distance measurements, in addition to velocities, from
image sequences. The Area and Length class objects contain all of
the processing steps to obtain these measurements, which can be
found in the Areas.py and Line.py scripts, respectively. Both class
objects inherit from the ImageSequence class object.

The Area.py script contains all the processing steps for
deriving area measurements from imagery, in both an automated
andmanual manner. The stand-alone functions provide methods
for measuring areas from a single image, whilst the Area
object can be used to measure areas across a series of images.
The automated detection of areas is based on changes in
pixel intensity, from which edges are derived using OpenCV’s
findContours function which is a border-following algorithm.
The Line.py script contains all the processing steps for manually
deriving line measurements from imagery, with stand-alone
functions for making measurements from a single image and
the Line object for making measurements across a series of
images. The area and line features defined in both these
scripts are transformed to real-world measurements using the
georectification functions in CamEnv.py, in a similar fashion to
the approach in Velocity.py.

Areal features have been constructed from the distinguished
surface expression of meltwater plumes and overlaid onto a
satellite scene in the example presented in Figure 8. Meltwater
plumes are the main sources of outflow from a tidewater glacier,
and tracking their surface area can be used to infer changes in
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FIGURE 8 | Changes in meltwater plume extent distinguished from time-lapse imagery of Kronebreen camera KR1. The surface expression of the meltwater plume

has been tracked through images captured on 05 July 2014 at 18:00 (A), 20:00 (B), and 22:00 (C) to demonstrate part of its diurnal recession. Each plot shows the

plume definition in the image plane (top) and its translation to real-world coordinates and plotted onto a coinciding Landsat 8 satellite image (bottom). A similar

example of this is provided with PyTrx at https://github.com/PennyHow/PyTrx.

discharge (e.g., How et al., 2017). The steady recession of the
meltwater plume extents shown in Figure 8 is linked to diurnal
fluctuations in melt production.

4.4.1. Automated Detection

Areas are automatically computed using the calcAutoArea
function and theArea object’s calcAutoAreas function in Area.py.
These are automatically detected based on pixel intensity within
the image plane. This entails several key steps and functions to
ensure adequate detection in each image. The image is masked
to the area of interest firstly, thus reducing processing time
and limiting the chance of false detection. The mask can be
defined or read from file using the readMask function, which is
within the FileHandler.py script. This masking is also used for
defining templates in a given region of an image (as part of the
feature-tracking and image registration functionality).

The image is next subjected to the simple arithmetic
enhancement method outlined in section 4.2 to better distinguish
the target area. The pixel intensities associated with the
target area are defined subsequently as a range of the lowest
and highest values. This range can either be pre-defined,
or manually defined on a point-and-click basis (using the
defineColourrange function). Pixels within this intensity range
are distinguished and grouped using the OpenCV function
inRange. The grouped pixels form regions which are transformed
into polygons using the OpenCV function contour. Each
point within the polygon(s) is defined by coordinates within
the image plane.

Often this results in many polygons being created. The
number of points in each polygon is used to filter out noise
and falsely-detected areas, with small polygons (e.g., constructed
with under 40 points) discarded. In addition, the user can define
a threshold for the number of polygons retained (i.e., if the
threshold is defined as 4, then the 4 largest polygons are retained).
There is the additional option to manually verify the detected
areas after these steps. This can be defined in the Area object’s
calcAutoAreas function with the boolean variable verify. This calls
on the Area object’s verifyExtents function, which cycles through
all the detected area features in all the images and allows the user
to manually verify each one based on a click-by-click basis. This
can be a time-consuming process with long image sequences, but
ensures that falsely-detected areas are discarded.

4.4.2. Manual Detection

Area and line features can also be defined manually in the image
plane. This requires the user to click around the area of interest,
which creates a set of points from which a polygon/line object
is formed. The user input is facilitated by the ginput plotting
available in Matplotlib. The polygon/line object can subsequently
be georectified to create an object with real-world coordinates.

An example of PyTrx’s manual definition of line features is
displayed in Figure 9. Sequential terminus positions were defined
within the image plane on a click-by-click basis, from which line
objects were constructed and projected. Terminus profiles have
been plotted between 20 August and 5 September 2015 (every 5
days), providing a detailed record of changes in terminus position
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FIGURE 9 | An example of PyTrx’s ability to the extract sequential terminus

profiles from Tunabreen camera TU1. The terminus profiles have subsequently

been plotted onto a Landsat 8 satellite image, captured on 17 August 2015. A

similar example of this is provided with PyTrx at

https://github.com/PennyHow/PyTrx.

over time. This shows a gradual retreat in terminus position over
a peak period in the melt season.

Currently, lines are limited to being manually defined,
and only one line can be defined within a given image
plane. Automated line detection would be a valuable addition
in the future for detecting terminus profiles in sequential
imagery of calving glacier fronts. However, attempts to detect
terminus profiles from oblique time-lapse imagery have proved
problematic due to reflections from the adjacent fjord water,
tidal fluctuation, and changes in lighting and shadowing.
With future development, it is hoped that these limitations
can be overcome.

4.5. Image Registration and
Georectification
The CamEnv.py script handles all information concerning the
camera environment, including functionality for determining the
camera model, either from a text file of raw information or a
set of calibration images. Calibration using inputted chessboard
images is carried out in the calibrateImages function, based on the
approach available in the OpenCV toolbox. Camera calibration is
automatically conducted during the initialization of the CamEnv
object when the input directory is defined as a folder containing
a set of calibration chessboard images.

The corners of the chessboard are first detected in each image
(using OpenCV’s findChessboardCorners algorithm), based on
the inputted chessboard corner dimensions defined by the user.
If all corners of the chessboard are found, the locations of these
corners are then defined in the image plane to sub-pixel accuracy
(using OpenCV’s drawChessboardCorners and cornerSubPix
algorithms). Image plane coordinates for the detected chessboard
corners from all of the images are subsequently used to
calculate the intrinsic camera matrix and lens distortion

coefficients (using OpenCV’s calibrateCamera algorithm). A
rough camera matrix and distortion coefficients is initially
computed using the raw inputted coordinates. These are then
refined with a second calibration run, whereby the principal point
(calculated initially) remains fixed. PyTrx returns the intrinsic
camera matrix (as shown in Equation 4), the lens disortion
coefficients (k1, k2, p1, p2, k3), and the calibration error estimate,
which are used subsequently in PyTrx’s image correction and
georectification processes.

The camera model can be optimized using PyTrx’s
optimiseCamera function, which adopts SciPy’s least_squares
function for optimising variables in a given function. Residuals
between the positions of image GCPs and projected GCPs are
first computed based on an initial camera model, and refined
over iterations by adjusting the tuneable parameters. PyTrx’s
optimiseCamera offers optimization of the camera pose, the
intrinsic matrix (i.e., focal length, principal point, skew, and
distortion coefficients), and the extrinsic matrix (i.e., camera
location and pose). Optimization can be carried out with a choice
of three algorithms: (1) the Trust Region Reflective algorithm,
which is ideal for optimising many parameters; (2) the Dogleg
algorithm, suited for optimising one or two parameters; and (3)
the Levenberg-Margquardt algorithm which is a popular and
familiar method that has been implemented in other glacial
photogrammetry toolsets such as ImGRAFT (Messerli and
Grinsted, 2015).

For image registration, PyTrx encapsulates the relationship
between two image planes as a homography matrix based
on a set of matched templates that represent stable features.
These templates can be determined and matched between
an image pair either through PyTrx’s dense feature-tracking
approach (calcDenseHomography) or the sparse feature-tracking
approach (calcSparseHomography) outlined previously. These
matched templates compute the homography matrix using
OpenCV’s findHomography function. Homography matrices can
also be determined through a series of images using the
calcHomographies function within the Homography object.

The georectification method follows a similar workflow
to the ImGRAFT toolset (Messerli and Grinsted, 2015). The
homography model is calculated based on a camera model (i.e.,
extrinsic and intrinsic parameters, and distortion coefficients),
which is used to compute the inverse projection variables.
These variables are either defined by the user in the stand-
alone functions, or compiled and stored in the CamEnv object,
and subsequently called upon by the Velocity, Area, and Line
objects. An example of PyTrx’s georectification capabilities,
using images from Tunabreen (TU1, Figure 2C), is shown in
Figure 10. Point locations in Figure 10A denote the position
of observed calving events (i.e., the break-off of ice from the
glacier terminus), which were detected manually in the image
plane (How et al., 2019). The color of each point denotes the
style of calving, ranging from small break-offs (i.e., waterline and
ice fall events) to large collapses (i.e., sheet and stack collapses),
and detachments that occur below the waterline (i.e., subaqueous
events). These xy point locations have been transformed to real-
world coordinates using the georectification functions available
in PyTrx (Figure 10B).
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FIGURE 10 | Calving events observed from Tunabreen camera TU1 in the image plane (A) and georectified (B), with the color of the point denoting the style of

calving. Events were manually detected, from which the style of calving was interpreted. The oblique image (A) is taken from a sequence captured between 7 and 8

August 2015. The underlying satellite image (B) is a Landsat 8 image, captured on 17 August 2015. Figure adapted from How et al. (2019). This example is provided

with PyTrx at https://github.com/PennyHow/PyTrx.

The point locations are overlain onto a satellite scene of the
glacier terminus, which was captured as close as possible to the
time of the time-lapse image acquisition (Figure 10B). The point
locations tightly follow the terminus position, demonstrating
good accuracy in the georectification technique and the given
information about the camera environment. However, points
tend to deviate from the terminus position on the eastern side
of the terminus, which is further away from the camera. Similar
deviation is evident in Figure 9 also. This may indicate a degree
of distance decay that is difficult to correct in the homography
model. Distance decay is evident in other georectification
methods, especially when performing georectification from
monoscopic set-ups (James et al., 2016).

5. EVALUATION OF PYTRX

5.1. Feature-Tracking Capabilities
Velocities are derived using a robust template matching
approach, and an alternative approach utilizing an Optical
Flow approximation that proves effective and computationally-
efficient. The comparison presented in Figure 7 show good
coherency between the two methods. Both methods capture the
general spatial pattern in velocities, with faster velocities (4–5
m/day) in the central region of the glacier terminus and slower
velocities (1–3 m/day) upglacier and nearer the north margin.

Velocities from the dense template matching method
(Figure 7A, panel 1) appear relatively smooth compared to the
sparse Optical Flow matching method (Figure 7B, panel 1), most
likely because of the selection of templates based on the gridded
and corner feature approaches. For the dense matching method,
the correlation of each matched template provides a relatively
good measure of certainty, with Figure 7A (panel 2), showing
correlations of above 0.8 across the entire scene. The back-
tracking evaluation provided with the sparse matching method

can be used as an absolutemeasure of error, with all back-tracking
error constrained to under 1 m; and back-tracking error in the
foreground part of the image limited to an average of 0.15m.

5.2. Error Estimation
Errors have been determined for the examples presented
previously, as summarized in Table 1. These errors are divided
into pixel errors that are introduced during the measurements in
the image plane, and those associated with the georectification
process (Schwalbe and Maas, 2017). Homography uncertainty is
defined as motion in the camera platform that is not resolved
by the homography model. In all cases, this is constrained
to less than one pixel (Table 1). When deriving velocities,
matching error can either be defined by the average correlation
(Figure 7A, panel 2), or the difference between the original
template and the back-tracked template from the destination
image to the reference image (Figure 7B, panel 2). This error
can be adequately constrained using the back-tracking threshold,
which is defined by the user and effectively removes template
matches that are uncertain as specified by a user-defined
threshold. Human error from area and line feature detection
were determined based on sensitivity testing, whereby area
and line features from the examples provided were delineated
manually over 10 simulations to produce the average variation
in pixel measurements. These can vary significantly based on
the feature, as demonstrated in Table 1, and therefore it is
advised to perform this sensitivity test when carrying out this
approach in PyTrx (e.g., How et al., 2017). Toolsets such as
ImGRAFT and Pointcatcher have adopted the Monte Carlo
method to indicate the sensitivity of the image registration
process, using random repeated sampling to simulate variation
in the static template displacements (Messerli andGrinsted, 2015;
James et al., 2016). PyTrx could benefit from such error analysis
in future releases.
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TABLE 1 | Error estimations for deriving velocity, area and line measurements

using PyTrx.

Error source Average velocity

error

Average

area error

Average line

error

Homography uncertainty (px) 0.5111 0.1294 0.9863

Pixel tracking (px) 0.9667 – –

Feature detection (px) – 86.6870 18.8170

Total pixel error (px) 1.4778 86.8164 19.8033

Total 3D error (m) 3 3 3

Errors in the camera model have been constrained through
the optimization routine available in PyTrx, which refines the
projection of the 3D scene to the image plane based on the
positions of a set of GCPs. Remaining differences between the
positions of the image GCPs and the corresponding projected
GCPs represent residuals in the camera model, which are used
as a measure of error. Discrepancies in the camera model used
to derive the velocities presented in Figure 5 were reduced by
140 pixels following the optimization of the camera pose, leaving
a residual of 5 pixels. The effect of this remaining residual
on the overall error of the georectification process has been
defined previously using general estimates (e.g., Messerli and
Grinsted, 2015), or distance-based approximations (whereby
error is determined as a function of distance from the camera,
e.g., Schwalbe and Maas, 2017). In PyTrx, we introduce a direct
approach to determine error from the georectification process,
by calculating the difference between the 3D GCP positions and
their corresponding reprojected positions from the image. This
is similar to the optimization routine, where differences in the
GCP positions are used as the measure of pixel error to aid in
refining the camera model. By reprojecting the image GCPs to
the 3D scene and comparing them to the 3D GCPs, we calculate
an absolute error for the georectification process. In the examples
presented in this manuscript, the difference in GCP positions
was 3 m on average, and therefore the overall error from the
georectification process is also 3 m. This error is a conservative
estimate though, as all GCPs in these examples were defined
in the far-ground of the images and it is generally understood
that the errors in georectification propagate with distance from
the camera. This error estimate will be more representative of
measurements in the near-ground of the image in cases where
GCPs can be defined closer to the camera.

6. CONCLUSIONS

PyTrx (programmed in Python, an open-source programming
language) and its modular object-oriented design make it an
accessible toolset for deriving measurements from oblique
terrestrial imagery. PyTrx offers flexible functionality and can
be adapted easily for the user’s requirements, as it is distributed
as a set of files with simple example drivers. The examples
shown throughout demonstrate PyTrx’s specific applications in
deriving ice flow velocities, surface areas of supraglacial lakes

and meltwater plumes, georectified point locations denoting
the position of calving events, and glacier terminus profiles.
Velocities can be derived using a robust template matching
approach that is suitable for deriving velocity time-series,
such as those presented from Kronebreen, showing spatial
variability in surface velocity over the course of a melt season.
An alternative feature-tracking approach is also introduced in
PyTrx, which utilizes an Optical Flow approximation approach
and shows good correspondence to the results from the template
matching method. Comparison of the reuslts from these two
feature-tracking methods show good coherency, both capturing
the general spatial pattern in velocities ranging between
1 and 5m/day.

The area and line measurement capabilities in PyTrx can
be used and adapted to identify a range of glacial features.
Image segmentation methods are implemented to aid in the
automated detection of areas, as shown by the example of
detecting supraglacial lake extents from Kronebreen. Features
can also be identified manually from image-to-image on a point
and click basis, and subsequently georectified to the 3D scene;
which proves suitable for the classification of meltwater plume
surface extent (as shown by the example from Kronebreen), and
terminus position (as shown by the example from Tunabreen).

Overall, the glacial photogrammetry toolsets currently
available have aspects and functionality that make them
unique and beneficial to use. For instance, ImGRAFT contains
sophisticated error refinement functionality to produce accurate
projections (Messerli and Grinsted, 2015), multiple DEMs can
be inputted into Pointcatcher to derive well-constrained vertical
and horizontal displacements (James et al., 2016), and shadowing
effects can be reduced in EMT (Schwalbe and Maas, 2017).
PyTrx offers new progressions in glacial photogrammetry with
its new functionality, such as its automated and manual methods
for deriving area and line measurements, the incorporation
of camera calibration in the camera model definition, and the
option of two feature-tracking approaches for deriving velocities.
Users therefore have a greater range of toolsets to choose from
when embarking on glacial photogrammetry.
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