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The timing and kinematics of the different types of structures and the associated

vertical-axis rotations that permit an arcuate external wedge to acquire progressively

its curved shape throughout its deformation history—known as progressive arcs—are

key questions in natural cases of arcuate fold-and-thrust belts that we want to address

through analog modeling. We present laboratory models of fold-and-thrust belts formed

with a backstop that deforms in map view to simulate progressive arcs in a thin-skinned

tectonic regime. Our setup makes use of a deformable backstop rigid enough to push

from behind the initial parallelepiped but deformable in map view. This innovative design

permits us to increase the amplitude of the arc indenting in the model as its radius

of curvature decreases, that is, it simulates a progressive arc. Taking the Gibraltar Arc

external wedge situated in the western Mediterranean to scale our models in terms of

rheology, velocities, and sizes, four types of experiments were made. We varied the type

of substratum (sand or silicone), the silicone thickness, and the width and length of the

initial analog pack in order to test the influence of each of these parameters on the

resulting fold-and-thrust belts. All experiments led to the formation of arcuate wedges

where strain was partitioned into: (a) arc-perpendicular shortening, accommodated by

thrusts which main structural trend is broadly subparallel to the indenter shape and

with divergent transport directions, and (b) arc-parallel stretching, accommodated by

normal and conjugate strike-slip faults. The normal and strike-slip faults contributed to the

fold-and-thrust belt segmentation and the formation of independent blocks that rotated

clockwise and counterclockwise depending on their position within the progressive arc.

Our experiments allow to simulate and understand the finite deformation mode of the

external wedge of the Gibraltar Arc. Accordingly, they shed light on how an arcuate

fold-and-thrust belt can develop progressively in terms of structural trend and transport

directions, types and distribution of the structures accommodating strain partition, and

timing of vertical-axis rotations.

Keywords: analog model, progressive arc, thin-skinned tectonics, strain partitioning, block rotation, Gibraltar Arc

external wedge
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INTRODUCTION

The fold-and-thrust belts of orogenic systems that exhibit
map-scale curves are puzzling structures that frequently
generate debate. Among others, key questions are the type
of structures that permit an arcuate fold-and-thrust belt to
acquire progressively its curved shape and the relationships
of these structures—in terms of timing and kinematics—with
the vertical-axis rotations in the different parts of the arcuate
belt (e.g., Marshak, 2004; Weil and Sussman, 2004). Regarding
this question, while primary arcs are characterized by uniform
displacement directions and do not involve significant late
stage vertical-axis rotations, secondary arcs (or oroclines) are
formed by pure bending of an initially straight fold-and-thrust
belt (Eldredge et al., 1985; Hindle and Burkhard, 1999; Weil
et al., 2010). Nevertheless, primary and secondary arcs are
only two end-members of an oversimplified classification. In
fact, most arcuate external fold-and-thrust belts of orogenic
systems acquired their curvature progressively throughout their
deformation history. These are known as progressive arcs, in
which differential vertical-axis rotations along the arc limbs
occur during folding and thrusting (Weil and Sussman, 2004;
Musgrave, 2015).

The best way to quantify vertical-axis rotation in arcuate
fold-and-thrust belts goes hand in hand with paleomagnetic
analysis (e.g., Schwartz and Van der Voo, 1983; Weil et al.,
2012; Johnston et al., 2013; and references therein), but a full
understanding of arc kinematic evolutionmust be complemented
with other approaches. Among a wide range of methods, analog
modeling is a powerful tool that permits not only to compare
the finite deformation in both natural cases and models but also
to investigate the strain field associated with variations of the
indenter geometry.

Such methodology permits to test the influence of some of

the parameters that control the development of arcuate structural

patterns in external zones. Some of these parameters are: (a) the

variations in thickness of the deforming layers (e.g., Marshak and
Wilkerson, 1992; Calassou et al., 1993;Mitra, 1997; Corrado et al.,
1998; Soto et al., 2002; Storti et al., 2007); (b) the lateral variations
in the rheology of the detachment and/or that of the deforming
layers (Mitra, 1997; Macedo and Marshak, 1999; Cotton and
Koyi, 2000; Schreurs et al., 2001; Bahroudi and Koyi, 2003; Luján
et al., 2003, 2006b; Reiter et al., 2011); (c) the topography of
the foreland (Marques and Cobbold, 2002); (d) the syn-tectonic
sedimentation and/or erosion (Wu et al., 2015); (e) the presence
of obstacles of different shapes and strength and/or previous
structures (Marshak et al., 1992; Dominguez et al., 2000; Duarte
et al., 2011; Ter Borgh et al., 2011); and (f) the shape, velocity,
and motion direction of the indenter (Lu and Malavieille, 1994;
Zweigel, 1998; Macedo and Marshak, 1999; Lickorish et al.,
2002; Marshak, 2004; Crespo-Blanc and González-Sánchez, 2005;
Crespo-Blanc, 2007, 2008; Reiter et al., 2011; Crespo-Blanc et al.,
2012, 2018; Rauch, 2013).

In all these models, the indenter used to generate thin-
skinned, curved fold-and-thrust belts was rigid and maintained
shape and size during the whole experiment. These rigid indenter
models failed to reproduce some conspicuous features observed

in many arcuate fold-and-thrust belts, such as widespread
arc-parallel stretching, thicker wedges in the lateral branches,
or strong vertical rotations, as observed, for example, in the
western Mediterranean arcs (Figure 1A; e.g., Balanyá et al.,
2007 and Crespo-Blanc et al., 2016 for the Gibraltar Arc
and Cifelli et al., 2016 for the Calabrian Arc). So, we
modified the experimental setup by using a backstop that can
progressively deform during the experiment as observed in
western Mediterranean arcs.

As a natural case, we take the Gibraltar Arc external wedge
situated in the westernmost Mediterranean (Figure 1A) in order
to scale the materials, setup, and convergence velocities of
our analog models. We present the results of experiments
with a flexible backstop that deformed in map view while the
experiment progressed. Meanwhile, the deformable backstop
pushed from behind the parallelepiped of analog materials;
the backstop geometry varied from straight to arcuate. The
arc amplitude and length increased, whereas its curvature
ratio diminished. So, these are the first models of progressive
arcs, which simulate natural cases of arcuate fold-and-thrust
belt migrating toward the foreland pushed from behind
by an inner orogenic domain (crystalline internal zones)
in orogenic arc systems associated with back-arc extension
(area increase).

We will focus on several major questions concerning: (a)
how this thin-skinned, arcuate fold-and-thrust belt progressively
acquires its curvature, (b) what factors control its shape
and internal geometry (in particular, the role of strain
partitioning), (c) whether or not deformational structures
passively—or actively—rotate during arc evolution, and (d)
how the geometrical relationships between structures and
displacement vectors evolve with increasing deformation. In our
models, the strain partitioning modes generate highly arcuate
wedges, segmented in blocks that rotated differentially. We will
compare our results with those features observed in the Gibraltar
Arc natural case in terms of deformation sequence, geometry
of the progressive arc external wedge, and timing of vertical-
axis rotations.

THE GIBRALTAR ARC EXTERNAL WEDGE,
A NATURAL CASE OF PROGRESSIVE ARC
FOLD-AND-THRUST BELT

Bearing in mind that our purpose is to model an arcuate
fold-and-thrust belt formed in front of a flexible indenter that
simulates the backstop of a progressive arc, several constraints
extracted from a natural case must be imposed on our laboratory
model setups. We selected the external zones of the Gibraltar
Arc System, the alpine orogenic system formed by the Betic-
Rif mountain chains, which close the western Mediterranean
(Figure 1B). Indeed, its mode of deformation, strain partitioning,
kinematics, timing, and vertical axis-rotations are reasonably
well-known, particularly in its northern branch (see review in
Crespo-Blanc et al., 2016, 2018).

Within this orogenic system, we will zoom on the arcuate fold-
and-thrust belt located in the Western Gibraltar Arc (WGA).
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FIGURE 1 | (A) Map of the Mediterranean region with a sketch of the structural trend lines of the orogenic arcs. (B) Simplified structural map of the Gibraltar Arc with

structural trend and kinematic vectors (Crespo-Blanc et al., 2016). Representative cross section (cs) of the external wedge (Crespo-Blanc, 2007). (C) Comparison of

the geometry and degree of protrusion of the Carpathian (CarpA), Calabrian (CalA), and Gibraltar (GibA) arcs (reference line: internal–external zone boundary

according to Linzer, 1996; Crespo-Blanc et al., 2016; Gutscher et al., 2017, respectively). (D,E) Simplified tectonic maps of the Calabrian and Carpathian arcs,

respectively, with displacement vectors along thrusts and vertical-axis rotations (see text for references).
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This arc is defined as the westernmost salient of the Gibraltar
Arc System (west of 4◦30′). Its transition zones to the adjacent
recesses are two strike-slip dominated shear zones (Figure 1B):
the Torcal shear zone in the Betics and the Jebha fault zone in the
Rif (Balanyá et al., 2007, 2012; Barcos et al., 2015).

The key data to constrain our analog model setup are the
following: (1) the chord line length of the WGA measured at
the external–internal zone boundary is around 185 km for an
amplitude of 90 km; accordingly, the WGA degree of protrusion,
that is, the ratio between arc amplitude and chord line (Macedo
and Marshak, 1999) reaches 0.5; (2) the external fold-and-thrust-
belts were pushed from behind by the internal zones, while
the internal–external zone boundary underwent a significant
length increase simultaneous with an area increase of the internal
zones due to back-arc extension (Comas et al., 1999; Balanyá
et al., 2012; Crespo-Blanc et al., 2018); (3) deformation velocities
in the external wedge measured around the arc apex in the
WGA northern branch vary between 0.9 and 1.5 cm/year
(geometry of Luján et al., 2006a combined with timing data
of Crespo-Blanc et al., 2016); (4) the WGA external fold-and-
thrust belt is mainly formed by palaeomargin derived, Mesozoic–
Cenozoic sedimentary covers; (5) in the Betics (WGA northern
branch), 1,300–2,000m of carbonate sequence overlays 100–
1,000m of Triassic evaporites (Vera, 2004; Jiménez-Bonilla et al.,
2016), whereas in the Rif (WGA southern branch), a minimum
of 4,000m of clastic sediments are present (Chalouan et al.,
2008); (6) the structural style of the external wedge in the
northern branch of the Gibraltar Arc corresponds to a fold-and-
thrust belt developed on an evaporitic, viscous substrate (see
representative cross-section in Figure 1B), with pop-up and pop-
down structures separated by large synclines (Crespo-Blanc and
Campos, 2001; Expósito et al., 2012; Crespo-Blanc et al., 2016).

EXPERIMENTAL SETUP

Material Properties
The experiments were performed in the Analog Modeling
Laboratory of the Geodynamics Department-IACT of the
University of Granada-CSIC (Spain). Sand and silicone were
used as analog materials in a natural gravity field to simulate
the brittle, rate-independent behavior of most sedimentary
rocks and the ductile, rate-dependent flow of evaporitic rocks,
respectively (Schellart and Strak, 2016; and references therein).
The quartz sand was dry and rounded, with a grain size
varying between 0.2 and 0.3mm, a coefficient of internal
friction of 37◦, and a density δbM = 1.77 g/cm3 (Table 1).
Colored sand provided horizontal passive markers within the
undeformed experimental multilayer. The silicone putty used
in our experiments (transparent Rhodosil Gum FB of Rhone-
Poulenc) is a Newtonian material at experimental strain rates
(10−6 s−1), with a density δdM = 0.98 g/cm3 and a viscosity ηM

= 5 × 104 Pa s at room temperature (Table 1; Funiciello et al.,
2003). The initial analog silicone and sand parallelepiped (from
now on, sandpack) was underlain by a Mylar sheet (coefficient
of basal friction 0.43), and its boundaries were confined by sand,
with the exception of the one limited by the indenter.

TABLE 1 | Scaling parameters between natural cases and models.

Parameter Natural

cases (N)

Model (M) Scaling

factor (M/N)

Length (m) 1 × 103 5 × 10−3 0.5 × 10−5

Density δbrittle

(kg·m−3 )

2,400a 1,770 0.74

Density

δviscous (kg·m
−3 )

2,200b 980 0.45

Density contrast

δb/δv

1.1 1.8 –

Viscosity η (Pa·s) 1018 to 1021

(5 × 1019)c
5 × 104 10−15

Shortening

velocity in the

arc apex (m·s1)

2.9 × 10−10

to 4.8 ×

10−10

(0.9–1.5

cm/year)d

1.9 and 2.5 ×

10−6

(0.7 and 0.9 cm

h−1)

0.4 × 10−4 to

0.86 × 10−4

aBonini (2001).
bWeijermars et al. (1993).
cMukherjee et al. (2010) and Sadeghi et al. (2016), see text.
dCrespo-Blanc (2008), this paper.

Model Setup
The sandbox is schematically illustrated in Figure 2A, and the
terms used in this paper to describe the parts of the experimental
arc are shown in Figure 2B. The innovation of our models comes
from the fact that the curvature of the backstop employed to
deform the sandpack progressively increased. We used a plastic
strip pushed from behind in its apex by a screw attached to
a motor drive. We obliged this strip to go through a 62 cm
wide gate, which represents the chord line of our experimental
arcs. The chord line remained constant, while the amplitude
and perimeter of the arc increased progressively as the limbs
rotated (observe the progressive shape change of the strip in
Figure 2C, from S0 to S3). Consequently, the protrusion degree
of the indenter progressively increased. It must be stressed that
the strip was sufficiently rigid to keep a convex shape and push
the sandpack.

At the beginning of each experiment, the increase of the
protrusion grade took place hand in hand with the decrease
of the backstop curvature ratio (S1 in Figure 2C). When the
apex displacement reached ca. 20 cm, the plastic strip attained its
maximum possible curvature. From that moment, the backstop
moved toward the front similar to a rigid indenter (the protrusion
grade increased, but the curvature ratio at the apex remained
constant). During the whole experiment, the path of selected
points along the indenter displayed a slightly convergent pattern,
particularly in the arc limbs (Figure 2C).

The indenter apex moved at a constant velocity (0.7 or 0.9
cm/h,Table 2). Themaximum amplitude reached by the indenter
varies between 20 cm and 40 cm, which corresponds to indenter
degrees of protrusion between 0.32 and 0.65, respectively.

A reference 3 × 3 cm grid was sieved on top of the
sandpack. The progressive deformation was monitored by
time lapse photography of the model surface every 10min,
and its final geometry was recorded by oblique photographs.
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FIGURE 2 | (A) Simplified sketch of the experimental apparatus and model setup. (B) Sketch showing the terminology used in the paper. (C) Shape and particle

displacement paths of the deformable indenter for different deformation stages (S1 to S3). (D) Sketch of the measurement of a displacement vector (arrow) between

two successive deformation stages (S1 and S2).

Representative cross sections of the deformed models were
also made. At the end of some of the experiments, the sand
was carefully removed to observe the final 3D geometry of
the silicone.

Scaling
The characteristic values of density (δ), length (l), viscosity
(η), and velocity (v) for both the natural case (subscript N)
and the analog model materials (subscript M), together with
the relative scaling factors of these main physical parameters,
are summarized in Table 1 for natural gravity conditions (gN
= gM = 9.81 m/s2). It can be observed that the density
contrast between sedimentary rocks and evaporites in the

natural case is lower than that between sand and silicone
in the models (1.1 vs. 1.8). That means that the buoyancy
of the ductile layer in the model is larger than that in the
natural cases. This limitation is common in sand–silicone analog
experiments, and it has been shown that it does not affect first-
order model results (e.g., Bonini, 2001; Bahroudi and Koyi,
2003; Ferrer et al., 2016; Roma et al., 2018). For the viscous
layer, we used the Hormuz evaporites as reference, with a
viscosity range from 1018 to 1021 Pa s (Mukherjee et al.,
2010; Sadeghi et al., 2016; Table 1). Indeed, the structure of
the Zagros fold-and-thrust belt is similar to that observed
in the external zones of the Gibraltar Arc northern branch
(e.g., Sherkati et al., 2005).
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TABLE 2 | Model settings.

Experiment

type

Material (rheology) Layer thickness Size of the initial parallelepiped Total

displacement of

the apex

Protrusion

degree of the

indenter

Screw velocity

(cm/h)

1 Sand 1.5 cm (3,000m) 66 cm × 51 cm (132 km × 102 km) 26.7 cm (54 km) 0.43 10.4 cm/h

2 Sand (brittle)

Silicone (viscous)

1.5 cm (3,000m)

0.5 cm (1,000m)

66 cm × 51 cm (132 km × 102 km) 20.0 cm (40 km) 0.32 0.7 cm/h

3 Sand (brittle)

Silicone (viscous)

1.5 cm (3,000m)

1.0 cm (2,000m)

66 cm × 51 cm (132 km × 102 km) 21.7 cm (44 km) 0.35 0.9 cm/h

4 Sand (brittle)

Silicone (viscous)

1.5 cm (3,000m)

0.5 cm (1,000m)

100 cm × 65 cm (200 km × 130 km) 39–40 cm

(78–80 km)

0.63–0.65 0.9 cm/h

Numbers within brackets: sizes corresponding to natural cases. Width of the gate (arc chord line) through which the plastic stripe went: 62 cm (124 km) for all models.

We set a length ratio (lM/lN) of 0.5 × 10−5 (1 cm in the
experiments represents 2,000m in nature), and with the values
of Table 2, we estimated the shortening velocity of the models
according to Weijermars and Schmeling (1986):

νN −

ηM

ηN

(

δN

δM

gN

gM

l2N
l2M

)

νM

The variability of the different parameters, in particular the
viscosity range of the natural case, introduces a significant
uncertainty in the calculation of the shortening velocity of the
models, which varies from 0.6 × 10−6 to 1.7 × 10−3 m s−1,
that is, 0.2 to 612 cm h−1. However, as we had to ensure that the
silicone employed in our analog models behaves as a Newtonian
material, we restricted the shortening velocity to 0.7–0.9 cm h−1

(Luján et al., 2006b; Borderie et al., 2018). With these values of
shortening velocity, we calculated the strain rate of our analog
models as ε = vM/w, where w is the width of the deformable
zone measured in the apex parallel to the shortening direction
(between 51 and 65 cm). The calculated strain rates vary between
3.7 × 10−6 s−1 and 4.9 × 10−6 s−1. Moreover, these velocities
of 0.7–0.9 cm h−1 in the models correspond to viscosities in the
natural ductile layers of around 5 × 1019 Pa s (viscosity value
inside the brackets in Table 1).

Tested Parameters: Size and Thicknesses
We tested the influence of the rheological stratification by varying
the thickness of the ductile layer at the bottom of the undeformed
analog pack. After a first round of experiments, we also increased
the size of the models with the double purpose of reducing
the border effects observed in the first experiments as well as
reaching a higher bulk shortening in front of the indenter hinge
zone. Accordingly, we made four types of models (Table 2): (1) a
66 cm × 51 cm initial analog pack built only with a brittle layer
composed of sand (1.5 cm thick); (2 and 3) a 66 cm × 51 cm
initial analog pack floored by a ductile layer of silicone, 0.5 cm
and 1 cm thick, respectively, overlain by a 1.5 cm thick sand layer;
and (4) a 100 cm × 65 cm initial analog pack floored by a 0.5 cm
thick silicone layer overlain by a 1.5 cm thick sand layer. The
dimensions to which these values correspond in a natural case
using a scale factor of 0.5 × 10−5 figure into brackets in Table 2.

For all experiments, we used the same gate of 62 cm (chord line,
equivalent to 124 km in a natural case).

Measurement of Displacement Vectors
For all models, displacement vectors along selected thrusts have
been depicted for successive deformation stages. They are drawn
by joining reference points of the selected thrust hanging wall
in successive deformation stages. For example, the displacement
vector along the thrust sketched in Figure 2D corresponds to
the mean direction and total displacement of the hanging-wall
movement from S1 stage to S2 stage, using a reference point as
near as possible to the thrust. Consequently, the vectors on any
selected structure at a determined Sx stage represent the mean
direction and total displacement of the hanging-wall movement
from that stage and the previous one, that is, from Sx−1 to Sx
stage. The corresponding arrows have been drawn with their
origin on the selected thrust, or eventually on the normal fault.

ANALOG MODELING OF PROGRESSIVE
ARCS: RESULTS

Small Sandpack Composed Only by Sand:
Model 1
When a backstop simulating a progressive arc is indented in a
sandpack composed only by sand, a typical piggyback, foreland-
verging thrust system is formed (Figure 3A). These thrusts are
rooted at the bottom of the sandpack and are associated with
accommodation folds. In the line drawing of the final stage of the
experiment, the relative chronology of the structures is shown by
numbering (Figure 3A). Additionally, the complete deformation
sequence can be observed in Supplementary Video 1.

The trend-line pattern displays an arcuate geometry, which
mimics as a whole the indenter shape, although with a slightly
higher degree of protrusion. This is due to the effect of two
conjugate strike-slip faults that extrude a salient at the hinge zone
of the arcuate wedge, defined by the most external thrust (thrust
9, Figure 3A).

The first thrusts formed subparallel to the backstop
boundary (see Supplementary Video 1). Then, the length
of the most external arcuate thrust increased together with
the width of the area affected by shortening. Nevertheless,
when the indenter amplitude reached ∼10 cm, the width
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FIGURE 3 | Line drawings of experiments with an initial sandpack: (A) Model 1: final stage. The numbering indicates the chronology of the structures. (B) Model 1:

progressive displacement of the frontal thrust (dashed line) for various positions of the indenter (numbers: apex movement) and displacement vectors along this thrust

(arrows). (C,D) idem (B,C), respectively, from a model of Crespo-Blanc and González-Sánchez (2005) with a rigid indenter.

of the deformed wedge in front of the indenter hinge zone
remained relatively constant until the end of the experiment (see
Supplementary Video 1).

At the beginning of the experiment, displacement vectors
were at 90◦ to the strike of the new, most external thrust
(arrows in Figure 3B), but as shortening proceeded, this angle
diminished from the arcuate wedge hinge toward both limbs,
from 90◦ to ∼65◦, respectively. Accordingly, at the first stage
of the experiment, the displacement vectors directions defined
a range of around 60◦ along the arcuate wedge frontal thrust,
whereas this range decreased to only 10◦ at the end. The

outward radial transport produced an arc-parallel lengthening
of the grid markers, which was accommodated in the sandpack
by arrays of millimetric-spaced normal faults. Because of
their very small spacing (see photograph of Figure 4A), these
normal faults have been grouped in Figure 3A into single
fault trace.

During the whole experiment, as the indenter curvature
increases, the lateral parts of the wedge and the previously formed
thrusts rotated around vertical axes. At the end of the experiment,
grid markers depict 20–25◦ clockwise and counterclockwise
rotations, left and right of the arc apex, respectively (Figure 3A).
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FIGURE 4 | Photographs of various models. (A) Model 1: millimetrical-spaced normal faults (situated to the right of Fault 7 in Figure 3A). (B) Model 2: Conjugated

strike-slip faults system and small normal faults (situated to the right of Fault 11 in Figure 5B). (C) Cross section in the arc apex zone of Model 3 (location on

Figure 5F).

In Figures 3C,D, for comparison purposes (see discussion),
we present the results of the analog experiment of Crespo-
Blanc and González-Sánchez (2005), which used the same
Model 1 rheology (1.5 cm thick sand layer) and an elliptical,
rigid backstop. The curvature ratio of that backstop is similar
to the minimum reached in our experiments. In the model
of Crespo-Blanc and González-Sánchez (2005), displacement
vectors along the frontal thrusts are slightly divergent (10◦ range)
and their directions relatively constant during deformation
(Figure 3D).

Small Sandpack With Silicone Substratum:
Models 2 and 3
Using a constant, 1.5 cm thick upper sand layer, two different
experiments were carried out with 0.5 and 1 cm thick lower
silicone layers, respectively. The size of the initial sand–silicone
pack was 66 × 51 cm (Table 2). The deformation sequence
is illustrated by line drawings that compare three different
deformational stages with similar indenter amplitude for both
models (Figure 5, see also Supplementary Videos 2, 3). In both
experiments, the deformation was accommodated by thrusts,
backthrusts, and strike-slip faults, all of them rooted within
the silicone, as well as thrust-related folds and normal faults.
Regardless of their initial kinematics, the regime of some of these
faults changed along the experiments. Although the distribution
of these structures is different in both types of experiment,
the final result was a non-cylindrical, segmented, arcuate fold-
and-thrust belt in which apparently undeformed blocks, shown
by undistorted grid, rotated differentially. Moreover, buoyant
silicone locally reached the model surface.

Model 2 (Silicone Thickness: 0.5 cm)
The relative chronology of the structures involved in the
deformed wedge is shown by numbering in Figures 5A–C (see
also Supplementary Video 2). Shortening was accommodated by
a few forethrusts that initiated with a wide spacing and one
small subordinate backthrust (number 8). Due to the difference
in displacement between thrust sheets, four transfer faults
appeared at early stages (faults 4–7 of Figure 5A). They acted
as dextral or sinistral faults, in accordance with their position
with respect to the arc limbs. The transfer faults facilitated the
formation of three blocks (ca. 20 cm wide) that rotated while
deformation proceeded. The central block A underwent little
vertical axis rotation, whereas blocks B andC significantly rotated
counterclockwise and clockwise, respectively. These vertical-axis
block rotations were accompanied by arc-parallel lengthening
of the wedge front. Such lengthening was accommodated
by small normal faults that developed in the hinge zone,
subperpendicular to the structural trend of the arcuate wedge.
Strike-slip faults developed oblique to the wedge trend (faults
10 and 11 of Figures 5B, 4B). They acted as conjugate faults to
the early transfer faults and show a slight normal component
of displacement that also contributed to this lengthening. These
structures produced small recesses of the wedge front, in the
sense of Macedo and Marshak (1999).

As deformation proceeded, a new foreland-verging thrust split
block C into two (C1 and C2) and new arc-perpendicular normal
faults and strike-slip faults oblique to the wedge trend developed
(Figures 5B,C). The rotation of blocks was accommodated not
only by these faults but also by the different horizontal heave
along the most frontal thrusts. At the final stage, block B rotated
22◦ counterclockwise and block C1 rotated 26◦ clockwise (C2 is
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FIGURE 5 | (A–C) Line drawings of different stages of Model 2 (silicone layer of 0.5 cm). (D–F) Line drawings of different stages of Model 3 (silicone layer of 1 cm). The

numbering indicates the relative chronology of the structures. The apex displacement is indicated for each stage. Arrows: displacement vectors along some thrusts

[drawn between stages (B,C,E,F)]. The length of the arrows represents the magnitude of the displacement with the same scale of the line drawings. Cs, cross section

of Figure 4C.

considered to be influenced by the model border and probably
did not rotate freely), whereas the central block A did not rotate
significantly (Figure 5C). Thrust displacement vectors between
stages B and C were divergent, and their trend varied around 70◦

(see arrows on Figure 5C).

Model 3 (Silicone Thickness: 1.0 cm)
The relative chronology of the structures is illustrated by the
line drawings in Figures 5D–F and Supplementary Video 3.

Apart from several similarities with Model 2, the presence
of a thicker layer of silicone under the sand layer induced
some differences with Model 2: (a) backthrusts occurred more
frequently and, together with forethrusts, defined pop-up and
pop-down structures (see backthrusts 5, 9, 10, and 14 of
Figures 5D–F); (b) two conjugated strike-slip faults formed
in the external part of the arcuate deformed wedge (strike-
slip faults 2 and 8), and they subsequently evolved into
thrusts with a lateral slip component; (c) the size of the

Frontiers in Earth Science | www.frontiersin.org 9 March 2020 | Volume 8 | Article 72

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Jiménez-Bonilla et al. Analog Models of Progressive Arcs

FIGURE 6 | Line drawings of Model 4-1 at different stages (S1–S4). The numbering indicates the relative chronology of the structures. The apex displacement is

indicated for each stage. A–E: localization of cross sections of Figure 9.

individual blocks was smaller, and the amount of vertical-
axis rotations increased from the arcuate wedge hinge toward
the limbs (blocks B1 and B2 rotated counterclockwise, 33◦

and 42◦, respectively; blocks C1 and C2 clockwise, 34◦ and
35◦, respectively; block A did not rotate; Figure 5F); (d)
buoyant silicone walls and canopies were more widespread
than in Model 2; and (e) deformation reached the frontal
boundary of the initial sand–silicone pack, and the localization
of thrust 13 and associated backthrust 15 are considered as
border effect.

The total displacement of the wedge front, excluding the
faults related to border effect, was similar in both experiments,
but Model 3 generated a narrower thrust wedge than Model 2.
Shortening in the hinge zone of the arcuate wedge was reached
through a rather complex geometry in which two retrovergent
folds developed in the footwall of thrust 1 of Figure 5D (see cross
section in Figure 4C).

Finally, displacement vectors related to thrusts between stages
E and F were divergent and showed a strike range around 60◦,
similar to those in Model 2.

Large Sandpack With Silicone Substratum:
Models 4
In order to reduce the border effects observed in Models
2 and 3, and to reach a higher degree of protrusion, the
initial sand–silicone pack was enlarged up to 100 cm × 65 cm
(Table 2). The silicone and sand thicknesses were 0.5 cm and
1.5 cm, respectively. In order to check their reproducibility, two
experiments were performed with the same initial setting. The
final stage of both experiments, with an indenter degree of
protrusion of 0.6 and ∼40 cm of shortening in front of the arc
apex, was similar in terms of type and evolution of the structures.
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FIGURE 7 | Line drawings Model 4-2 at different stages (S1–S4). The numbering indicates the relative chronology of the structures. The apex displacement is

indicated for each stage.

In both cases, the result was a segmented, highly arcuate fold-
and-thrust belt, although the distribution of thrusts, backthrusts,
strike-slip, and normal faults was slightly different. This is likely
due to the unavoidable heterogeneities in the preparation of
such large analog models, such as small variation of sand or
silicone thicknesses or different packing of the sand grains when
the sand layers are made even. We will describe the results
pointing out the key aspects of the structures developed in
each model. Line drawings of S1 to S4 deformational stages for
both experiments are illustrated in Figures 6 (Model 4-1) and 7
(Model 4-2), in which the chronology of structures is indicated by
numbering. To facilitate comparison between models, the apex
displacement in S2 corresponds to that of the final deformation
stage of Models 2 and 3 (∼20 cm). The deformation sequence
in Models 4-1 and 4-2 can also be seen in the corresponding
Supplementary Videos 4, 5, respectively.

Photographs of thesemodels are shown in Figure 8 (final stage
together with some details of the structures). At the end of the
experiment, systematic cross sections were made in Model 4-1.
Sand in Model 4-2 was carefully removed to observe the viscous
substratum 3D geometry.

Deformation Sequence
At the onset of deformation in both experiments (S1 stage),
the radial outward shortening in the sand–silicone pack was
accommodated by both forelandward and backward thrusts
(thrusts 1, 5, and 6 in Figure 6; thrusts 4 and 8 in Figure 7). In
both models, a thrust mimics the frontal boundary of the pack
and is considered as a border effect (thrust 3).

As deformation proceeded, these thrusts were linked by
transfer zones with a main component of thrusting (e.g., fault
4 in Figure 6) or strike-slip (fault 6 in Figure 7). At this stage,
one or two strike-slip faults appeared, connecting the central part
of the fold-and-thrust belt to the frontal boundary of the sand–
silicone pack (dextral fault 8 in Figure 6 and sinistral faults 5 and
11 in Figure 7).

As shortening increased (S2 stage, with a backstop apex
displacement of ca. 21 cm), the deformation front propagated
toward the foreland with the nucleation of curved thrusts
and backthrusts (faults 11 and 13 in Figure 6; faults 12 and
15 in Figure 7), generating pop-up and pop-down structures.
Meanwhile, ongoing thrusting and tilting of the previous
structures thickened the wedge. Differential displacements of
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FIGURE 8 | Photographs of Models 4. (A) Oblique photograph of Model 4-2 at its final stage. (B) Millimetrical-spaced normal faults (localized on A). (C) Transpressive

bands at the arc limb (localized on A). (D) Silicone topography of Model 4-2 once the sand is removed at the final stage. (E) Zenithal view of Model 4-1 at the

completion of the experiment. (F) Millimetrical-spaced normal faults (localized on E). (G) Conjugate strike-slip fault systems (localized on E). (H) Silicone outcropping

on the model surface (localized on E).

the thrusts led to the lengthening of the transfer zones
and the vertical-axis rotations of the earlier structures. For
example, between stages S1 and S2, faults 5 (Figure 6) and
4 (Figure 7) rotated 5◦, clockwise and counterclockwise at
the left and right arc limbs, respectively. The kinematics of
some faults changed with further deformation, as in the case
of fault 5, which evolved from a pure strike-slip fault to a
transpressive zone where restraining bends formed (Figure 7).
Along-strike lengthening of the arcuate fold-and-thrust belt
resulted in arc-parallel extension, mainly accommodated by
milli- to centimetric spaced normal faults, mostly oriented
subperpendicular to the indenter boundary. These defined
conjugated systems form graben structures (Figures 6, 7,
8B,F). Conjugate strike-slip faults also contributed to arc-
lengthening (e.g., fault 24 in Figure 6 and fault 6 in Figures 7,
8A,E,G). At this stage, different types of structures delineated
discrete blocks that subsequently underwent clockwise or
counterclockwise vertical-axis rotations, depending on their
location relative to the left or right flank of the arcuate
backstop, respectively.

Between stages S2 and S4, shortening was mostly
accommodated either by the previously formed thrusts or
by the development of new arcuate thrusts, subparallel to the
curved indenter boundary (e.g., faults 28 and 30–33 in Figure 6).
At the same time, rotation of early structures proceeded,
sometimes associated with variations in their kinematics (e.g.,
thrusts evolving to transpressive bands; faults 25 and 26 of
Figure 7, photographed in Figure 8C). Buoyant silicone pierced
the sand layer, preferentially along graben structures (Figures 6,
7, 8A,E,H).

Relay zones between thrust traces correspond to either relay
deformation zones where grid markers were rotated ca. 5◦ (e.g.,
between 28 and 33 in Figure 6) or strike-slip faults that acted
as transfer faults (e.g., fault 26 in Figure 7). Thrusts also formed
along the lateral boundary of the confining sand (border effect).

Final Architecture of the Deformed Wedge
The arcuate fold-and-thrust belts generated in Models 4-1 and
4-2 have complex geometries. They show salients and recesses
and are sharply segmented along-strike (stage S4 of Figures 6,
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FIGURE 9 | Series of cross sections (A–E) of Model 4-1 (location on Figure 6).

7, 8A,E). The deformed wedge is formed by blocks bounded by
different types of structures. These blocks underwent clockwise
or counterclockwise vertical-axis rotations coherent with their
position with respect to the symmetry axis of the indenter. At
the completion of the experiments, the grid marker rotations
diminished progressively from ca. 60–70◦ in front of the limbs
of the indenter down to 0◦ in front of its apex.

Arc-parallel lengthening was achieved by conjugate strike-
slip and normal faults. Both types of faults played a crucial
role on the along-strike segmentation of the fold-and-thrust
belt (Figures 6–8). The normal faults did not produce any
observable deformation in the silicone layer (Figure 8D) and are
consequently detached at the top of the silicone layer or within
the sand layer.

A series of cross sections from Model 4-1 are illustrated
in Figure 9. The deformed wedge is characterized by
foreland and hinterland-verging thrusts and folds (ca.
7 cm-spaced) rooted within the silicone layer, which

generate pop-up and pop-down structures. The shortening
is maximum in the central part of the model, where a
backthrust overlies not only the pop-down structure itself
but also the following pop-up structure (rear part of cross
section D).

Displacement Vectors Along Selected Structures
Displacement vectors associated with the main structures
at different stages of Models 4-1 and 4-2 are shown in
Figures 10A,B, respectively. Throughout the experiments,
the displacement vectors display a radial pattern swinging
roughly 90◦ across the indenter symmetry axis (Figures 10A,B).
It should be noted that some displacement vectors changed
direction with increasing deformation, but they did
not vary as much as the strike of their corresponding
thrusts (irrespective of their vergence). Moreover, as
deformation proceeded, most of structures rotated, but
the direction of their associated displacement vectors
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FIGURE 10 | Displacement vectors associated with the main structures at the different stages of Models 4-1 (A) and 4-2 (B). The length of the arrows represents the

magnitude of the displacement with the same scale of the line drawings. Black arrows: movement on thrust. Gray arrows: movement on normal fault. Other symbols:

Idem Figures 6, 7.

Frontiers in Earth Science | www.frontiersin.org 14 March 2020 | Volume 8 | Article 72

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Jiménez-Bonilla et al. Analog Models of Progressive Arcs

FIGURE 11 | (A) Sketch of the paleomagnetical orocline test applied to our models. (B1, B2) Oroclinal test for Model 1 at early and final stages. (C) Oroclinal test for

Model 4-1 at final stage. (D1, D2) Oroclinal test for Model 4-2 at early and final stage. (E,F) Oroclinal test for models of sand and silicone–sand of Crespo-Blanc and

González-Sánchez (2005), respectively.
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FIGURE 12 | Line drawings of analog models of arcuate fold-and-thrust belts previously published compared with our results. (A–F) Sand models.

(G–M) Silicone–sand models. References on the figure.

did not. Therefore, the relative orientation between
structures and displacement vectors changed over time.
Available displacement vectors along the normal faults that
contributed to arc lengthening were subparallel to the strike of
the indenter.

Orocline Test
The orocline test assesses to what extent vertical-axis rotations
have played a role in the acquisition of an orogen’s curvature.
It is graphically represented by the deflection of a primary,
predeformational linear marker D, from a reference direction
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Dr, plotted against the deviation between the strike of regional
structures S, and a reference strike Sr (Schwartz and Van der
Voo, 1983; Weil and Sussman, 2004). Such D-Dr vs. S-Sr plots
are represented in Figure 11.

In natural cases, declination of paleomagnetical poles are
used as the primary marker to quantify vertical-axis rigid body
rotations, but others can be used, such as joints or paleocurrent
directions (Weil et al., 2012). Such test can be applied to
the analog models presented in this paper by using the grid
markers as a proxy for paleomagnetical directions (see Costa and
Speranza, 2003).

For the structures, the thrust traces drawn in the final stage
of the experiments were divided into 3 cm-long segments and
their mean orientation was measured. For both parameters, the
E-W direction was used as the reference orientation, that is, the
strike of the indenter in its undeformed stage. Thus, each point
of the plots in Figure 11 represents the angle between the strike
of the selected structure and the E-W direction (S-Sr) vs. the
angle between the initial E-W lines of the grid marker closest to
that structure and the E-W direction (D-Dr angle). If structures
formed obliquely with respect to the E-W reference direction, but
the grid did not rotate, oroclinal test will yield slopes around 0
(Figure 11A), corresponding to ideal primary arcs. By contrast, if
both structures and grid markers rotated equally, slopes around
1 will be obtained, corresponding to ideal oroclinal arc. Slopes
between 0 and 1 have been associated with progressive arcs (Weil
et al., 2012).

This test has been applied to the final stages of sand model
(Model 1) and large, sand–siliconemodels (Model 4-1 andModel
4-2), in order to test the influence of the presence of viscous
substratum on the formation mechanism of the curved fold-
and-thrust belts generated in our experiments (Figures 11B1,

C,D1). The test was also applied at intermediate stages of Model
1 and Model 4-2 (Figures 11B2,D2). Moreover, for comparison
purposes (see discussion), similar plots were made for two analog
models of Crespo-Blanc and González-Sánchez (2005), with an
elliptical, rigid backstop. One of them consisted of a sandpack
(see Figure 3D), and the second one included a 0.5 cm silicone
layer overlain by a 1.0 cm sand layer (see their Figure 4). These
plots are presented in Figures 11E,F, respectively.

The slopes of the regression line yielded by the orocline tests
for the final stages of our models vary between 0.5 and 0.6
(Figures 11 B1,C,D1). In Model 1 and Model 4-2, the slope
is significantly smaller at intermediate stages (0.3 and 0.4,
respectively; Figures 11B2,D2). In all cases, the linear regression
is well-determined (R2 higher than 0.8). It is worth to note
that in the two experiments with a rigid elliptical indenter, the
oroclinal test yields much lower slope values (between 0.2 and
0.3; Figures 11E,F).

DISCUSSION

Kinematics and Deformation Sequence of
Analog Models
As described above, the progressive deformation caused by
a backstop with increasing degree of protrusion and whose

curvature ratio diminished with time indenting in a sand–
silicone parallelepiped led to the formation of highly segmented
arcuate fold-and-thrust belts. In both types of progressive
arc models (with and without a viscous substratum), arc-
perpendicular shortening was accommodated by radial outward
thrusting, while arc-parallel lengthening was achieved by means
of conjugated strike-slip fault systems and normal faults.
Nevertheless, this strain partitioning mode varies significantly
depending on the rheology of the initial analog pack. In the
case of an initial sandpack, the geometry of the resulting
arcuate thrust wedge is relatively simple (Figure 3). This sharply
contrasts with the complex geometry of non-cylindrical thrusts
and independent blocks rotating differentially that developed
over a viscous substratum (Figures 5–7). In the next paragraphs,
we will compare our results with other experiments that
modeled arcuate fold-and-thrust belts with sand and silicone as
analog materials.

Initial Sandpack
In our sandpack model (Model 1), the shortening mode is
similar to the classical modeling of thrust wedges that developed
in front of a straight, rigid indenter (Liu et al., 1992). It is
achieved by foreland-verging thrusts rooted at the bottom of a
sandpack in a piggyback sequence. In map view, the structural
trend line of the final stage of Model 1 displays an arcuate
geometry that mimics as a whole the indenter shape (Figure 3A).
Moreover, a few structures accommodated arc lengthening. The
displacement vectors along the frontal thrust structures are
moderately divergent (Figure 3B).

Arcuate fold-and-thrust belts developed from sandpacks in
front of rigid vertical indenters of different shapes and/or with
a wide range of motion paths have been previously modeled.
The final stages of selected ones are compiled in Figures 12A–F

(this work; Marshak, 1988; Calassou et al., 1993; Zweigel, 1998;
Lickorish et al., 2002; Crespo-Blanc and González-Sánchez,
2005, respectively).

As in Model 1, rigid indenters simulating a primary arc
with a step or with an angular or curved shape create curved
thrust wedges with structural trendmimicking the indenter shape
(Figures 12B–E). Nevertheless, such models differ from our
Model 1 in the following characteristics: (a) the deformation took
place only in front of the indenter (note that to generate folds
and thrusts beyond the leading edge of the indenter, a curved
displacement of the rigid indenter is necessary; Figure 12E);
(b) the lateral boundaries of the deformed wedge are occupied
by slumped areas, such that no thrusts form beyond these
boundaries; (c) the overall transport direction of the thrusts
is broadly parallel to the translation path of the indenter; (d)
no significant arc-parallel lengthening occurred, and (e) the
thrusts formed at early stages underwent only small vertical-axis
rotations, if any.

Initial Sand–Silicone Pack
In our sand–silicone models, the propagation sequence of thrusts
and backthrusts is characteristic of fold-and-thrust wedges
developed over a viscous substratum, as modeled by other
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authors (e.g., Letouzey et al., 1995; Cotton and Koyi, 2000;
Bahroudi and Koyi, 2003; Luján et al., 2003).

In the map view of our experiments, the deformed wedge
acquired its arcuate geometry from the early stages of the
experiments. The progressive indenter protrusion led to the
formation of independent blocks, bounded by normal and/or
strike-slip faults, which rotate differentially. These highly non-
cylindrical structures together with the vertical-axis rotations
are the identifying characteristics of the resulting fold-and-
thrust belts (Figure 12G). This is favored by the localization of
transpressive and transtensive zones. When compared with the
final stages of selected sand–silicone models with rigid indenters,
this is a striking difference. In the experiments of Lickorish et al.
(2002), Bahroudi and Koyi (2003), Costa and Speranza (2003),
Luján et al. (2003), and Crespo-Blanc and González-Sánchez
(2005) (Figures 12H–M; respectively), the main factor that
controls the curvature of the fold-and–thrust belts, regardless of
the rigid indenter shape, is the geometry of the silicone layer in
the initial analog pack. Moreover, rigid indenters with straight
motion paths generate arcuate fold-and-thrust belts only in front
of the indenter, whereas the lateral deformation zone around the
indenter is very narrow (Figures 12J–M), as in models formed
only by sand. Moreover, in these models with rigid indenter, the
vertical-axis rotations are limited to a dozen degrees, if any (as in
the model of Figures 12J,M).

In our sand–silicone models, we showed that the pattern of
the displacement vectors on particular structures that contribute
to the strain partitioning was rather complex both in space and
time (Figures 5C,F, 10A,B). During the deformation sequence,
the transport directions of thrusts and backthrusts were broadly
radial, which contrasts with sand models (Figure 3). Moreover,
several early formed structures progressively rotated, in such a
way that the angle between the displacement vector and the strike
of a particular rotating structure changed with time.

Even with a viscous substrate, it is not possible to generate
a highly segmented arcuate wedge with a rigid indenter that
moves with a straight motion path: a backstop with a variable
protrusion grade and curvature ratio is needed. As such, strongly
divergent displacement vectors in an arcuate fold-and-thrust
wedge represent a solid argument for a progressive arc mode
of formation.

Finally, it must be stressed that in our models, the buoyancy
of the ductile layer is higher than in the natural cases (Table 1),
which should have some influence on the experiment dynamics.
Nevertheless, this behavior is assumed in most of the analog
modeling set for the simulation of deformation in upper crustal
levels (see models of Ferrer et al., 2016; Li and Mitra, 2017;
Borderie et al., 2018; Roma et al., 2018 who used the same analog
materials as in this paper). Moreover, at the beginning of our
experiments, the lateral flow of the silicone was limited, as it was
confined by sand. When deformation proceeds, silicone can flow
toward zones of low-gravity potential and diapirs can eventually
pierce the experiment surface.

Orocline Test Applied to the Analog Models
Concerning the orocline test applied to our models, the test
values fall into the field of the progressive arcs, with slopes

between 0.3 and 0.6 (Figure 11). This was expected, as our
experimental setting included a deformable indenter to model
progressive arcs. Nevertheless, it is remarkable that the test
values increased as the experiments proceeded, approaching to
orocline values (slope = 1). Indeed, they varied from 0.3–0.4
to 0.5–0.6, with both types of substratum (sand and silicone).
This is a surprising tendency, as during the late stage of the
experiments, the backstop acted close to a rigid indenter (fixed
apex shape and minor limbs rotation), more similar to a primary
arc. Accordingly, a decrease of the test slopes should be expected.

The increasing “oroclinal component” is also observed when
this test is applied to previous experiments with a rigid indenter
and a sand–silicone pack (Crespo-Blanc and González-Sánchez,
2005). In this case, the obtained values are lower (0.2–0.3) than
those calculated for our experiments, but not equal to zero,
which would represent an ideal primary arc. Consequently, our
results suggest that the absolute values obtained from the orocline
test alone may not be sufficient to distinguish between the
formation modes of orogenic arcs if they are not compared to
other kinematic information. In this sense, the analysis of the
operating strain partitioning modes, and more specifically the
amount and localization of arc-parallel stretching, seems to be a
more useful and efficient approach (Hindle and Burkhard, 1999;
Balanyá et al., 2007).

Comparison Between our Analog Models
of Progressive Arcs, the Gibraltar Arc, and
Other Natural Cases
Our experiments with a silicone layer systematically led to the
formation of arcuate fold-and-thrust belts, which exhibit the
following strain partitioning mode: (a) in cross section, the
structural style is characterized by bivergent thrusts with pop-
up and pop-down structures; (b) in map view, shortening in
the external wedge was accommodated by thrusts with a pattern
that broadly mimics the indenter curvature; (c) the displacement
vectors along the thrusts define a fan, subperpendicular to the
structural trend-line pattern at the hinge zone and oblique at
the limbs; (d) normal and conjugate strike-slip faults, which
accommodated arc-parallel stretching, contributed to the along-
strike segmentation of the deformed wedge in blocks; (e) these
blocks underwent clockwise and counterclockwise vertical-axis
rotations of up to 65◦, coherently with their position in the arc;
and (f) major strike-slip dominated fault zones developed at the
lateral parts of the arc.

The aforementioned strain partitioning mode of our models,
both in cross section and map view, is very similar to that
observed in the external zones of the Western Gibraltar Arc
(Balanyá et al., 2007), which imposed our laboratory model
setups in terms of rheology, convergence velocity around the
progressive arc apex, arc chord line, and amplitude (degree
of protrusion). In Table 3, we compare the main geological
features of the Western Gibraltar Arc external fold-and-thrust
belt of the northern branch with the main characteristics
of our analog models, regarding transport direction, types
and localization of structures, trend-line pattern, vertical-axis
rotations, and size of the rotated blocks. We also include
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TABLE 3 | Structural characteristics of the external wedge of the Gibraltar Arc system compared with those of our analog models.

Natural case

(Gibraltar Arc

fold-and-thrust belt)a

Rigid elliptical

indenter (sand)b
Model 1 (sand)c Models 2 and 3 (silicone

and sand, small)c
Models 4 (silicone and

sand, large)c

Backstop

protrusion grade

∼0.5 <0.5 0.43 0.32–0.35 0.63–0.65

Thrust transport

directions

Very highly divergent

(direction variation up

to 140◦)

Slightly divergent

(direction variation

of 25◦)

Moderately divergent

(direction variation of 65◦)

Moderately divergent

(direction variation of 65◦)

Very highly divergent

(direction variation up to

130◦)

Structures in the

apex zones

Fold-and-thrust belt.

Normal and strike-slip

fault systems

Fold-and-thrust

belt

Fold-and-thrust belt Fold-and-thrust belt. Normal

and strike-slip fault systems

Fold-and-thrust belt. Normal

and strike-slip fault systems

Structures in the

lateral zones

Fold-and-thrust belt.

Transpressive or

transtensional bands

oblique to the main

trend

No fold-and-thrust

belt. Strike-slip

bands parallel to

the backstop

movement

No fold-and-thrust belt.

Strike-slip bands parallel to

the backstop movement

Fold-and-thrust belt.

Strike-slip faults oblique to

the main trend

Fold-and-thrust belt.

Transpressive or

transtensional bands oblique

to the main trend

Structures

accommodating

arc-parallel

lengthening

Normal and strike-slip

fault systems

Not observed Normal and strike-slip fault

systems

Normal and strike-slip fault

systems

Normal and strike-slip fault

systems

Arc-parallel

lengthening

localization

Apex and laterals – Laterals Mostly laterals Apex and laterals

Structural trend-line

pattern

Discontinuous Continuous Continuous (frontal part) Discontinuous Discontinuous

Maximum rotation

of passive lines

Around 50◦

(paleomagnetic vectors

from 9Ma onwards)

<10◦ Around 25◦ Around 25–40◦ Around 70◦

Size of rotated

blocks

More than 100 km long No block

individualization

No block individualization Individualization of 3–5

blocks

Individualization of 5–8

blocks

aGeological data from Balanyá et al. (2007), Jiménez-Bonilla et al. (2015, 2016), and Crespo-Blanc et al. (2016).
bCrespo-Blanc and González-Sánchez (2005, first stage of Figure 3C op.cit).
cThis paper.

results from the model with a rigid indenter (Figure 3D)
of Crespo-Blanc and González-Sánchez (2005). It must be
stressed that we zoom on the northern branch of the Gibraltar
Arc external wedge as its structural evolution is much better
known than the southern one, and it is underlaid by a
viscous substrate.

Models 4-1 and 4-2 are those that best fit with the strain
partitioning mode observed in the natural case (Table 3). In
both the models and the natural case study: (1) the transport
direction of thrusts swings significantly (up to 90◦ in the model
and 130◦ in the natural case study, compare Figures 1B, 10);
(2) arc-parallel stretching is accommodated by arc-perpendicular
normal faults (e.g., the intermontane Ronda basin faults in
Figure 1B; Jiménez-Bonilla et al., 2015) and conjugate strike-slip
fault systems that localize cuspate recesses in map view (e.g.,
compare the Gaucín fault shown in Figure 1B with Figures 6,
7; Balanyá et al., 2007; Jiménez-Bonilla et al., 2015, 2016, 2017);
(3) transpressive and transtensive bands developed oblique to
the main trend at the lateral zones of the arcs, and likely
contributed to their protrusion increase (compare the Torcal
Shear Zone or Jebha fault in Figure 1B with Figures 6, 7,
8C,G; see also Barcos et al., 2015; Crespo-Blanc et al., 2018);
and (4) independent blocks rotated significantly clockwise or

counterclockwise related to their position at the right or left arc
limbs, respectively.

The horizontal dimensions of independent blocks were 20-
30 cm in the models, which, applying the scaling factor of 0.5
× 10–5 (Table 1), corresponds to 40–60 km in nature. This
represents a block size about a half of the arc chord length, which
is broadly the same magnitude of the four blocks described by
Crespo-Blanc et al. (2016) in the Gibraltar Arc System, which
are 100–200 km long (measured along-strike, that is 0.5–1 time
the arc chord length). In the natural case, these blocks rotated
in the same sense as our experiments during the last 9Ma, and
the maximum amount of rotation of passive lines observed in the
Gibraltar Arc System (53◦ in the western Betics block) is similar
to the maximum rotations observed in models with a silicone
layer (Models 2–4). For all these reasons, the development of an
arcuate fold-and-thrust belt such as the Gibraltar Arc external
wedge is likely similar to the models of progressive arc described
in this paper.

Other natural examples of Mediterranean progressive arcs
could have formed in a comparable way in terms of kinematics
and strain partitioning as the Calabrian or the Carpathian
Arcs (Figure 1A). As the Gibraltar Arc, these arcs formed in
convergent systems in which outward radial thrusting is coupled
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with severe back-arc extension. A significant increase in the
area and perimeter of their internal zones took place while
these latter pushed from behind and intruded progressively
the external fold-and-thrust belts (Horvath and Berkhemer,
1982). Both arcs also show similar chord line lengths measured
at the external–internal zone boundary (ca. 185–290 km) and
degree of protrusion (0.4–0.5) with respect to the Gibraltar Arc
(Figure 1C).

Onshore, the limbs of the emerged Calabrian arc are
composed by the fold-and-thrust belts of the Sicilian
Maghrebides to the southwest and of the Southern Apennines
to the northeast, related to the African and Adriatic continental
margins, respectively. Offshore, in the outer part of the apex zone
of the arc, a submerged accretionary prism developed (Polonia
et al., 2011). Cifelli et al. (2008, 2016) show that blocks ca. 200 km
long rotated clockwise and counterclockwise in the NE and
SW arc limbs, respectively. In the Southern Apennines, these
vertical-axis rotations measured from middle-upper Miocene
can reach 100◦ (Patacca et al., 1990; Scheepers and Langereis,
1994; Maffione et al., 2013), having rotated up to 56◦ in the last
9Ma, a similar rotation as the Models 2–4 (Cifelli et al., 2008,
2016; Figure 1D). Moreover, these rotations are accompanied
by normal faulting, associated with arc-parallel stretching and
responsible for the development of several intermontane basins
(Aucelli et al., 2014), which is also observable in Models 2–4.
Nevertheless, it must be stressed that the rheological profile
of the Sicilian-Maghrebides and the Southern Apennines fold-
and-thrust belt of the Calabrian Arc differ from the Gibraltar
Arc. Indeed, neither the fold-and-thrust belt of the Sicilian
Maghrebides nor that of the Southern Apennines detached
over evaporites.

In the same way, in the Carpathian Arc external wedge, the
strike of the folds and thrusts associated with arc-perpendicular
shortening varies ∼125◦, from NW-SE in the northeastern part
of the arc to E-W in the southern one (Linzer, 1996; Figure 1E).
The transport directions along the thrusts fan around the arc
ca. 90◦, that is, a significantly smaller angle than their strike
variation. This differs from the models with silicone layer, but
is similar to the first stages of the sand models (Figure 3C). As
a matter of fact, the basal layer in the external Carpathian Arc
is not composed of evaporites, as reported in the Gibraltar Arc
northern branch, but of lutites, weaker than other sedimentary
rocks although still with a brittle behavior. Major strike-slip shear
zones develop at low angles to the structural trend in the lateral
parts of the Carpathian arc: sinistral wrench faults in the northern
branch (Linzer, 1996) and a large-scale dextral transpressive zone
to the south in which displacement is partitioned into thrust
shear, pure shear distributed deformation, and dextral wrench
shear (Ratschbacher et al., 1993). Finally, Cretaceous to lower
Miocene paleomagnetical declinations reveal severe differential
rotations (more than 90◦) fanning outwards around the entire
Carpathian arc. Zooming in the eastern Carpathian salient, these
rotations are predominantly of dextral sense and reach 60◦,
although they were accomplished during various events from the
very beginning of the arching (Linzer, 1996). In Figure 1E, only
the last vertical axis rotational event has been indicated.

CONCLUSIONS

1. The analog experiments presented here model the progressive
deformation of analog packs in front of an indenter that
moved toward the foreland with an increasing degree of
protrusion and whose curvature ratio diminished with time,
that is, a progressive arc. The experiments led to the formation
of arcuate fold-and-thrust belts in which strain was partitioned
between: (a) arc-perpendicular shortening accommodated
by thrusts with slightly divergent (sand) or approximately
radial outward transport direction (sand–silicone), and (b)
arc-parallel stretching accommodated by both normal and
conjugate strike-slip faults, which would lead, in natural
progressive arcs, to the development of intermontane basins.
Such strain partitioning occurred from the very beginning of
the experiments.

2. In the experiments with a silicone lower layer, normal
and strike-slip faults, developed mainly in the lateral parts
of the arcs, contributed to the along-strike fold-and-thrust
belt segmentation in blocks, resulting in a highly non-
cylindrical arcuate wedge. These blocks suffered clockwise and
counterclockwise rotation (up to 65◦) in the right and left
flanks of the progressive arc, respectively (referenced to the
direction of apexmovement). The kinematics of the structures
that separate blocks were complex and varied with time.
By contrast, models that employed only sand generated an
arcuate piggyback forethrust sequence, which was extended
along strike by somewhat evenly distributed normal faults.

3. In fold-and-thrust wedges over a frictional decollement
(sandpack), the tectonic transport associated with thrusting
shows a slightly divergent pattern and is relatively constant
during progressive deformation. By contrast, in the sand–
silicone experiments, the displacement vectors along
particular thrusts display a radial pattern swinging ∼90◦

from one part to the other of the indenter symmetry axis. As
deformation proceeded, most structures rotated clockwise
or counterclockwise and the angle between their strikes and
their displacement vectors changed with time. Hence, the
tectonic regime of some faults significantly changed during
the experiments.

4. Orocline tests applied to our models yielded values that
are consistent with those of progressive arcs. As the degree
of protrusion of the indenter increases, the test values
approached orocline values, even though primary arc values
would have been expected.

5. The strain partitioning mode in our progressive arc models
is similar to that observed in the external zones of
the northern branch of the Gibraltar Arc System in
terms of degree of protrusion, transport directions, types
and localization of the structures, trend-line pattern and
vertical-axis rotations. Other two natural cases of the
Mediterranean arcs that developed during a thin-skinned
regime are similar to our analog models. Although the
natural case studies are more complex due to intrinsic
heterogeneities (e.g., variations of the rheology of the
decollement level, variations in the ratio of competent/weak
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rock thickness, a.s.o.), analog modeling of progressive arcs
with a deformable backstop in map view can be used to
shed light on the type and kinematics of the structures
that develop during progressive development of arcuate
fold-and-thrust belts.
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