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Anthropogenic climate change is widely thought to have enhanced fire danger across

parts of the world, including Mediterranean regions through increased evaporative

demand and diminished precipitation during the fire season. Previous efforts have

detected increases in fire danger across parts of southern Europe but a formal attribution

of the role of anthropogenic climate forcing has not been undertaken. Here, we attempt

to disentangle the confounding effects of anthropogenic climate change and natural

variability on observed increases in fire danger in France over the past six decades,

with a focus on the fire-prone Mediterranean region. Daily fire weather and fire-related

drought indices were computed from a reanalyses dataset covering the 1958–2017

period. Anthropogenic signals in meteorological variables were isolated using 17 climate

models and then removed from observations to form a set of counterfactual observations

free of anthropogenic climate change. Our results show that anthropogenic climate

change is responsible for nearly half of the long-term increases in fire weather and

fire-related drought conditions across the Mediterranean region and have significantly

elevated the likelihood of summers with extreme fire danger. Fire danger conditions

such as those observed during the near-record breaking 2003 fire season have a

<0.2% annual probability (return interval >500 years) of occurrence in the absence

of anthropogenic climate change, compared to a probability of ∼10% (return interval

∼10 years) under today’s climate accounting for anthropogenic climate change. Our

approach provides modernized estimates of current fire danger levels and expected

return levels of extreme fire seasons considering climate change, which may help inform

fire management agencies and decision making.

Keywords: climate change, fire weather index, detection and attribution, Mediterranean, France

1. INTRODUCTION

Fire is a major hazard throughout the Euro-Mediterranean basin threatening ecosystems, society,
and taxing fire suppression resources. While most fire ignitions are due to human activities
(Ganteaume et al., 2013), atmospheric variability plays a key role in the flammability of fuel and
fire spread. The influence of weather and climate variability are particularly important for the
occurrence of large fires. Multi-week to multi-month periods of anomalously high moisture deficits
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increase landscape flammability (Abatzoglou et al., 2018; Barbero
et al., 2018; Ruffault et al., 2018b) though live (Pimont et al.,
2019a) and dead (Boer et al., 2017) fuel dessication. Additionally,
heat waves and strong gusty winds often lead to critical synoptic
fire weather conditions that have been shown to facilitate fire
spread across parts of Southern France (Hernandez et al., 2015;
Ruffault et al., 2017; Lahaye et al., 2018). Together, the alignment
of critical synoptic fire weather conditions in conjunction with
longer-term fuel moisture deficit promotes the occurrence of
large fires (Barbero et al., 2018). Co-occurring extremes in
fuel aridity and potential fire spread rates such as those which
occurred in summer 2003 (Trigo et al., 2005) contributed to
near record-breaking burned area with 740,379 ha burned across
Europe, including >74,000 ha in France (Trigo et al., 2006).

Climate change projections suggest widespread increase in fire
danger and fire weather extremes across much of the globe over
the twenty-first century (Abatzoglou et al., 2019). These trends
are already evident globally in the observational record (Jolly
et al., 2015), including across parts of France (Dupire et al., 2017;
Fréjaville and Curt, 2017; Curt and Fréjaville, 2018). Increases in
fire weather conditions have been attributed to anthropogenic
global warming in portions of western North America (Yoon
et al., 2015; Abatzoglou and Williams, 2016; Kirchmeier-Young
et al., 2017, 2018; Tan et al., 2018; Williams et al., 2019) but the
degree to which global warming has contributed to changes in
fire weather danger characteristics in France, and more generally
across the Euro-Mediterranean basin, has not been quantified.
The region is of particular interest as climate models project both
a strong warming—the so-called Mediterranean amplification—
(Brogli et al., 2019) and drier summers which are expected to
collectively exacerbate fire weather conditions (Turco et al., 2018;
Fargeon et al., 2020).

There is increasing interest in quantifying the role of
global warming on observed changes in the likelihoods of
extreme events (Easterling et al., 2016; Lloyd and Oreskes, 2018;
Bellprat et al., 2019; Stone et al., 2019). This is of interest
both scientifically and from a hazard preparedness perspective.
The latter is particularly important given that many estimates
of fire danger level used by agencies for both community
planning, hazard reduction, and preparedness are based on
retrospective efforts. Modernized efforts that include changes
in land use practices as well as changes in climate are thus
essential. On the scientific front, attribution studies typically
assess the relative contribution of a specific causal forcing,
namely the anthropogenic climate change due to greenhouse
gases, to a particular extreme event or changes in some pertinent
statistic (e.g., annual maxima or frequency of daily temperatures
exceeding the local 90th percentile). Such analyses are often
confounded by the large internal variability in the climate system
alongside known uncertainties in both the observational record
and regional climatic responses to the anthropogenic forcing
(Santer et al., 2019), with these issues being larger for regional-
to-local attribution efforts (Angélil et al., 2018).

Additional challenges arise when attributing long-term
changes in a multivariable phenomenon such as fire weather
conditions (Abatzoglou et al., 2019). Fire weather indices
integrate variables such as maximum temperature, precipitation,

minimum relative humidity, and wind speed (VanWagner, 1987)
and the response to each of these inputs is often non-linear.
Fire weather indices can thus reflect the combined influence
of weather and climate extremes occurring simultaneously,
such as a prolonged drought period intersecting with a
heatwave (Barbero et al., 2015). Some of these inputs may be
strongly influenced by anthropogenic climate forcing, some not
influenced at all, and some changes may offset one another
(Flannigan et al., 2016; Abatzoglou et al., 2019). In this regard,
the confluence of the background warming trend with dry
years across Mediterranean regions is thought to have altered
the likelihood of such compound events, as seen during 2003.
Quantifying the role of anthropogenic climate change in the
occurrence of compound extreme events is thus a significant
scientific challenge. While previous attribution efforts have
focused so far on temperature extremes (Uhe et al., 2016),
precipitation extremes (van Oldenborgh et al., 2017) or drought
(Philip et al., 2018), the attribution framework has been sparingly
applied to extreme fire weather conditions (Kirchmeier-Young
et al., 2018).

This study quantifies the degree to which anthropogenic
climate change has (i) contributed to observed increases in
fire weather conditions over the historical record in France
and in particular across the Mediterranean fire-prone region
and (ii) altered the probability of compound extremes such as
those that contributed to the exceptional 2003 fire season. Such
analysis may help update risk assessmentmodels and quantify the
modern risk of extreme fire seasons, including the additional risk
directly imposed by climate change. To answer these questions,
we paired observational data alongside a set of counterfactual
observations designed to reflect what we would have observed
in the absence of anthropogenic climate change as deduced
from climate simulations. As opposed to most previous studies
using a single model or an ensemble of runs of a given model,
we considered here multiple climate simulations to address
the structural uncertainty inherent to climate models, which
strengthens the confidence of the results.

2. DATA AND METHODS

2.1. Fire Weather Observations
We used the daily Fire Weather Index (FWI) from the
Canadian Forest Fire Danger Rating System (VanWagner, 1987)
to assess fire weather conditions. The FWI integrates both
current meteorological conditions (daily maximum temperature,
minimum relative humidity, wind speed, and 24-h accumulated
precipitation) as well as antecedent conditions and reflects the
effect of fuel moisture and potential fire spread rate on fire
behavior. We used the FWI given its widespread usage globally
(Di Giuseppe et al., 2016) and its well-established relationship
with fire activity globally (Abatzoglou et al., 2018), including the
occurrence of large fires in France (Barbero et al., 2018).

We complemented the FWI analyses using the Keetch
Byram Drought Index (KBDI) (Keetch and Byram, 1968),
a fire-related drought metric requiring only daily maximum
temperature and precipitation. The KBDI is a daily water
balance describing the drying rate of the soil as a cumulative
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estimate of moisture deficiency and is often considered as
a proxy of live fuel moisture (Ruffault et al., 2018a). The
KBDI is well-correlated with fire activity across parts of the
world (Dolling et al., 2005; Taufik et al., 2015; Yoon et al.,
2015). Here, we used an improved version of the KBDI to
minimize the structural underestimation of water loss during
the summer in Mediterranean regions (Ganatsas et al., 2011).
Multiple adjustments were suggested by Ganatsas et al. (2011)
including a different estimation of potential evapotranspiration
and threshold for canopy interception of precipitation.

We used the French reanalyses SAFRAN (Système d’Analyse
Fournissant des Renseignements Atmosphèriques à la Neige;
Analysis system providing data for the snow model), a quality-
controlled dataset available from 1958 to 2017 on a daily basis
and over an 8-km grid spanning France (Vidal et al., 2010). The
SAFRAN dataset provides all meteorological variables needed
to derive FWI and KBDI (namely daily maximum temperature,
precipitation, wind speed, and minimum relative humidity) and
has been extensively used in previous studies.

2.2. Counterfactual Observations
Long-term trends in climate may be affected by two components,
namely anthropogenic climate change (external forcing) and
natural variability of the climate system (internal forcing).
The relative role of each component cannot be distinguished
through observations as both internal and external forcing
may contribute equally to a warming trend, or alternatively,
the absence of long-term change may be the result of forcing
of opposite signs. Attribution studies are thus usually based
on expected responses to anthropogenic climate change, that
are commonly estimated using General Circulation Models
(GCMs). While regional climate models may provide additional
nuanced spatial information, output from regional models
is typically limited temporally and only available from a
few models. Spatial details resolved by the combination of
different regional/global models are also associated with large
uncertainties as regional models are notoriously known to inherit
the biases from their driving GCM. Additionally, previous
observational studies based on homogenized in situ time series
revealed a spatially uniform warming across France (Gibelin
et al., 2014), supporting the use of GCMs to examine the signal
of change (anomalies with respect to a baseline period). We thus
focused on using outputs from 17GCMs participating in the Fifth
Phase of the Coupled Model Intercomparison Project (CMIP5,
Table S1) given our objectives in examining long-term transient
simulations from pre-industrial through present. Our approach
is fairly conservative as it may avoid some of the uncertainties
in the spatial manifestation of anthropogenic climate change.
We additionally considered the anthropogenic climate signal
separately from each of the 17 GCMs to assess intermodel
uncertainty in the anthropogenic forcing signal (Fargeon et al.,
2020). All model output was regridded to a common 2.5◦ grid
and only land cells were retained as relative humidity is expected
to show contrasting responses between ocean and land (Byrne
and O’Gorman, 2016).

Modeled changes in maximum temperature, precipitation,
and minimum relative humidity at monthly timescales were

deduced from each model relative to the model average
during the quasi pre-industrial 1861–1910 baseline. Wind speed
remained unchanged as no systematic trend was detected in
CMIP5 experiments (Abatzoglou et al., 2019). We further
isolated the 50-year low-pass filtered anomalies relative to a
quasi pre-industrial 1861–1910 baseline (Figure 1), with the
50-year low-pass filter designed to minimize the influence
of internal multidecadal variability (Abatzoglou and Williams,

FIGURE 1 | (A) Example of the anthropogenic trend in maximum temperature

(expressed as anomalies with respect to the 1861–1910 baseline) simulated

by 17 GCMs (gray lines) in a given GCM grid cell at 42.5◦N-2.5◦E (see insert in

B) for the month of July. The anthropogenic trend is defined as the 50-year low

pass filter of maximum temperature anomalies. The thick black curve shows

the 50-year low pass filtered mean of the 17 GCMs. Observed anomalies in

SAFRAN (1958–2017) in the corresponding grid cells are shown in red.

Observed anomalies were computed with respect to counterfactual

observations based on the multimodel mean (black curve). (B) Same as (A)

but for precipitation (expressed as percent of anomalies with respect to the

1861–1910 baseline). (C) Same as (A) but for minimum relative humidity.
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2016; Williams et al., 2019). Figure 1 illustrates traces of 50-
year low-pass filtered signals of climate change for maximum
temperature, precipitation, and minimum relative humidity for
the month of July for a given GCM grid cell. In agreement
with previous findings (Terray and Boé, 2013), most models
simulate a strong summer warming alongside a decrease in
precipitation and minimum relative humidity. Anomalies were
treated as additive for maximum temperature and minimum
relative humidity, and multiplicative for precipitation following
previous studies (Abatzoglou andWilliams, 2016; Williams et al.,
2019). These anomalies were used to derive counterfactual
observations, that is the climate we would have observed in
the absence of anthropogenic climate change. Counterfactual
daily maximum temperature TMAXcf and daily minimum
relative humidity RMINcf were calculated as the observed daily
temperature TMAXobs and RMINobs (in SAFRAN) minus the
anthropogenic trend for a given month. Counterfactual daily
precipitation PRCPcf was calculated as PRCPcf = PRCPobs(1 −
(PRCPanomaly/100)) where PRCPobs represents daily precipitation
observed (in SAFRAN) and PRCPanomaly corresponds to the
anthropogenic trend in monthly precipitation expressed as
percent of anomalies in a given month. In addition to examining
the signal separately for each GCM, we calculated an additional
estimate of the anthropogenic trend by averaging the 50-year
low-pass filtered time series across the 17 models. For each grid
cell and each month, we thus consider a total of 18 (17 GCMs
+ the multimodel mean) estimates of anthropogenic trend in
climate variables. The spread among the models was estimated
though the inter-quartile range (75% CI) as larger ranges (i.e.,
95%) may encapsulate models that are outliers.

FWI and KBDI were calculated using daily observed data
(FWIobs,KBDIobs) and the 18 daily counterfactual observations
that exclude the anthropogenic climate signal (FWIcf , KBDIcf )
reflecting what we would have observed in the absence of global
warming. Linear trends in both observations and counterfactual
observations were computed and the contribution of the
anthropogenic forcing over the whole period was estimated as
100 × ((bobs − bcf )/bobs) where b denotes the slope of the
linear trend.

2.3. FWI and KBDI Attributes
We examined different attributes of FWI and KBDI that have
been shown to relate to fire activity. First, we examined FWI
and KBDI averaged over the primary fire season from May
to September (hereafter FWImean and KBDImean) as warm
season conditions correlate positively with total burned area
(Abatzoglou et al., 2018). Second, we examined the annual
occurrence of days with high FWI and KBDI as large fires
generally occur during periods of high fire danger (Barbero
et al., 2018; Lahaye et al., 2018) with possible fire outbreaks
below critical fuel moisture content levels (Pimont et al., 2019b).
While percentile-based threshold indices (e.g., 95th percentile)
typically measure the frequency of exceedance with respect to
local conditions, they may not be well-suited to tracking elevated
fire weather conditions in regions where the baseline climate is
unfavorable to fire (typically outside the Mediterranean region).
We thus examined the annual occurrence of days with FWI >20

(hereafter NFWI>20 with N denoting the number of days with
FWI >20) and KBDI >35 (hereafter NKBDI>35), as a measure
of critical fire danger levels. This is in agreement with previous
FWI thresholds used in the Euro-Mediterranean basin ranging
from FWI >15 (Moriondo et al., 2006; ) to FWI >30 (Fargeon
et al., 2020) and with thresholds used in Canada to define
weather conditions on days when fires grew significantly (Podur
and Wotton, 2011). This also corresponds to the lower limit of
conditions under which large fires develop in the French Alps
(Dupire et al., 2017) and in the French Mediterranean (Barbero
et al., 2018). All these analyses were conducted at the 8-km grid
cell level and were then aggregated across environmental regions.

Varied fire-climate relationships exist across France (Barbero
et al., 2018) ranging from typical Mediterranean fire-prone
conditions in the South to more moisture-limited conditions in
the North. Here, we focused mainly on the Mediterranean region
(see Figure 3) where the vast majority of fires and burned area
occur. Note that while a recent massive fire suppression policy
has contributed to a general decline in burned area across this
region, suppression has been mostly effective for smaller fires
(Evin et al., 2018) occurring under lower fire weather conditions.
The Mediterranean region was delimited using a European
environmental stratification based on climate, topography, and
geographical position (Metzger et al., 2005).

2.4. Estimating Annual Exceedance
Probability
While attribution studies generally focus on extreme values such
as annual maxima, such metrics are generally poorly related
to fire activity and have been shown to emerge more slowly
from natural variability (Abatzoglou et al., 2019). Here, we
sought to maximize the signal-to-noise ratio and capture both
the spatial and temporal extents of the risk that are relevant
to fire suppression strategies. Hence, FWImean and KBDImean

(FWI and KBDI averaged over the May-September fire season)
as well as NFWI>20 and NKBDI>35 were averaged across the
Mediterranean region (see section 2.3), where the vast majority
of burned area occurs. The resultant time series were then
fitted to an appropriate statistical distribution to strengthen the
quantile estimate. FWImean and KBDImean were fitted to a normal
distribution with the probability density function:

p(x) =
1

σ
√
2π

e−(x−µ)2
/

2σ 2
(1)

with mean µ and variance σ2 while NFWI>20 and NKBDI>35 were
fitted to a Weibull distribution. The Weibull distribution has
been commonly used for wind data (Curry et al., 2012), and
belongs to the exponential family. We used this distribution
instead of the Generalized Pareto Distribution (GPD), which
is frequently used in extreme-event attribution studies, as 20
and 35 cannot be considered as extreme values for FWI and
KDBI, respectively. Moreover, the use of a spatial average is a
priori inconsistent with GPD. We thus opted for the Weibull
distribution which may also be fitted to less extreme data. The
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Weibull probability density function is:

p(x) =
k

A

( x

A

)k−1
exp

[

−
( x

A

)k
]

(2)

where x ≥ 0 is the variable of interest (spatially averagedNFWI>20

or NKBDI>35), A > 0 is the scale parameter closely related to
the mean of the distribution and k > 0 is a dimensionless
shape parameter. We used the method of maximum likelihood
to estimate all the model parameters (Katz et al., 2002). The
goodness-of-fit was assessed using the quantile-quantile plot for
FWImean and KBDImean and the Weibull probability plot for
NFWI>20 or NKBDI>35. Figure S1 indicates that FWImean and
KBDImean likely come from a normal distribution while NFWI>20

and NKBDI>35 likely come from a Weibull distribution.
Using the inverse cumulative distribution function, we then

estimated the annual exceedance probability (AEP), which refers
to the probability of exceeding a given return level in any year.
For instance, a 1 in 100 year event has an AEP = 1%. The AEP
was preferred over the return period concept, as return periods
have been shown to obscure the intended probabilistic meaning
and are often misinterpreted by users (Grounds et al., 2018).

AEP were estimated under (i) counterfactual conditions
free of anthropogenic trends under the stationarity assumption
(assuming that AEP do not change over time), (ii) observed
conditions under the stationarity assumption and (iii) observed
conditions under the non-stationarity assumption with either
time or global mean surface temperature (GMST) as a covariate
of either the mean parameter µ for the normal distribution or
the scale parameter A for the Weibull distribution. In the former
cases (i) and (ii), the parameters of the fitted distribution are
constant and the AEP do not change with time. In the latter case
(iii), the µ parameter of the normal distribution and the scale
parameter A of the Weibull distribution change with time while
keeping the other parameters constant:

µ(t) = β0 + β1y(t) (3)

A(t) = β0 + β1y(t) (4)

with y(t) denoting a time-varying covariate and β0,β1

representing unknown parameters to be estimated. Here,
y(t) is either time or the GMST in year t acquired from the
National Aeronautics and Space Administration (NASA)
Goddard Institute for Space Science (GISS) surface temperature
analysis (Hansen et al., 2010) (see Figure S2). A 1,000-member
non-parametric bootstrap procedure was used to estimate 95%
confidence intervals for the fit and estimated AEP.

2.5. The 2003 Fire Weather Season
The 2003 summer was the warmest summer in Europe over
the last 500 years (Luterbacher et al., 2004). A blocking pattern
persisted over western Europe, partly due to the high soil
moisture deficits during previous month that have enhanced the
ratio of sensible to latent heat (Vautard et al., 2007). Together,
anomalously dry soils and the blocking pattern resulted in
large temperature anomalies across much of Europe, especially
in France (Trigo et al., 2005). Attribution studies have shown

that anthropogenic emissions largely contributed to this record-
breaking summer (Schär et al., 2004), making the mean summer
temperature across Europe twice as likely as it would have been
in the absence of anthropogenic forcing (Stott et al., 2004) and
increasingly likely in the future (Christidis et al., 2015). The
2003 heat wave was conducive to a fire outbreak across the
continent, including near record-breaking burned area and large
fire occurrences in France (Lahaye et al., 2018; Ganteaume and
Barbero, 2019).

We sought to determine to what extent the odds of extreme
fire weather conditions observed during the 2003 fire season
have changed as a result of anthropogenic climate change. For
that purpose, the levels of FWI and KBDI observed in 2003
provide benchmarks for estimating annual probabilities under
actual and counterfactual climates separately, in turn allowing
us to quantify how the anthropogenic forcing has changed
the likelihood of such an event. For each FWI and KBDI
attribute, we computed the risk ratio of the AEP corresponding
to a 2003-like year observed under today’s climate (2017
fit) to the AEP corresponding to a 2003-like year in each
counterfactual observations.

Note that risk ratios reported here depend on the selected
metric, the choice of exceedance threshold of critical fire weather
conditions, time period and spatial scale on which the FWI
and KBDI are aggregated. Given that increasing the spatial scale
generally reduces interannual variability which in turn increases
the risk ratio (Angélil et al., 2018; Leach et al., 2020; Yiou
et al., 2020), the risk ratios reported here in the Mediterranean
region are likely lower (larger) than those expected on broader
(smaller) regions.

3. RESULTS

FWImean (Figure 2A) and KBDImean (Figure 2C) during 2008-
2017 both show a strong latitudinal gradient, with higher
fire danger level in the French Mediterranean. Note that
KBDImean exhibits slight differences with FWImean in the
Mediterranean as the rate of moisture loss in the KBDI
increases with increasing annual rainfall. Likewise, the annual
frequency of critical days (e.g., NFWI>20) is the highest in the
Mediterranean (Figures 2E,G) and to a lesser extent in the west.
The difference between observed and counterfactual FWI (as
estimated here by the multimodel mean) suggests that both mean
conditions (Figures 2B,D) and critical fire weather conditions
(Figures 2F,H) were exacerbated in recent years in response to
anthropogenic climate change across the Mediterranean, and to
a lesser extent across the Southwest.

We then restricted our attention to the Mediterranean given
the strong signal of change across the region. Figure 3 indicates
that all metrics have seen a continued increase throughout the
period and lie above counterfactual data as from 2000s. The
anthropogenic forcing was found to contribute to about half
of the linear trend in FWI metrics (47% for FWImean and
50% for NFWI>20) and even more for KBDI metrics with a
contribution of 72% in NKBDI>35 probably due to the dominant
role of maximum temperature in the KBDI. In both FWI and
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FIGURE 2 | (A) Mean observed FWI from May-September during the last 10 years of the observational record (2008–2017). Note the non-linear color scale. (B)

Difference between observations and counterfactual observations as deduced from the multimodel mean during the last 10 years of the observational record

(2008–2017). (C) Same as (A) but for mean observed KBDI. (D) Same as (B) but for KBDI. (E) Average number of annual occurrence of daily FWI>20 during the last

10 years of the observational record (2008–2017). (F) Same as (B) but for the annual occurrence of daily FWI>20. (G) Same as (C) but for the annual occurrence of

daily KBDI>35. (H) Same as (F) but for KBDI>35.

KBDI, the anthropogenic contribution seems to be stronger
when considering the frequency of critical daily fire danger
conditions. These changes are mostly due to a warming trend
and a decrease in minimum relative humidity in more recent
decades (not shown). Note that the warming rate found here is
in agreement with previous studies based on homogenized in
situ stations (Gibelin et al., 2014) presenting a warming rate of
0.42◦C/decade during the summer period and with other large-
scale observational products such as CRUTEM4 (Jones et al.,
2012). By contrast, precipitation has seen a nominal decrease due
to anthropogenic climate change and the signal remains largely
dominated by interannual variability (not shown).

Return levels in FWImean in counterfactual observation as
deduced from the multimodel mean (gray) are much lower
than those under observations (orange) (Figure 4A). The 2003
summer has an AEP <0.2% (>500-year return period) in
counterfactual observations and an AEP ∼ 0.6% (∼ 167-year
return period) in observations under the stationarity assumption
(orange). Using a non-stationary distribution in actual 2017
climate (red), the AEP increases due to the underlying trend in
FWImean and a 2003-like summer has now an AEP∼ 3.5% (∼29-
year return period). When considering NFWI>20 (Figure 4C),

the AEP of a 2003-like summer is <0.2% in counterfactual
observations (gray) and actual today’s climate (red) suggests that
the AEP has increased to ∼ 10%, (∼ 10-year return period).
Similar results were obtained with KBDI (Figures 4B,D) with
however slight differences in the AEP. Likewise, similar results
were found when repeating the analysis with the GMST as a
covariate in a non-stationary context (Figure S3). Overall, these
results suggest that the AEP of high fire danger conditions
has increased over time. The stationarity assumption would
be a very conservative estimate of the current risk (based on
retrospective data).

Finally, we reported on changes in the probability of
occurrence of a 2003-like year between counterfactual
observations and observations with the non-stationary fit to 2017
(Figure 5). The different values summarized in boxplots were
obtained using individual GCMs to estimate the counterfactual
observations that allows for a more complete assessment of
model uncertainty (see Figure S4), instead of the multimodel
mean as done previously. We find that the risk ratio of fire
weather metrics increased dramatically through the inclusion of
anthropogenic forcing. Anthropogenic climate change has made
a 2003-like year about 25 (15–200, 75% CI) times more likely
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FIGURE 3 | (A) Mean FWI from May to September averaged across the Mediterranean region (see map) using observations (color) and counterfactual observations

(black) as deduced from the multimodel mean. The shaded gray area shows the 75% range of counterfactual observations as deduced from different GCMs. Linear

trends are also shown as well as the fractional contribution of anthropogenic climate change (ACC) calculated as 100× ((bobs − bcf )/bobs) where b denotes the slope

of the linear trend. The mean fractional contribution across models as well as the interquartile range are indicated. (B) Same as (A) but for KBDI. (C) Same as (A) but

for NFWI>20. (D) Same as (A) but for NKBDI>35.

in 2017 when considering NFWI>20 and 9 (6–23, 75% CI) times
more likely when considering NKBDI>35.

4. CONCLUSION AND DISCUSSION

Previous observational studies have reported on increase in fire
weather conditions globally (Jolly et al., 2015) and regionally
across portions of Europe (Turco et al., 2019). Here, we
disentangled the anthropogenic forcing from natural variability
and showed that anthropogenic climate change has increased
mean fire weather conditions across France alongside the
frequency of critical days as viewed through the lens of
two different fire weather indices, elevating the probability
of occurrence of a 2003-like fire weather season by orders of
magnitude under today’s climate. Based on the likelihood scale
of the risk ratio provided in Lewis et al. (2019), we conclude
that conditions observed in 2003 have become very much
more likely due to climate change. Although comparison with
previous studies examining the impact of anthropogenic climate
change on heat waves is confounded by methodological and
data differences, or the way an event is defined in space and
time, our results are in line with Christidis et al. (2015) who
showed that the 2003 heat wave has become increasingly more

probable with global warming. Further studies are needed to
compare relative changes in fire weather metrics with respect
to heat extremes. The exceptional character of extreme events
such as 2003 is hypothesized to be amplified when examined
through the lens of fire weather indices rather than heat alone,
particularly in regions experiencing decreased precipitation
during the fire season.

About half of the long-term increases in fire weather
conditions over the last 60 years was accounted for by
anthropogenic climate change, with larger contribution in the
frequency of critical days. Yet, this leaves a considerable part
of the variability which is not explained by anthropogenic
climate change. It should be kept in mind that this number
was estimated through a simple linear regression spanning
a period prior to 1980s with lower anthropogenic emissions.
The anthropogenic contribution is thus likely to increase when
restricting the analysis to more recent years. Using piecewise
linear fitting, polynomial or other non-linear fitting may also
describe more accurately historical changes. A potential source
of underestimation of the anthropogenic forcing may also arise
from a late and/or weak simulated warming over France in some
GCMs with respect to observations due to the combination of
natural variability and anthropogenic aeorosols cooling effect
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FIGURE 4 | (A) Return levels in the mean FWI from May to September averaged across the Mediterranean region for different annual exceedance probabilities (AEP)

ranging from 50% (2-year return period) to 0.2% (500-year return period) estimated with a normal distribution using counterfactual observations as deduced from the

multimodel mean (gray), observations under the stationarity assumption (orange), and observations under the non-stationarity assumption with the fitted trend to 2017

(red). The 95% confidence intervals were estimated using a bootstrapping approach. The black horizontal line denotes the level observed in 2003 and the vertical lines

indicate the AEP in different fits (best estimate). (B) Same as (A) but for KBDI. (C) Same as (A) but for the annual number of occurrence of daily FWI>20 averaged

across the Mediterranean region. In this case, the AEP has been estimated with a Weibull distribution. (D) Same as (C) but for the annual number of occurrence of

daily KBDI>35.

FIGURE 5 | Annual exceedance probability risk ratio of a 2003-like year

across the Mediterranean region between observations with the fitted trend to

2017 and counterfactual observations for different FWI and KBDI attributes.

The boxplots indicate the range of changes obtained from different

counterfactual observations as deduced from different GCMs. This is slightly

different from Figure 4 where counterfactual observations were deduced from

the multimodel mean of the 17 GCMs. Boxes indicate the inter-quartile range,

vertical thick lines indicate the median and circles indicate the mean.

in 1950–1970s seen in a number of GCMs (Wilcox et al.,
2013). Aerosols have been shown to strongly modulate multi-
decadal trends in CMIP5 simulations and are often considered
as one of the main sources of inter-models uncertainty on
such timescales (Rotstayn et al., 2015). Uncertainty may also
arise from the climate reanalysis. Gridded reanalyses such as

SAFRAN provide a uniform spatial coverage but long-term
trends in climate variables may differ from in situ time series

(Vidal et al., 2010). Although the warming rate found here is

in agreement with that reported in Gibelin et al. (2014) based
on direct temperature measurements, other variables such as

precipitation may exhibit different signals from in situ data.
Further studies in other Euro-Mediterranean countries utilizing

different observational products may help validate our results
across broader scales.

An inherent limitation of the methodology here is the use

of climate simulations that do not explicitly distinguish changes

in the climate system driven by anthropogenic emissions from
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purely natural variability. The low-pass filter signal from GCMs
ideally removes interannual-to-decadal natural variability to
better isolate the anthropogenic signal, but natural variability
may still persist for individual ensemble members. Additionally,
inflating the amount of precipitation during wet days in regions
where climate models simulate precipitation decreases may
provide a reasonable estimate of monthly precipitation without
anthropogenic emissions, but this approach fails to account for
the effect of climate change on the frequency of wet days. This
is of particular importance as both KBDI and FWI exclude
precipitation amount below a given threshold. New climate
models, such as those submitted to the Climate of the twentieth
Century Plus Detection and Attribution project (C20C + D&A)
(Stone et al., 2019) now simulate the present-day climate with
and without anthropogenic emissions. Such simulations may
provide a more realistic estimate of the effect of anthropogenic
climate change on fire weather, albeit with a limited number of
climate simulations.

Additional global warming is projected to foster fire weather
conditions across the region into the twenty-first century
(Fargeon et al., 2020). Further compound analyses that consider
the covariance structure of KBDI and FWI may resolve future
changes to fuel moisture contents and fire weather. The co-
occurrence of such extremes is likely to continue in the future
and may have implications for fire activity as the climate-fire
relationship involves non-linear mechanisms (Williams et al.,
2019), possibly in response to the moisture-fire relationship
(Pimont et al., 2019a), such that subtle increases in fire weather
conditions may translate into disproportionate increase in fire
activity. These findings have implications for fire management
strategies that may necessitate adaptation measures to reduce
societal risk.

Further studies are required to better understand the
impact of anthropogenic climate change not only on fire
weather conditions but also on fire activity. The influence
of the weather and climate forcing on fire activity is now
well-understood and to some extent, well-reproduced by
probabilistic models (Barbero et al., 2018). Feeding such
models with both observations and counterfactual observations

may provide insights on the contribution of anthropogenic
emissions in fire activity during extreme seasons such as 2003
and would help bridge the gap between attribution studies
and climate-fire modeling studies. Finally, further analysis is
also required to disentangle the relative contribution of the
climate forcing and human activities such as suppression
policies that have been shown to obscure the functional
climate-fire relationship (Ruffault and Mouillot, 2015; Curt
and Fréjaville, 2018). Regardless, fire weather conditions have
become increasingly unfavorable to fire suppression and future
conditions are likely to overwhelm current fire management
capacity.
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