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Quantification of ground ice is crucial for understanding permafrost systems and

modeling their ongoing degradation. The volumetric ice content is however rarely

estimated in permafrost studies, as it is particularly difficult to retrieve. Standard

borehole temperature monitoring is unable to provide any ice content estimation,

whereas non-invasive geophysical techniques, such as refraction seismic and electrical

resistivity measurements can yield information to assess the subsurface ice distribution.

Electrical and seismic data are hereby complementary sensitive to the phase change.

A petrophysical joint inversion was recently developed to determine volumetric water,

air, ice and rock contents from electrical and seismic data using a petrophysical model,

but was so far only tested on synthetic data and one proof-of-concept field example.

In order to evaluate its applicability on different types of permafrost materials and

landforms (bedrock, rock glacier, talus slope), we apply this petrophysical joint inversion

scheme to five profiles located in the northwestern Alps. The electrical mixing rule

(Archie’s second law) was hereby identified as a source of model uncertainty, as it

applies only when the electrolytic conduction is the dominating process. We therefore

investigate and compare four petrophysical models linking the electrical resistivity with

the ground constituents: Archie’s law, Archie’s law with an additional surface conduction

factor, a model considering only surface conduction, and the geometric mean model.

In most cases, the three first resistivity relations yield largely comparable results, whose

reliability is discussed. The geometric mean model better resolve high ice content, as

it is less influenced by the ice-rock ambiguity. We perform a systematic analysis of the

regularization parameters and then evaluate our results with validation data including

thaw depths and ice contents derived from borehole measurements. Geophysical

surveys have generally a lower resolution than borehole data, but have the advantage

of providing spatio-temporal information in 2D or 3D. The joint inversion results are in

relatively good agreement with the validation data for all sites from ice-poor to ice-rich

conditions, when choosing the most adequate resistivity model and porosity initial value.

Additional forcing constraints (e.g., porosity range constraint) based on site knowledge

can improve the model parameter estimation.

Keywords: joint inversion, ground ice content, mountain permafrost, geophysics, electrical resistivity, refraction

seismic, petrophysic
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1. INTRODUCTION

Permanently frozen soils are a sensitive climate indicator and
the ongoing permafrost degradation is likely to accelerate further
in the future (IPCC, 2019), as high latitude and mountain
chains are regions, which are especially sensitive to climate
change induced temperature increase (e.g., Pepin et al., 2015).
Permafrost is an invisible thermal phenomenon (defined as
ground at or below 0◦C during at least 2 years, Harris et al., 1988).
Ground temperature increase near the ice melting point leads to
permafrost thaw andmay affectmountain slope stability (Ravanel
et al., 2017). Quantification of the volumetric ground ice content
is therefore an important means to understand the current state
of alpine permafrost as well as to monitor its future evolution.
Ground ice content can typically vary from 0 to 100%, depending
on the permafrost landform, from ice-poor bedrock to ice-rich
talus slope or rock glaciers (e.g., Kenner et al., 2019).

Ice content is a key factor in permafrost studies (e.g., Scherler
et al., 2013) and is generally unknown as it is especially difficult
to assess quantitatively and even more challenging to monitor.
Exceptions are studies analysing ice cores of e.g., rock glaciers
with the aim to directly measure the ice content in one dimension
(Haeberli et al., 1988; Monnier and Kinnard, 2013; Krainer
et al., 2015). Borehole-derived ground ice analyses from multiple
boreholes and extrapolation over a large area was undertaken by
Wang et al. (2018). Nuclear well logging methods were also used
to quantify the porosity and the ice content in one dimension
(Barsch et al., 1979; Scapozza et al., 2015).

Boreholes are however costly and logistically difficult in high
mountain terrain. In many permafrost studies, the detection of
ground ice is therefore undertaken through indirect and non-
destructive geophysical methods, such as electrical resistivity
tomography (ERT), ground penetrating radar, refraction seismic
tomography (RST), or gravimetry (e.g., Hauck and Kneisel,
2008). ERT is the most commonly used method due to the
high sensitivity of electrical resistivity to the presence or absence
of liquid water and the relatively short time needed for data
acquisition and processing (e.g., Kneisel et al., 2008). Also
repeated RST measurements can yield an estimation of ground
ice variation (e.g., Hilbich, 2010; Draebing, 2016). Ground
penetrating radar surveys are often conducted to characterize
the internal composition and structure of e.g., rock glaciers (e.g.,
Degenhardt, 2003; Hausmann et al., 2007; Maurer and Hauck,
2007;Monnier and Kinnard, 2013;Merz et al., 2016). Gravimetric
measurements were performed to delineate zones characterized
by different ice content within rock glaciers (e.g., Vonder Mühll
and Klingelé, 1994; Hausmann et al., 2007). Hausmann et al.
(2007) quantified the total ice content of a rock glacier by
carrying out gravimetrical, ground penetrating radar, and seismic
measurements to estimate the ice content assuming an a priori air
content and the absence of liquid water content. New approaches
include the possible estimation of ground ice variation through
subsidence measurements using reflected GNSS signals (Liu and
Larson, 2018) or through spaceborne gravity measurements (e.g.,
Vey et al., 2012). Since information from one method is often
ambiguous, many cryogeophysical studies use a combination
of different geophysical methods (e.g., Hausmann et al., 2007;

Kneisel et al., 2008; Doetsch et al., 2012; Buchli et al., 2013;
Parsekian et al., 2015; Briggs et al., 2016; Merz et al., 2016; Pellet
et al., 2016; Emmert and Kneisel, 2017; Léger et al., 2017; Mewes
et al., 2017).

Seismic and electrical methods have complementary
sensitivities and are often combined in different ways (e.g.,
Zhang and Morgan, 1997; Gallardo and Meju, 2004; Garofalo
et al., 2015; Ronczka et al., 2017). Carcione et al. (2007) reviewed
the cross-property relations between electrical conductivity and
seismic velocity. They choose the porosity as the key property
permitting to establish relationships between these two physical
parameters. The so-called four-phase model (4PM) developed
by Hauck et al. (2011) estimates ice, water and air contents from
simple petrophysical relations involving electrical resistivities
and seismic velocities. The 4PM was applied successfully in
several recent permafrost studies (Pellet et al., 2016; Hauck
et al., 2017; Mewes et al., 2017). However, the approach requires
to prescribe the porosity and is based on individual seismic
and electric inversions with the danger of introducing physical
inconsistencies in the final results.

To fully exploit two independent geophysical datasets and
to improve the reliability of the individual results, several
possibilities exist: (i) joint interpretation of two datasets (as in the
above cited studies), (ii) joint inversion, where datasets exploit
complementary sensitivities (e.g., structural joint inversion), and
(iii) joint inversion of one common parameter (e.g., water
saturation or porosity) from two separate datasets (petrophysical
joint inversion). In the present paper we focus on the latter
approach, i.e., the inversion of several common parameters from
two independent geophysical methods.

Inverse theory has been extensively used for decades in applied
natural sciences to analyse data (Menke, 1989), whereas the
concept of joint inversion itself was introduced in 1975 by
Vozoff and Jupp. Zhang and Morgan (1997) can be counted
among the first to develop joint inversion strategies for physically
uncorrelated datasets (e.g., seismic velocities and electrical
resistivities). Many modern joint inversion algorithms have
been developed to improve the inversion results, reduce the
uncertainties and incorporate a priori knowledge (e.g., Gallardo
and Meju, 2004; Doetsch et al., 2010; Karaoulis et al., 2013;
Garofalo et al., 2015; Linde and Doetsch, 2016; Hellman et al.,
2017).

Two main approaches of joint inversion are co-existing
in the literature: structural and petrophysical joint inversion
(e.g., Gallardo and Meju, 2004). Structural joint inversion is
based on the assumption that geophysical subsurface images
from unrelated physical properties are associated to the same
geological structure (e.g., Garofalo et al., 2015). The similarity
between both images can be expressed by the so-called
cross-gradient function. In petrophysical joint inversions (PJI),
commonmaterial properties (often porosity or water content) are
used as the link between electrical resistivity and P-wave velocity
for example (e.g., Carcione et al., 2007; Garofalo, 2014; Rücker
et al., 2017).

To improve the characterization of the composition of frozen
ground, Wagner et al. (2019) developed a PJI framework to
quantify water, ice, and air contents from geophysical datasets
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based on the 4PM approach (Hauck et al., 2011). The approach
was successfully validated on synthetic datasets and a proof-of-
concept field application (Schilthorn field site). Theoretically,
the major advantages of this approach in comparison with
the original 4PM are: (i) its physical consistency between the
electrical and seismic datasets and the obtained subsurface
composition, (ii) the possibility to estimate the rock content,
which is inverted together with the three pore constituents, as
part of the output model parameter vector (the rock content has
to be prescribed in the original 4PM), and (iii) the possibility
to incorporate non-geophysical information on the petrophysical
target parameters in the inversion.

The objectives of this contribution are to (i) apply and extend
the algorithm developed by Wagner et al. (2019) by testing
different petrophysical relations and apply them to several field
sites, which represent a high diversity of mountain permafrost
landforms, from ice-poor to ice-rich grounds, (ii) analyse the
influence of the regularization parameters, and (iii) validate the
results with borehole data (temperature and direct or indirect
measurements of ice content data). Different equations linking
the electrical resistivity to water content (taking into account
the electrolytic conduction, the surface conduction, or both) are
explored. Furthermore we analyse whether the PJI in general or
the specific petrophysical equations in detail are more applicable
for certain field site characteristics. Finally, an assessment of
the added value of a PJI approach compared to standard
geophysical interpretations is proposed and remaining challenges
are discussed.

2. METHOD

2.1. Origin of the Approach
The original 4PM consists of a system of simple petrophysical
equations (Archie’s second law and Timur’s time-average
equation) with input data consisting of porosity, P-wave
velocities derived from inverted travel times, and the inverted
electrical resistivities. Output data are subsurface ice, water and
air content (Hauck et al., 2011). The 4PM has undergone a
constant improvement since its development (Python, 2015;
Pellet et al., 2016; Hauck et al., 2017), but the porosity
always needs to be prescribed (cf. Figure 1A), although it is
mostly unknown.

The basic constraint of the model is the assumption that the
subsurface is composed of the volumetric fractions of four phases:
the rock matrix fr, water fw, ice fi, and air fa:

fr + fw + fi + fa = 1 (1)

The ice fraction is hereby an additional model parameter
compared to most applied hydrogeophysical studies (e.g., Linde
and Doetsch, 2016), whereas the air fraction is absent in the
system of equations under saturated conditions (e.g., Rücker
et al., 2017). In these cases, the number of model parameters
in the system reduces to three (air or ice content assumed to
be zero), contrary to most permafrost field cases, where all
four phases can have strictly positive values. However, by using
uncoupled electrical and seismic data (individual inversions, cf.

A

B

C

FIGURE 1 | Schematic on the estimation of water, ice, and air from electrical

resistivity and refraction seismic data (modified after Wagner et al., 2019). (A)

Conventional inversion of both datasets with subsequent petrophysical

transformation. (B) Petrophysical joint inversion honoring both datasets and

petrophysical relations during parameter estimation. (C) Field applications and

validation data of this paper.

Figure 1A), their use in separate petrophysical equations may
lead to non-physical results, i.e., volumetric contents below zero
or larger than one, which, as a sum, may still satisfy Equation (1).
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These shortcomings led to the recent development of a joint
inversion code to fully use the complementarity of independent
geophysical data (Wagner et al., 2019). Figures 1A,B highlight
the conceptual differences of both inversion approaches. In the
original 4PM, both the apparent electrical resistivities and the
refraction seismic travel times are inverted individually, and
assuming a porosity distribution, the inverted resistivities and
seismic velocities are then used in a system of petrophysical
equations to retrieve the water, ice and air contents (Figure 1A).
In the PJI (details are given in section 2.3), the apparent
resistivities and travel times are used to directly and jointly
invert for rock, ice, water, and air contents (Figure 1B).
Petrophysical equations and additional porosity constraints as
well as regularization parameters appear in the joint inversion
core equations (yellow boxes in Figure 1B). These yellow boxes in
Figure 1B and the field applications and validation (Figure 1C)
constitute the scope of this paper.

2.2. Petrophysical Relations
Both P-wave velocity and electrical resistivity are sensitive to
ice-to-water phase changes (Scott et al., 1990). However, no
analytical relationship exists between resistivity and P-wave
velocity (Gallardo and Meju, 2003). To develop a PJI scheme
for geoelectric and seismic measurement data, the corresponding
petrophysical relationships have to be combined.

Numerous petrophysical relationships for seismic velocity and
electrical resistivity are available in the literature, including cross-
property relations representing a given type of rock based on
experimental data (e.g., Carcione et al., 2007; Glover, 2010). For
the seismic data, we use the time-average equation (Equation
2) to predict the bulk velocity v from the constituent fractions
and their individual velocities, which is an extension of the time-
average approach by Timur (1968) to account for all four phases
present in permafrost (cf. Hauck et al., 2011):

1

v
=

fr

vr
+

fw

vw
+

fi

vi
+

fa

va
(2)

The four phase velocities are named similarly to the volumetric
fractions: vr, vw, vi, va. Their values are considered constant and
equal to values found in the literature (e.g., Hauck et al., 2011).

Archie’s law (Archie, 1942) is used in the original 4PM
and also for the PJI study by Wagner et al. (2019), although
other relationships were tested within the conventional 4PM
(e.g., unpublished Master thesis, Python, 2015). The electrical
resistivity ρ (or conductivity σ ) combines the contribution
of three conduction mechanisms: particle conduction, surface
conduction, and electrolytic conduction (e.g., Klein and
Santamarina, 2003). According to Duvillard et al. (2018),
the surface conduction is often (and incorrectly) neglected
in geophysical studies using the original Archie’s law. In the
following, we therefore compare and test four different relations
linking ρ with the respective ground properties.

2.2.1. Archie’s Law (Model A)
Archie’s second law is one of the oldest and most often used
relations linking the bulk resistivity ρ with the pore water content

(Archie, 1942, Equation 3) and is generally recognized as valid
when electrolytic conduction dominates, an assumption, that is,
however, not always justified.

ρ = ρw (1− fr)
−m

(

fw

1− fr

)−n

(3)

ρw, m and n denote hereby the pore water resistivity, the
cementation exponent and the saturation exponent (Archie,
1942), respectively. Without detailed site-specific knowledge, the
empirical parametersm and n are assumed constant over space.

2.2.2. Archie’s Law With Surface Conduction Factor

(Model A+)
Several modified versions of Archie’s law were developed to
account for contributions from additional conduction processes,
such as surface conduction (e.g., Sen et al., 1988; Glover, 2010).
Equation (4) is a modified form ofWaxman and Smits (1968) and
Sen et al. (1988) accounting for unsaturated conditions (see also
e.g., Friedel et al., 2006; Revil et al., 2014). We follow the notation
of Python (2015), who introduced the factor ε (in S/m, Equation
4) to account for surface conduction in addition to electrolytic
conduction. Equation (4) is named A+ (i.e., Archie’s law with
surface conduction factor) in the following.

ρ =
ρw

1+ ε ρw
(1− fr)

−m

(

fw

1− fr

)−n

(4)

2.2.3. Surface Conduction Model (Model D)
At very low pore water salinity in the often dry and ion-
poor substrates in mountain permafrost, surface conduction may
also play the dominant role and electrolytic conduction can be
neglected. According to Duvillard et al. (2018), in these cases, the
bulk resistivity can be derived as follows:

ρ =
1

σ
=

1

σw (fw)2 + b fw
(5)

with pore water conductivity σw = 1/ρw and b = ρg B CEC.
ρg denotes the grain density (in kg/m3), B denotes the apparent
mobility of the counterions for surface conduction (in m2/V/s),
and CEC is the cation exchange capacity (in C/kg). CEC can vary
by several orders of magnitude for different types of material
(e.g., Coperey et al., 2019). In the case of low pore water salinity
(σw ≃ 0), the resistivity can be approximated by the expression
of surface conduction only (Duvillard et al., 2018), named model
D in the following:

ρ =
1

b fw
(6)

As measurements or estimations of the variables B and CEC are
rare and difficult to obtain for real-world cases in high mountain
environments, and as the constituents of the parameter b likely
vary significantly in space and especially with depth, where
measurements are difficult to perform (or numerous samples
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expensive to retrieve), we choose to apply Equation (6) with the
factor b spanning over a large range of values including the values
measured by Duvillard et al. (2018) to test this approach within
our joint inversion framework. The factor b was found to be on
the order of magnitude of 10−7 S/m by Duvillard et al. (2018).

2.2.4. Resistivity Geometric Mean Model (Model G)
Finally, the geometricmeanmodel assumes randomdistributions
of the four phases, i.e., arbitrary shaped and orientated volumes
of the four phases (Glover, 2010):

ρ = ρ
fr
r · ρ

fi
i · ρ

fw
w · ρ

fa
a (7)

with ρr, ρa, and ρi, the resistivity of the rock, air and ice,
respectively. Equation (7) has the advantage to include the
fractions of the four phases (in contrast to the three other models
A, A+, and D, where both the ice and air contents do not appear
explicitly and are therefore not constrained by these equations).
The geometric mean model (G) has however the disadvantage to
add more unknowns in the system of equations, such as the rock
matrix resistivity (which can also vary in space). Figures S1, S2
highlight the differences in the solution space between the 4PM
using Archie’s law (model A) and the resistivity geometric mean
model (model G).

2.3. Petrophysical Joint Inversion Scheme
Wagner et al. (2019) developed a PJI scheme for four phases
leveraging on the forward modeling capabilities available in
pyGIMLi (Rücker et al., 2017). They implemented the modified
Timur’s equation and Archie’s law (Equations 2 and 3, as in
Hauck et al., 2011) to validate the approach for synthetic
datasets and a proof-of-concept field application at the Schilthorn
monitoring site. The pyGIMLi-based code is conceived flexible
to apply additional constraints or to apply other petrophysical
relationships, which facilitates comparison studies as presented
in this work.

In the following, we follow the notation of Wagner et al.
(2019). The input data vector ddd contains the travel times ttt and
the logarithm of apparent resistivities ρaρaρa to ensure positivity
(Equation 8), whereas the output parameter vector ppp contains the
volumetric fractions of rock, water, ice, and air (Equation 9):

ddd =
[

ttt, log(ρaρaρa)
]T

(8)

with T denoting the transpose matrix.

ppp =
[

fff w, fff i, fff a, fff r
]T

(9)

The inversion itself consists ofminimizing the following objective
function (Wagner et al., 2019):

‖WWWd(ddd − F(mmm))‖22 + α2‖WWWmmmm‖22 + β2‖WWWsum
p ppp− 111‖22 → min .

(10)
The first term of Equation (10) corresponds to the misfit between
the data vector ddd and the model response FFF(mmm) incorporating
the data errors in the data weighting matrix WWWd. As we do not
have an accurate estimate of data errors, WWWd includes two data

error values, errρa and errtt, applied for all apparent resistivity
data and all travel time data, respectively, which correspond
to the root mean square errors (RMS) found by the respective
individual inversions.

The second term corresponds to a smoothness regularization
applied to the model vectormmm, where α denotes the smoothness
regularization parameter and where the model smoothing matrix
WWWm serves to enhance smoothness in the distribution of each
constituent of the parameter vector.

The third term represents a supplementary regularization
term to fulfill the volume conservation constraint in Equation
(1). β denotes hereby the volumetric conservation regularization
parameter. WWWsum

p is a matrix of four adjacent identity matrices
acting on the parameter vector ppp to favor solutions for
which the sum of the four volumetric fractions approaches
unity. See Wagner et al. (2019) for more details on the
PJI scheme.

Constraint setting is flexible for each model parameter (within
a fourth optional term in the objective function, Wagner et al.,
2019). At first, the porosity φ (i.e., 1 − fr) is constrained
within a conservative physically plausible range (between φmin

and φmax). The three pore fractions are constrained physically
between zero and porosity. By this and the penalization of
solutions, which do not conserve the volume (Equation 1) in the
objective function, non-physical solutions of the inverse problem
are avoided. If a priori knowledge is available, the volumetric
fractions can be further constrained, i.e., their possible range can
be reduced.

3. FIELD SITES AND DATASETS

3.1. Geophysical Datasets
The input data of the joint inversion problem consist
of compressional wave travel times and apparent electrical
resistivities. Apparent resistivity data were acquired through a
Geotom instrument (Geolog, Germany) or a Syscal resistivity
meter (Iris Instruments, France) and were filtered following
the procedure described in Mollaret et al. (2019). Seismograms
were recorded through a Geode system (Geometrics, USA). First
breaks were picked manually within the software REFLEXW
(Sandmeier, 2019).

ERT and RST profiles are collocated for each site described
in the following. Survey geometry set-up is given in Table 1

indicating sensor number and interval as well as ERT acquisition
scheme and the number of seismic shoot points. For illustration,
we obtained individually inverted tomograms of each profile
presented in Figure 2 using the open-source library pyGIMLi
(Rücker et al., 2017). Their dates of measurements and the
resulting individual RMS errors are indicated in Figure 2.
Resolution capacity and data quality differ for each site and
method (cf. RMS error and the geometrical set-up indicated in
Figure 2 and in Table 1, respectively).

3.2. Field Sites
For the evaluation of the applicability of the PJI for a wide
range of permafrost landforms and materials, we choose several
field sites from our monitoring network including bedrock,
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TABLE 1 | Summary of ERT and RST profile set-ups and borehole characteristics.

Site/profile Cervinia Lapires vertical Lapires horizontal Doldenstock Murtèl

Site abbreviation CER LAV LAH DOV MCO

Electrode interval (m) 2 4 4 5 5

Electrode number 48 70 40 62 48

Array WS W W W W

Geophone interval (m) 4 7 8 4 5

Geophone number 24 43 24 42 48

Shot number 12 35 25 21 21

MAAT (◦C) −3.2 1.3 1.3 0.5 −1.8

Borehole SH DP LAP_1208 LAP_0198 LAP_1108 LAP_0198 DOL1 DOL2 COR_0287

TLT (m) 3.1 4.8 4.4 5.2 3.9 5.1 1.5 0.7 3.5

ALT (m) 4.5 5.5 4.4 5.4 4.4 5.4 1.8 0.8 3.5

T10m (◦C) −1.0 −0.3 −0.2 −0.3 −0.2 −0.3 −0.4 −1.8

WS, Wenner-Schlumberger; W, Wenner; MAAT, mean annual air temperature; TLT, thaw layer thickness (at the time of the measurement); ALT, active layer thickness (of the year of the

measurement); T10m, temperature at 10 m depth (if available).

Data source: Pogliotti et al. (2015) for CER; PERMOS (2019b) for LAH, LAV, and MCO; Nils Hählen (Office of forest and natural hazards of the Canton of Bern, Switzerland) for DOV.

talus slope, and rock glacier sites and from ice-poor to ice-rich
conditions. The chosen sites are located in four different regions
of the northwestern Alps (Figure 2A).

Borehole temperature information and ice content were used
as validation data (Figure 1C). Table 1 summarizes site and
borehole information of the study sites. In the following, each
of the four sites (including five profiles) is shortly described
including a geophysical interpretation from the independent
inversions (see Figure 2). In addition to these five profiles, the
results of Wagner et al. (2019) of the proof-of-concept Schilthorn
site are reproduced in section 5.2 for comparison purposes. The
Schilthorn field site, located in the Bernese Alps, Switzerland,
has been extensively investigated (e.g., Hilbich et al., 2008,
2011; Pellet et al., 2016). Wagner et al. (2019) offer a detailed
description of the site and data used within the joint inversion
(which is not repeated here).

3.2.1. Cervinia Rock Plateau
The Cervinia field site (CER) is located on the high-altitude
plateau (3,100 m a.s.l.) of Cime Bianche in the Aosta valley, Italy
(45◦ 55′09′′N, 7◦ 41′34′′E).

Sporadic bedrock outcrops are visible in the highly weathered
surface layer of fine-grained to coarse-grained debris of mica
schists (up to a couple of meters thick).

Ground temperatures are monitored in two boreholes by
the Environmental Protection Agency of Aosta Valley (ARPA,
Pogliotti et al., 2015).

Annual geophysical measurements of the same profile are
performed since 2013 (Pogliotti et al., 2015; Pellet et al., 2016;
Mollaret et al., 2019). In the tomogram in Figure 2D, the lowest
velocities (corresponding to a high air content) occurring in the
near-surface are interpreted to be a porous debris layer. The
highest surface velocities around borehole DP correspond to
weathered bedrock outcrops. The thaw layer is however hardly
discernible from ERT and RST.

3.2.2. Lapires Talus Slope
The Lapires site is an alpine talus slope located at 2,500 m
a.s.l. in the Valais Alps, Western Switzerland (6◦ 06′22′′N, 7◦

17′04′′E). Its lithology mainly consists of gneiss. Excavation
during the construction of a chairlift pylon proved the presence
of ground ice in the talus slope (Delaloye and Lambiel, 2005).
Staub et al. (2015) used ground surface temperature data to
create a local permafrost distribution map, which highlights
the occurrence of large patches of permafrost, but not covering
the whole talus slope. The talus slope is characterized by the
occurrence of internal convective air circulation, causing a net
cooling especially in the lower part of the slope (Delaloye and
Lambiel, 2005). Four boreholes were drilled in the Lapires talus
slope, one in 1998 and three in 2008 (including one without
permafrost) (PERMOS, 2013, 2019b).

Geophysical measurements were performed along two
orthogonal profiles: the Lapires horizontal profile (LAH, Hilbich,
2010; Mollaret et al., 2019; PERMOS, 2019a) and the Lapires
vertical profile (LAV, PERMOS, 2013; Scapozza, 2013). Hilbich
(2010) investigated and jointly interpreted seasonal changes in
electrical resistivities and seismic travel times at LAH.

Scapozza et al. (2015) carried out radioactivity logs at two
boreholes in 2010 to quantitatively estimate the ice content
and the apparent porosity from gamma-gamma and neutron-
neutron logs, respectively. The two independent loggingmethods
are consistent to each other, which confirms the robustness
of the approach. Ice content estimations by nuclear logging
highlight partially ice saturated to supersaturated conditions
(Scapozza et al., 2015). The two boreholes (LAP_1108 and
LAP_1208) are each located along one of the two profiles (see
Figures 2B,C). The considered ERT and RSTmeasurements were
conducted shortly before the well logging (about a month earlier
at LAH/LAP_1108).

Low velocities occur within the uppermost 4–5 m thick
layer, as well as on the left of both LAH and LAV profiles
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FIGURE 2 | (A) Field site location map, field site photographs with red lines indicating the geophysical profile position, and electrical resistivity and refraction seismic

tomograms (individual inversions) for (B) LAH, (C) LAV, (D) CER, (E) DOV, and (F) MCO. In the tomograms, the vertical axis is exaggerated by 50% for a better

readability. The individual RMS error of each tomogram is indicated nearby, as well as the date of measurements and the minimum and maximum values of the

tomograms. Black lines indicate the borehole and thaw layer positions.

(Figures 2B,C). They indicate the absence of ice and a high
porosity (filled by air, cf. Scapozza, 2013). High resistivities
in combination with intermediate velocities (3,000–4,000 m/s)
are interpreted to correspond to the highest ice contents
(see Figures 2B,C). Maximum velocities do mostly not exceed
4000 m/s and indicate that no bedrock was encountered
down to ∼ 20 m depth (except for the lowermost part
of LAV).

3.2.3. Doldenstock Rock Glacier
The Doldenstock field site is located at 2,550 m a.s.l. in the
Bernese Alps, Switzerland (46◦ 28′42′′N, 7◦ 42′37′′E). Typical
creeping structures indicate the presence of a rock glacier. The
lithology is dominated by limestones and marls (Federal Office

of Topography Swisstopo, 2019). Outcropping bedrock was
observed further up-slope, but not along the geophysical profiles.

From the two orthogonal geophysical profiles carried out on
the rock glacier in summers 2015 and 2016 (Hilbich et al., 2019),
the vertical profile (DOV, see Figure 2E), crosses the main part
of the rock glacier and continues over the rooting part zone in
its upper part. Two boreholes (DOL1 and DOL2) were drilled
along this vertical profile in 2016. Bedrock was encountered at
6 and 16 m depth, below a 4.5 and 15 m thick layer of massive ice,
respectively (Hilbich et al., 2019).

The rock glacier is characterized by very high resistivities (>
105 �m) occurring at depth in the center of the profile (between
the boreholes), which coincide with moderate velocities (3,000–
4,000 m/s), suggesting ice-rich conditions. On the contrary, high
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velocities (6,000–7,000 m/s) with medium resistivities (104 −

105 �m) indicate the bedrock in the upper part of the profile
(see Figure 2E).

3.2.4. Murtèl-Corvatsch Rock Glacier
The Murtél-Corvatsch field site (MCO) is located at 2,670 m
a.s.l. in the Engadine Valley, Eastern Swiss Alps, Switzerland
(46◦ 25′44′′N, 9◦ 49′18′′E). This rock glacier has been extensively
studied since 1987, when a deep borehole was drilled (Haeberli
et al., 1988; Hoelzle et al., 2002). Drill core analysis proved the
presence of massive ice with up to 80 to 100 Vol. % ice content.
Since then, numerous geophysical measurements were carried
out (Vonder Mühll and Klingelé, 1994; Maurer and Hauck, 2007;
Schneider et al., 2013). Hilbich et al. (2009) assessed the feasibility
of ERT monitoring techniques on coarse-debris ground, such as
Murtèl rock glacier.

Since 2006, annual ERT monitoring measurements are
conducted (Hilbich et al., 2009; Mollaret et al., 2019), and a
seismic profile was measured in 2007 along the same line.
Extremely high resistivity values can indicate either high ice or
air content. In the MCO tomogram in Figure 2F, resistivities up
to∼ 2.106 �m for depths >5 m correlate with moderate velocity
values (about 3,500 m/s), and evidence a high ice content, which
is confirmed by ice core data (Haeberli et al., 1988) as well as
ground penetrating radar surveys (Maurer and Hauck, 2007).
Due to the coarse-blocky material, even the unfrozen active layer
exhibits relatively large resistivities of ∼ 104 − 105 �m, which is
due to the large air-filled voids.

4. RESULTS

4.1. Porosity Constraint Influence
One of the main advantages of the joint inversion code developed
by Wagner et al. (2019) in comparison with the 4PM developed
by Hauck et al. (2011) is the estimation of the rock content, which
is inverted together with the three pore constituents as part of the
output model parameter vector (cf. Equation 9). Consequently,
the system of equations has more model parameters than data.
Hence, the more a priori information we implement, the more
constrained will be the system. In most field cases, a priori
knowledge of the porosity distribution can be incorporated, such
as a reduction of the possible porosity range, e.g., porosity is
usually lower than 0.7 where bedrock outcrops are visible.

To illustrate this dependency on the porosity constraint, the
petrophysical joint inversion has been run for the Cervinia
rock plateau using the extended Timur’s equation (Equation
2) and Archie’s second law (model A, Equation 3), with the
parameters specified in Table 2 and for three different porosity
ranges. Figure 3 shows the resulting four-phase distribution with
one subplot for each volumetric fraction as well as their sum
in the bottom row. Figure 3A represents a case without any
a priori information (the porosity being constrained between
φmin = 0 and φmax = 1 and the initial porosity φstart being 0.5,
i.e., the median value of all physically possible values), whereas
Figures 3B,C show two cases of constrained porosity ranges.

The water and air contents generally decrease with depth,
whereas the ice and rock contents generally increase with depth.

The comparison of all three cases shows that the porosity
constraint has little influence on water and air contents. The air
content reaches values up to 60% at the surface (porous debris
layer) and approaches 0% from 5 m depth downwards and in
the bedrock. Up to 30% water content is found near the surface,
whereas values around 5–10% are characteristic for the rest of the
tomogram.With identical inversion parameters, the case without
a priori knowledge leads to a sum of fractions deviating from
unity (bottom row of Figure 3); in contrast, the constrained cases
avoid deviations from unity. The case without constraint also
results in an (unlikely) decreasing rock content with depth (below
10 m depth) and higher ice content at depth, partly due to, both,
the high start porosity assumption and the inherent ice-rock
ambiguity of the petrophysical model considered (evidenced by
Hauck et al., 2011).

The occurrence of non-physically large porosity values at the
surface (i.e., fr < 0.2) in Figures 3A,B, is avoided by further
constraining the maximum porosity (φmax = 0.6) in Figure 3C.
We observe that the selected porosity constraint can improve
the plausibility of the results (Figure 3C). Resulting ice contents
are ∼0% in the surface layer and reached values around 5–
15% at depth (Figure 3C). Maximum rock content is about 90%,
whereas the minimum rock content is encountered in the surface
debris layer and reaches 40%, which represents however the
maximum porosity constraints (Figure 3C).

A special attention was paid to the selection of porosity ranges
according to each field site a priori knowledge, but without
constraining the model too restrictively during the iterative
process. The selected constraint values of porosity range (φmin

and φmax) and the homogeneous start porosity model (φstart) are
given in Table 2 for each site.

4.2. Comparison Between Conventional
4PM and Joint Inversion
To illustrate the difference between the conventional 4PM and
the PJI results we show a comparison of the two (again assuming
model A) for the reference case of the Cervinia rock plateau
in Figures 4A,B, respectively. A homogeneous porosity of 0.3
was assumed in the conventional 4PM and is also used as the
starting model in the petrophysical joint inversion. As mentioned
in section 2.1, the 4PM may result in non-physical values (e.g.,
volumetric fractions <0 or >1), which are blanked out in
Figure 4A.

By fixing the porosity in the 4PM, the near-surface low
velocities (cf. Figure 2D) result in a high air content (fa >

1), which is compensated by a negative ice content (fi <

0) to satisfy Equation (1). As demonstrated by Wagner et al.
(2019), non-physical values are avoided in the joint inversion
by the combined use of logarithmic barriers and the volume
conservation constraint in Equation (9). In the conventional
4PM case, the thaw layer is well-delineated around borehole
SH, but positive ice contents are estimated around borehole DP
(Figure 4A). In contrast, the PJI generates only physical values by
allowing the porosity to vary within a large range of values during
the inversion, resulting in large near-surface lateral variations in
porosity and identifying a low porosity zone (high rock content)
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TABLE 2 | Summary of selected parameters for each profile.

CER LAV LAH DOV MCO

Cervinia Lapires vertical Lapires horizontal Doldenstock Murtèl-Corvatsch

In
p
u
t
p
a
ra
m
e
te
rs

errρa (%) 2.5 8.0 4.0 1.3 6.0

errtt (ms) 0.7 1.3 1.3 0.7 1.5

φmin 0.1 0.2 0.2 0 0

φstart 0.3 0.4 0.4 0.6 0.6

φmax 0.6 0.7 0.7 1 1

α 10 15 10 12 15

β 5,000 4,000 5,000 10,000 5,000

zWeight 0.15 0.2 0.1 0.1 0.1

m 1.5 1.5 1.5 1.5 1.5

n 2.5 2.5 2.5 2.5 2.5

ε 0.1 0.2 0.1 0.1 0.1

b (�−1 m−1) 0.01 0.005 0.01 0.001 0.001

ρw (�m) 100 100 100 100 100

ρi (�m) 5.105 5.105 5.105 5.105 5.105

ρa (�m) 106 106 106 106 106

ρr (�m) 3.103 2.103 3.103 3.104 3.103

A

χ2 1.9 1.8 1.6 0.8 1.3

RMS (%) 6 11 8 6 9

fi (%) 10 25 31 46 44

A+

χ2 2.5 1.9 1.4 0.9 1.1

RMS (%) 7 10 8 6 8

fi (%) 15 31 38 48 47

D

χ2 1.4 1.8 1.7 0.9 1.2

RMS (%) 5 10 8 6 8

fi (%) 17 29 41 45 44

G

χ2 11.2 2.5 4.4 1.5 2.0

RMS (%) 12 12 11 7 11

fi (%) 25 30 28 88 95

The upper part provides the input parameters, whereas the lower part presents selected results (including the estimated averaged permafrost ice content in bold) using the four

petrophysical electrical models: A (Archie’s law), A+ (Archie’s law with a surface conduction factor), D (surface conduction model), and G (geometric mean model).

around borehole DP (corresponding to a weathered bedrock
outcrop visible at the surface, Figure 4B).

Moreover, below 10 m depth, the high P-wave velocities lead
to a negative air content in the conventional 4PM. A striking
feature is the large difference of ice content estimation by the
4PM and PJI, which is a consequence of the fixed rock content
in the 4PM case: the fixed pore volumes cause nearly ice-
saturated conditions. On the contrary, the PJI estimates a higher
rock content (lower porosity) at depth and around borehole
DP, which leads to a much lower total ice content estimation.
By estimating the rock content within the joint inversion, all
estimated pore fractions are considered to be more realistic
[e.g., the near-surface air content ∼0.5 (PJI) is more realistic
than >1 (4PM)].

Note that by definition, the sum of the four fractions is exactly
one in the 4PM case (as Equation 1) is part of the system of
equations), whereas it is only close to one for the joint inversion
(Figure 4B), as its difference to one is minimized within the

objective function (see also sections 2.3 and 4.3). Note as well
that the regions where the 4PM gives non-physical solutions
(i.e., in the lower part where fa < 0 and at the surface where
fi < 0, cf. Figure 4A) are corresponding to the regions where the
rock content seems problematic in the PJI case without a-priori
constraint (cf. Figure 3A).

4.3. Choice of Regularization Parameters
As for every inversion scheme in general, also the results of the
PJI highly depend on the choice of regularization parameters
(e.g., Mead and Hammerquist, 2013; Zaroli et al., 2013). The
higher the regularization (parameters), the smaller is the weight
of the observed data during the minimization of the objective
function (Equation 10), as more weight will be given to the
minimization of the regularization terms (e.g., resulting in
smoother results). An analysis of the regularization parameters
α, β , and zWeight was performed for all profiles by applying
a wide range of values for each regularization parameter to
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FIGURE 3 | Joint inversion results for the Cervinia profile with volumetric fractions of water fw, ice fi, air fa, rock matrix fr, and their sum using Archie’s law, shown for

three different porosity constraints: (A) without a priori knowledge, (B) with a homogeneous start porosity model φstart = 0.3 and excluding extreme values

(0.1 < φ < 0.9), and (C) limiting in addition maximum porosity φmax = 0.6. Boreholes and associated thaw depths are marked by black lines. Minimum and maximum

phase fractions are indicated for each tomogram.

determine the most adequate values, as explained and illustrated
in the following for the Cervinia field site and using Archie’s law
(Figures 5–7). Anisotropic smoothing (i.e., vertical anisotropic
smoothness zWeight 6= 1) is a method to enhance horizontal
or vertical structures. The use of a low constraint weight
for vertical boundaries (e.g., zWeight < 0.5) is a common
technique to improve the inversion results for predominantly
layered structures (Günther and Rücker, 2019). Choosing a low
value of zWeight would decrease the overall smoothness and
may lead to an overfitting of small-scale anomalies. This can
be compensated by increasing the smoothness regularization
parameter α. To account for this interdependency we therefore
simultaneously tested pairs of α and zWeight to determine their
most adequate values.

Classical inversion tools are used to assess the data misfit,
such as the RMS (in %), which gives an error estimation of
the model (Loke and Barker, 1996), or the dimensionless error-
weighted χ2 mathematical criterion (Günther et al., 2006). χ2 is a
measure of how well the model fits the data for a given data error
(χ2 = 1 means a perfect fit of the data within a given error level,
Günther and Rücker, 2019). According to Günther et al. (2006),
χ2 values around 1–5 show reliable results avoiding data overfit

or underfit, while Audebert et al. (2014) considers χ2 up to 10
giving reliable results.

Joint inversion results have inherent uncertainties due to
the non-uniqueness of the solution, i.e., several models can fit
the data similarly well within the given error range. As data
errors are rarely known accurately and were in our case not
measured (through standard methods, such as e.g., reciprocal
measurements for ERT, LaBrecque et al., 1996), we had to
estimate them carefully. Underestimating the data errors would
prevent the inversion to converge (i.e., no solution would be
found with underestimated data errors), while overestimating
the data errors would prevent the lowest possible data misfit
(i.e., prevent obtaining the best possible subsurface image). The
individual inversion errors of both data types are used as first
guess data errors (errtt and errρa ). After the PJI run, the RMS and
χ2 of each data type are analyzed and are the base of a potential
re-evaluation of the data error estimation in order to reduce the
discrepancy between input data error and PJI-resulting RMS for
each data type. For instance, if χ2 < 1, a lower data error is set
according to PJI-resulting RMS of the data type considered.

Figures 5A,B show the variation of the resulting χ2 and RMS
for different values of the smoothness regularization parameter α.
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FIGURE 4 | Resulting phase fractions and their sum for the Cervinia field site

for (A) the conventional 4PM and (B) the PJI (using Archie’s law in both cases).

Boreholes and associated thaw depths are marked by black lines. Minimum

and maximum phase fractions are indicated for each tomogram.

For increasing α, both χ2 and RMS decrease until a minimum,
before increasing again. The α value resulting in the lowest χ2

and RMS values, which also corresponds to the most coherent
sum of all fractions (closest to one, Figure 5C) is therefore
considered the most appropriate. Within the range of acceptable
α values (between 10 and 50 in this example), the influence of α

on the ice content was found to be negligible (not shown).
Similarly, Figure 6 analyses the influence of the volume

conservation regularization parameter β on χ2, RMS, and
the sum of fractions. Both χ2 and RMS gently increase with
increasing β , until a threshold is reached, after which both χ2

and the RMS start to increase significantly (see Figures 6A,B).
Therefore, β should be chosen low enough to minimize
χ2 and RMS, but also high enough to satisfy Equation (1)
(see Figure 6C).

Figure 7 analyses the influence of the vertical anisotropic
smoothness zWeight on χ2, RMS, and the sum of all fractions.
For increasing zWeight, both χ2 and RMS decrease until a
minimum, before increasing again (Figures 7A,B). Minimum
values of χ2 and RMS also correspond to a sum of fractions close
to one (Figure 7C).

The use of anisotropic smoothing to account for observed
horizontal layering is often adopted especially for sedimentary
formations. Very high regularization anisotropy up to a ratio
1:100 are adopted in the literature (e.g., Attwa andGünther, 2013;
Binley et al., 2016). In our case, the application of anisotropic
smoothing has the aim to better delineate the active layer by
allowing a sharp transition in the ice content and other ground

FIGURE 5 | Scatter plot of the smoothness regularization parameter α against

(A) χ2, (B) RMS, and (C) minimum and maximum sum of the four fractions to

determine the most adequate value of α for the Cervinia field site (for constant

β and zWeight).

constituents. Resulting zWeight used within the PJI amount to
0.1–0.2 for our field sites (see Table 2).

To sum up, a careful determination of the regularization
parameters is essential for the inversion convergence. β has to be
chosen to minimize the sum of fractions, while the smoothness
regularization parameters should be chosen to minimize χ2

or RMS (if the input data errors are adequately chosen, the
minimum of both χ2 and RMS correlate).

4.4. Comparison of Different Petrophysical
Relationships
For all runs of the joint inversion, the selected input parameters
correspond to the lowest associated χ2 and RMS (i.e., the best
possible fits of the model with the data) and the regularization
parameters were determined as described in section 4.3. Porosity
constraints were chosen according to site geomorphology
understanding and are identified in the respective figures. For
the rock glaciers, in which ice supersaturation may occur, the
porosity is only physically-constrained (i.e., 0 ≤ φ ≤ 1), and
the starting porosity model is fixed to 0.6. Table 2 summarizes all
relevant input parameters for all field sites.
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FIGURE 6 | Scatter plot of the regularization parameter β constraining the

sum of fractions to be unity against (A) χ2, (B) RMS, and (C) minimum and

maximum sum of the four fractions to determine the most adequate value of β

for the Cervinia field site (for constant α and zWeight).

Figure 8 shows a comparison of the PJI results for the four
different electrical petrophysical models (described in section
2.2) for the Doldenstock profile. For better comparability, we
show the results as virtual borehole logs taken from the respective
points on the profile, where boreholes DOL1 and DOL2 are
located. Similarly for all petrophysical models, water and air
contents generally decrease from about 10 and 50% at the surface
to close to zero with depth, respectively (Figure 8). Using model
G, the water content diverges from the other models within the
first meters (0–3 m depth) at DOL2 and reaches values as high as
30%, which seems overestimated, especially in combination with
a high air content (i.e., fw ∼ 30% and fa ∼ 40% at the permafrost
table). Results for the water content seem more realistic for
models A, A+, and D, while the air content is considered to be
well-resolved within the thaw layer, as all different petrophysical
models (based on different physical conduction processes) give
similar results. One explanation may be that the air content
is mostly constrained by the common time-average equation
(Equation 2).

Rock and ice contents are also similar for all models close to
the surface at DOL1 (and to a lesser extent at DOL2), whereas

FIGURE 7 | Scatter plot of the vertical anisotropic smoothness parameter

zWeight against (A) χ2, (B) RMS, and (C) minimum and maximum sum of the

four fractions to determine the most adequate value of zWeight for the Cervinia

field site (for constant α and β).

model G diverges from the three others at depth. Only model G
detects a large difference in ice and rock contents between the
two boreholes, e.g., at 7 m depth, where fr ∼ 0.7 and fi ∼ 0.25
are found for DOL1 (bedrock), while fr ∼ 0.3 and fi ∼ 0.7 are
found for the rock glacier material at DOL2 (see Figure 8). The
ice content is hereby (realistically) estimated to be minimal in the
thaw layer. Hereby, values close to zero are found for model G
in DOL2 and slightly overestimated values around 10% for the
other models (the PJI resolution capacity is further addressed in
section 4.5).

Note that the joint inversions using the geometric mean
model (G) were run with a large number of combinations
of resistivity of each individual phase (ρw, ρi, ρa, and ρr
standing for the resistivity of water, ice, air, and rock matrix,
respectively) within the standard ranges found in the literature
(e.g., Hauck and Kneisel, 2008) for all sites. Almost all of these
runs led to unstable inversions (not shown) characterized by
very high χ2 values (>100 or 1,000), i.e., no convergence. An
adequate determination of the resistivities of the four phases
is challenging and may prevent a reliable model parameter
estimation. The above discussed Doldenstock results (Figure 8)
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FIGURE 8 | Borehole temperature measured in boreholes DOL1 and DOL2 and corresponding four-phase constituents estimated by the joint inversion with different

petrophysical models A, A+, D, and G for the Doldenstock profile. 0◦C temperature lines and thaw depths are marked by gray lines.

are one of the few examples, where the joint inversion using
model G actually converged. The material properties ρi and ρa
are not expected to be site-specific and are found to be similar
for all sites (see Table 2). Contrary to the 4PM, where it was
found that the parameter ρw may have a large influence on
the resulting ice contents, small variations in ρw in the model
G did not influence significantly the overall model parameter
estimation (tested ρw values were in any case of several orders of
magnitude lower than all three other constituents) (see Table 2).
Note that the model G always leads to slightly higher χ2

and RMS values (see Table 2), because as model G exerts a
stronger constrain on the model parameters, the data misfit
cannot be as low as in the case of the less constraining models
A, A+, or D.

While the reliability of models A, A+, and D relies on
a good initial porosity estimate, model G offers constraints
for all four phases (as for the time-average seismic equation).
In contrast, the resistivity models A, A+, and D constrain
only the water content for a given porosity. This may
theoretically imply a higher reliability for model G as all
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FIGURE 9 | Borehole temperature measured in COR_0287 and corresponding four-phase constituents estimated by the joint inversion for the Murtél profile. The ice

content data derived from density measurements (Haeberli et al., 1988) is included. 0◦C temperature lines and thaw depths are marked by gray lines.

four phase contents are constrained by both geophysical
datasets. However, the adequate determination of the resistivities
of the four phases is challenging (see also the strongly
restricted solution space for model G compared to A in
the Supplementary Material) and may prohibit meaningful
PJI results.

4.5. Ice Content Estimation Comparison
With Ground Truth
Previous quantification of ice content exists at Murtél
(through core density measurements and direct observations,
Haeberli et al., 1988) and at Lapires (through nuclear
well logging, see section 3.2.2, Scapozza et al., 2015).
Figures 9–11 show the PJI results for MCO, LAH, and

LAV, respectively as virtual boreholes in comparison with these
ice content estimations.

4.5.1. Murtèl Case
Figure 9 shows the borehole temperature as well as the PJI
results for all four phases in comparison with the ice content
estimated from the core density measurements in borehole
COR_0287 (Haeberli et al., 1988) atMurtél. For all four resistivity
petrophysical models the minimum and maximum porosity
constraints were set to 0 and 1, and the start porosity was set
to 0.6. All four resistivity petrophysical models yielded similar
χ2 and RMS values (see details in Figure 9 or Table 2). An ice
content of roughly 95% (i.e., similar to the validation data) was
only estimated when the geometric mean model was considered,
whereas the three other resistivity models (A, A+, and D)

Frontiers in Earth Science | www.frontiersin.org 14 April 2020 | Volume 8 | Article 85

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Mollaret et al. Applied Permafrost Petrophysical Joint Inversion

FIGURE 10 | Borehole temperature measured in LAP_1108 and corresponding four-phase constituents estimated by the joint inversion of LAH, including the

corresponding data derived from nuclear logging performed by Scapozza et al. (2015) at Lapires. 0◦C temperature lines and thaw depths are marked by gray lines,

respectively (23 August 2010, date of geophysical surveys). The black horizontal lines as well as the thin temperature curve correspond to the date of the nuclear

logging data (30 September 2010). Vertical dotted lines mark the rock constraint limits (from the prescribed porosity range).

exhibit largely comparable results, but which do not match the
validation data. The upper boundary of the massive ice core
(known from the validation data) was however not well-resolved
by model G (due to resolution capacity further discussed in
section 5.2).

Models A, A+, and D mainly constrain the water content (cf.
the respective equations in section 2.2) and are subject to ice-
rock ambiguity (Hauck et al., 2011). This ambiguity manifests
itself by yielding similarly low RMS errors for a large range of
different ice-rock combinations (e.g., for 100% ice, 100% rock, or
50/50% ice/rock). As the RMS depends more on the rock and ice
sum, than on the ice-to-rock ratio for certain resistivity-velocity
pairs (i.e., high resistivities 105− 106 �m, and medium velocities
3,000–4,000 m/s), this ambiguity leads to solutions, which favor
ice contents, which are close to the start porosity model. PJI runs
considering models A, A+, and D with a higher start porosity
(not shown) therefore led to significantly higher estimated ice
contents, however, in this case ice contents were also erroneously
increased in the unfrozen thaw layer.

Thus, for the case of the massive ice occurrence in Murtél
rock glacier, models A, A+, and D do not well constrain the
inversion and lead to a large start porosity dependence. On
the contrary, the geometric mean model G, which succeeds to

correctly estimate the ice content and the air-filled blocks in
the thaw layer according to the validation data, seems the most
realistic and reliable petrophysical model for Murtél. Moreover,
the inflection point of the ice content estimation curve fits well
the ice content validation data (see Figure 9).

4.5.2. Lapires Case
Figures 10, 11 show the comparison between the borehole
analysis of Scapozza et al. (2015) and the joint inversion results
of the profiles LAH and LAV at the location of the boreholes
LAP_1108 and LAP_1208, respectively. All four petrophysical
models in Figures 10, 11 show overall similar results with the
lowest ice content estimate for model A and the highest ice
content estimate for model G.

For both borehole locations, the ice content estimated from
the PJIs is in the range of the mean nuclear logging-derived
ice content (except for model G at LAH, Figure 10, and for
model A at LAV, Figure 11). As the PJI relies on the spatial
resolution of both geophysical methods, its resolution is much
smaller than the resolution of typical logging techniques. For
this reason and due to the use of smoothness regularization,
the joint inversion cannot image local minima and maxima in
the ice content, as visible in the well logs. Radioactive logging
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FIGURE 11 | Borehole temperature measured in LAP_1208 and corresponding four-phase constituents estimated by the joint inversion of LAV, including the

corresponding data derived from nuclear logging performed by Scapozza et al. (2015) at Lapires. 0◦C temperature lines and thaw depths are marked by gray lines.

Vertical dotted lines mark the rock constraint limits (from the prescribed porosity range).

data also have uncertainties due to calibration processes, the
small radius of measurements, and in the case of Lapires, due
to the gap in time between the date of drilling and the date of
logging (water freezing along the casing may have occurred in
between, Scapozza et al., 2015). However, the validation rock and
ice content data are derived from independent logging methods,
gamma-gamma and neutron-neutron, respectively. Because of
higher uncertainties in the rock content and because of the
extremely low rock content estimates (reaching only 10% in
certain regions), the nuclear logging-derived rock content was
considered less reliable than the ice content validation data
(Scapozza et al., 2015). The PJI ice content estimation for Lapires
corresponds well to the average values derived from the neutron-
neutron log (Scapozza et al., 2015), whereas the rock estimation
differs significantly (Figures 10, 11).

The overestimated surface water content and underestimated
surface air content from model G at the coarse-blocky LAH
site (i.e., 50% water, Figure 10) are not due to unreliable
PJI estimates, but rather stem from the concrete chairlift
pylon foundation which is characterized by a high electrical
conductivity (see LAH ERT in Figure 2B). The combination of
the resulting small resistivity and small P-wave travel times is
then translated into low air content (corresponding to small
travel times) and high water content (corresponding to small
resistivities) estimations in the PJI.

In contrast to Murtél, where the rock content estimation
depends very much on the start porosity value and is
overestimated at depth for models A, A+, or D (supersaturated
rock glacier, Figure 9), the rock content estimation at Lapires
(frozen but not supersaturated talus slope, cf. Figures 10, 11)
from the PJI seems more realistic than the corresponding well
logging estimates (20% rock content on average is considered an
underestimation in both Lapires boreholes).

In summary, the PJI ice content estimation is in general in
good agreement with the validation data for the cases of Murtél
and Lapires, when different resistivity models are considered,
however, with less spatial resolution due to the methodological
differences. For the models A, A+, or D, the porosity constraints
have a strong influence on the results and need therefore to be
chosen carefully according to the field site understanding, while
the resistivity of the four phases need to be chosen in case of using
model G.

5. DISCUSSION

5.1. Benefits and Limitations of the
Approach
5.1.1. Porosity Estimation
It was shown, that, similar to the conventional 4PM, the PJI
results are sensitive to the porosity constraints (cf. Figure 3). The
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FIGURE 12 | Summary of best-guess ice content distribution for all study sites: (A) CER, (B) SCH (after Wagner et al., 2019), (C) LAV, (D) DOV, (E) LAH, and (F) MCO

according to the resistivity model with the highest confidence, respectively (indicated in each panel). Note the different color scales. Minimum and maximum estimated

ice content as well as the RMS are also indicated in each panel. Boreholes and associated thaw depths are marked by black lines.

more a priori knowledge is available, the better the results can
be constrained or validated by independent datasets. One of the
limitations of the petrophysical models (and therefore the PJI)
comes from the similar resistivity and P-wave velocity ranges
characterizing both ice and rock matrix, which leads to a difficult
distinction between rock and ice and consequently also results in
a wide range of possible porosities (as demonstrated by Hauck
et al., 2011). Nevertheless, a heterogeneous porosity seems to be
correctly detected in the cases of CER, DOV, and MCO, while
no prominent spatial variability of the porosity was expected in
the Lapires talus slope. A moderate rock content was correctly
found in the MCO surface layer, in contrast to the much lower
values in the massive ice core. Despite the ambiguity mentioned
above, the petrophysical joint inversion performs well regarding
the distinction between ice and rock in cases where either low

resistivity occurs withmedium velocity (cf. the thaw layer of CER,
Figure 2D) or wheremedium resistivity occurs with high velocity
(cf. right part of DOV, Figure 2E).

Other (conventional 4PM) approaches used a prescribed
linear porosity decrease with depth (e.g., Schneider et al., 2013)
which may, however, be quite wrong for high porosity sites (rock
glaciers and talus slopes). To better determine the porosity within
the 4PM, Pellet et al. (2016) applied a three-phase model, where
the ice content is assumed to be zero. With one model parameter
less, the porosity can be directly determined from the three-
phase model in the thaw layer. The porosity model resulting
from the three-phase model (still including a gradient model
for depths below the user-defined thaw layer) was then used as
input in the 4PM and showed realistic results regarding the lateral
variation of near-surface porosity in the case of Cervinia. The

Frontiers in Earth Science | www.frontiersin.org 17 April 2020 | Volume 8 | Article 85

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Mollaret et al. Applied Permafrost Petrophysical Joint Inversion

overall estimated porosity values in the thaw layer are comparable
to our PJI-derived estimations. Nevertheless, Pellet et al. (2016)
found also non-physical values (probably due to the slightly
underestimated porosity at depth), which had to be discarded
from interpretation (cf. Figure 4). Consequently, the PJI-derived
porosity estimation is considered an important improvement,
because of its degree of freedom during the determination, even
if uncertainties remain in certain cases (i.e., for certain resistivity-
velocity pairs).

While we consider the need of having a certain geological
and geomorphological understanding to estimate a reasonable
porosity start value an important requirement, we are convinced
that a PJI based on geophysical methods should not require
borehole availability. Boreholes are still expensive and rare
in permafrost regions (especially in mountainous regions,
Biskaborn et al., 2019), and we believe that geophysical methods
(and PJIs) can be applied and bring useful information also where
no borehole exists.

5.1.2. Petrophysical Models
We investigated several electrical petrophysical models, but the
reliability of the time-average equation [linking the velocities
with the volumetric fractions, Equation (2)] was not explored.
Other velocity models would also be worth to be investigated
(e.g., Draebing and Krautblatter, 2012), especially models which
are considering the velocity (and resistivity) as a function
of temperature (Carcione and Seriani, 1998; Oldenborger and
LeBlanc, 2018), which is quite relevant in a permafrost context,
although potentially less relevant for the field sites presented in
this study due to their small observed permafrost temperature
range (∼2–3◦C).

For the electrical petrophysical models, the proof-of-concept
study was conducted using the classical Archie’s law (Wagner
et al., 2019). In our study, we tested Archie’s law using different
values of the Archie parametersm and n, however, many of those
parameter combinations resulted in comparably low χ2 and RMS
values, leading to difficulties to favor one parameter value over
another. For this reason, we did not focus on the determination
of specific Archie parameters for each site (which may in
addition vary spatially), but preferred to compare Archie’s law
with standard parameters to other petrophysical relationships
(similar to e.g., Revil, 2013, who used the approximation m =

n = 2). Furthermore, several studies reported the complexity to
determine the Archie’s parameters even at laboratory scale (e.g.,
Glover, 2010; Hamada et al., 2012).

The PJI results using the different electrical petrophysical
relationships of models A, A+, and D were found to be similar,
although their underlying conduction principles are theoretically
very different. This can be explained by the inherent uncertainties
of the material-dependent values of the free parameters in the
various equations [i.e., the Archie parameters in Equation (3), ε
in Equation (4), and b in Equation (6)]. The lack of laboratory
data from samples from all depths and regions of our field
sites made it necessary to prescribe all the above material-
dependent properties in order to minimize the joint inversion
objective function. These three equations are mainly and directly
constraining the water content and porosity, in contrast to the

FIGURE 13 | Minimum, mean, and maximum estimated ice content for the

entire tomogram of all six sites considering the electrical resistivity models

indicated in Figure 12.

geometric mean model G, which constrains all four fractions.
The use of model G within the joint inversion overdetermines
the model parameters (all four fractions are constrained by both
datasets), while the use of the three other resistivity models led to
underdetermined model parameters. This is the reason why the
porosity start model has such a large weight on the results when
using resistivity models A, A+, or D.

Model G performs differently for the different profiles. It
seems to overestimate the ice content at some profiles (i.e.,
Lapires), while it is the only resistivity model, which recognizes
a high porosity without explicitly forcing it (e.g., Murtèl). Model
G is therefore the only resistivity model to remarkably lower the
ice-rock ambiguity.

5.2. Considerations for Field Applications
The results of the joint inversion of geomorphologically different
sites reveal the possibility to distinguish between ice-poor and
ice-rich permafrost conditions, and to quantify these differences
in ice content values, ranging from average values of 5% up to
95%. Figures 12, 13 show the best-guess ice content distribution
estimated for all study sites of this paper as well as the Schilthorn
(SCH) site investigated in the proof-of-concept study by Wagner
et al. (2019). These results were obtained using the respective
resistivity model with the highest confidence, based on the
validation data.

Cervinia and Schilthorn hereby represent ice-poor bedrock
situations (Figures 12A,B), where low bedrock porosity limits
the occurrence of high ice contents. The ice content is found to
be larger at CER than at SCH, which correlates to lower ground
temperatures observed at CER (Pogliotti et al., 2015; PERMOS,
2019b) probably leading to a higher ice-to-water ratio at Cervinia.

The PJI-estimated ice distributions for the Lapires talus slope
(Figures 12C,E) reveal frozen and unfrozen regions (unfrozen
on the left-hand side of both profiles), which is in good
agreement with the findings of Staub et al. (2015), who used
purely temperature-basedmethods (ground surface and borehole
temperatures). The geophysics-based PJI can, however, not
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resolve the high vertical ice content variability found by borehole
studies (e.g., Scapozza et al., 2015), and small, individual ice
lenses can therefore not be detected.

For the two rock glacier sites, the PJIs estimate a
homogeneously high ice content at MCO (Figure 12F),
and a more heterogeneous distribution at DOV (Figure 13),
representing correctly both (ice-rich) rock glacier and (ice-
poor) bedrock parts of the profile revealed during the drilling
(Hilbich et al., 2019). The right-hand side of the profile DOV
(Figure 12D), corresponds to high velocities (6000-7300 m/s)
resulting in a high rock content (∼90%).

The application of the resistivity geometric mean model
G led to different performance for the different profiles. The
solution space is indeed much narrower for the geometric mean
model than for the three other models (such as Archie’s law for
instance, cf. Figures S1, S2), which can lead to a strongly differing
performance depending on the resistivity-velocity pairs.

If an explicit spatial constraint on the thaw layer is not applied
(as e.g., described by Wagner et al., 2019), the thaw layer is
often only poorly defined (i.e., regions with positive borehole
temperature do not necessarily result in a zero ice content).
Of course, the PJI resolution capacity is directly driven by the
resolutions of the input geophysical data. According to Mewes
et al. (2017), a coarse sensor spacing (up to 8 m in our cases)
may also lead to poor spatial resolution of small-scale anomalies,
which may be improved by smaller electrode and geophone
spacings. However, for all presented profiles, the sensor spacing
was not chosen to focus on the thaw layer. The case of Cervinia
in Figures 3, 4 shows hereby a comparatively good fit of the ice
content with the thaw depths, and this profile has also the smallest
sensor interval, cf. Table 1).

The resolution as well as the spatial coverage of the data
sets (input of the petrophysical joint inversion) may differ
significantly and is a further source of uncertainty. Both
geophysical methods are indeed sensitive to different physical
properties (ERT is particularly sensitive to conductive regions,
whereas RST is sensitive to solid phases). This difference in
sensitivity is both a strength (complementarity of the methods)
and an inconvenience (difference in resolution).

6. CONCLUSIONS

A new petrophysical joint inversion (PJI) scheme based on
electrical resistivity and refraction seismic tomography data was
applied to five permafrost field profiles to estimate the near-
surface water, ice, air, and rock distributions in two dimensions.
The main findings from this study are:

• The results confirmed that the PJI approach is applicable
for very different permafrost landforms, with ice contents
varying from low to high volumetric contents. The warranty
of physically-plausible solutions and the inclusion of the
rock content as part of the output of the joint inversion
are significant advantages over the conventional four-phase
model. The porosity constraints can, however, significantly
influence the results and need therefore to be set carefully
according to the field site understanding in order to minimize
the uncertainties. Furthermore, a careful determination of data

errors and suitable regularization parameters is an essential
prerequisite for a reliable model parameter estimation
(otherwise the inversion may not converge).

• Water and air contents are well-constrained by the joint
inversion scheme, whereas ambiguities between rock and
ice contents remain for certain combinations of resistivity-
velocity pairs. Rock and ice contents are best resolved when the
measured P-wave velocity is relatively low (cf. CER, weathered
bedrock occurrence) or high (cf. DOV, bedrock occurrence).
The lack of contrast in velocity for ice and rock material is an
inherent limitation of the geophysical method (but not due to
the joint inversion scheme itself).

• The thaw layer can mostly be identified by its minimal ice
content values, but the joint inversion fails to produce zero
ice contents in regions with positive temperatures without
forcing the presence of a sharp interface. This is partly due to
the coarse sensor spacing and corresponding low resolution
(note that the thaw layer was best delineated in the case of
smallest sensor spacing at Cervinia). The applied smoothing
(to stabilize the inversion) does also prevent the detection of
strong contrasts.

• The application of Archie’s law and the two models taking
into account the surface conduction yield largely comparable
results, although they are based on theoretically different
electrical conduction processes. This can be explained by the
lack of field calibration of the respective electrical material
parameters included in the equations (e.g., the cation exchange
capacity and the pore water resistivity), and the fact that
theses parameters are similarly determined by minimizing the
data misfit.

• The resistivity geometric mean model G is the most
computational demanding of the four models, due to the need
to find combinations of the four phase resistivities leading to
PJI convergence. In the case of a dry rock glacier, model G
led to a drastically reduced ice-rock ambiguity. Theoretically,
model G can, therefore, be more reliable because all four
phase contents are constrained by both geophysical datasets,
but it can only be applied to a narrow range of combinations
of resistivity-velocity pairs (narrower solution space, which
depends in addition on the velocities and resistivities of the
four phases). The use of the resistivity geometric mean model
resulted in realistic and well-constrained estimation of the ice
content and porosity at Murtél rock glacier.

• The PJI is able to resolve ice-poor to ice-rich conditions. The
ice content was found to be 5–15% at the bedrock sites, 20–
40% at Lapires talus slope, and up to 95% at Murtèl and
Doldenstock rock glaciers. The good correlation with the
available and independent ground truth data (thaw depth
and ice content) demonstrates the high potential of the joint
inversion approach. In addition, geophysical surveys provide
additional spatial dimension(s), and allow an additional
temporal dimension.

Further developments of the petrophysical joint inversion
could include:

• A time-lapse joint inversion constraining the rock content
being constant with time could be a significant improvement
of the method for the sites having both resistivity and P-wave
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velocity monitoring data available (e.g., SCH or LAH, cf.
Hilbich, 2010; Hauck et al., 2017; Mewes et al., 2017). The
assumption of a constant rock content with time (in case of
absence of excess ice, i.e., not applicable for e.g., rock glaciers)
would reduce the number of model parameters and thereby
decrease the uncertainties. The determination of temporal ice
content changes has therefore a potential of higher reliability
(Hauck et al., 2017).

• The addition of (an)other geophysical dataset(s) into the
petrophysical model. For instance, induced polarization
(Doetsch et al., 2015; Duvillard et al., 2018) and spectral
induced polarization studies (Wu et al., 2017) confirmed
in laboratory experiments that polarization signals can
differentiate between frozen and unfrozen states.

• Integrating non-geophysical data in the petrophysical joint
inversion (as done with the thaw depth by Wagner et al.,
2019) could be further explored using e.g., the well logging
data as structural constraints (e.g., Giraud et al., 2017;
Heincke et al., 2017; Steiner et al., 2019). Another physical
constraint may consist in penalizing non-physical cases where
the sum of fw and fa is higher than a certain threshold
(e.g., 0.5).

• More site specific field measurements of the pore water
resistivity or cation exchange capacity (Duvillard et al., 2018;
Coperey et al., 2019) for instance may help to better constrain
the petrophysical model (although representative values for
the whole profile and all depths are sometimes difficult
to obtain).

Moreover, a probabilistic Monte-Carlo approach may help
to determine the most appropriate petrophysical model.
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