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Ensemble-based stochastic gradient methods, such as the ensemble optimization

(EnOpt) method, the simplex gradient (SG) method, and the stochastic simplex

approximate gradient (StoSAG) method, approximate the gradient of an objective

function using an ensemble of perturbed control vectors. These methods are increasingly

used in solving reservoir optimization problems because they are not only easy to

parallelize and couple with any simulator but also computationally more efficient than

the conventional finite-difference method for gradient calculations. In this work, we show

that EnOpt may fail to achieve sufficient improvement of the objective function when

the differences between the objective function values of perturbed control variables and

their ensemble mean are large. On the basis of the comparison of EnOpt and SG, we

propose a hybrid gradient of EnOpt and SG to save on the computational cost of SG.

We also suggest practical ways to reduce the computational cost of EnOpt and StoSAG

by approximating the objective function values of unperturbed control variables using

the values of perturbed ones. We first demonstrate the performance of our improved

ensemble schemes using a benchmark problem. Results show that the proposed

gradients saved about 30–50% of the computational cost of the same optimization by

using EnOpt, SG, and StoSAG. As a real application, we consider pressure management

in carbon storage reservoirs, for which brine extraction wells need to be optimally placed

to reduce reservoir pressure buildup while maximizing the net present value. Results

show that our improved schemes reduce the computational cost significantly.

Keywords: stochastic gradient, ensemble optimization, simplex gradient, stochastic simplex approximate

gradient, hybrid simplex gradient, active pressure management

INTRODUCTION

Since the ensemble Kalman filter was first introduced into the petroleum engineering (Lorentzen
et al., 2001; Nævdal et al., 2002; Kim et al., 2018), many ensemble-based history matching methods
have gained popularity because they are reduced rankmethods (meaning less computational effort)
and are relatively easy to implement, parallelize, and couple with any numerical simulator. Chen
et al. (2009) first systematically applied the ensemble concept to optimization of well control
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variables (e.g., well rates and bottom-hole pressures) to maximize
the net present value in oil and gas fields. They named their
scheme the ensemble optimization (EnOpt) method. Similar to
the ensemble-based data assimilation methods, EnOpt can also
be easily parallelized and coupled with any simulator.

Another strength of EnOpt is that EnOpt finds an optimal
solution under geological uncertainty by maximizing the
expectation of the objective function values of multiple models
representing model uncertainties, whereas the conventional
optimization methods typically require solving each model
separately (Chen et al., 2009; van Essen et al., 2009) and
optimization under uncertainty is non-trivial (Sun et al., 2013;
Zhang et al., 2016). The idea of considering model uncertainties
in optimization was also explored by van Essen et al. (2009).
van Essen et al. (2009) named their method robust optimization,
and the handling of model uncertainties in their method is
essentially the same as that in EnOpt. However, EnOpt includes
a specific way to compute the gradient, which is needed by all
gradient-based optimization algorithms.

The gradient of EnOpt is determined on the basis of the
cross covariance between randomly perturbed control variables
(or decision variables) and the corresponding objective function
values. Because this work is mainly concerned with the gradient
approximation in various ensemble methods, hereafter, we will
use EnOpt to refer to the gradient approximation in EnOpt
where no confusion occurs. Traditional methods for gradient
calculation include the finite-difference method (FDM) and
adjoint-state method (Sun and Sun, 2015). FDM needs as many
objective function evaluations as the product of the number of
control variables and the number of ensemble members because
FDM perturbs each control variable separately. The adjoint-
state method typically requires derivation and solution of a dual
problem of the original problem in the adjoint state space, which
is not straightforward. In comparison, EnOpt only requires as
many objective function evaluations as the number of ensemble
members, because it computes the search directions by averaging
the objective function anomalies resulting from simultaneous
random perturbations of the control vector. Previous studies
have shown that the EnOpt can efficiently and satisfactorily
achieve improvement of the objective function, despite its low
computational cost (Chen et al., 2009; Chen and Oliver, 2010,
2012). However, Fonseca et al. (2017) indicated that EnOpt may
not produce satisfactory results for multiple geological models
unless the variance in the ensemble models is sufficiently small.
The first objective of our work is to show mathematically and
experimentally why EnOpt may fail to produce satisfactory
results when the variance of the ensemble models is not small.

EnOpt can be considered a variant of the simultaneous
perturbation stochastic approximation (SPSA) method
introduced by Spall (1992), and SPSA is appropriate for
robust optimization because the computational cost of SPSA
is significantly lower than that of FDM for a high-dimensional
control vector. Even though accurate gradients are obtained
using FDM at a high computational cost, gradient-based
optimizations are likely to converge to local optima. Rather
than spending considerable computational resources computing
the gradients, it is more practical to find global optima by

trying many initial solutions using the less accurate but more
computationally efficient SPSA. SPSA computes the gradient
of an objective function more efficiently than FDM does by
perturbing control variables randomly and simultaneously
(Spall, 1992, 1998). There are several variants of SPSA that
can be used to compute the gradient of an objective function
stochastically and quickly.

Bangerth et al. (2006) introduced the integer SPSA to solve
an optimal well placement problem. Li et al. (2013) applied
SPSA for joint optimization of well placement and controls
under geological uncertainty. Li and Reynolds (2011) proposed
a modification of the SPSA, which is called the stochastic
Gaussian search direction (SGSD or G-SPSA). The original SPSA
samples perturbations from a symmetric Bernoulli distribution,
while SGSD and EnOpt generate perturbations from Gaussian
distributions (Chen et al., 2009; Li and Reynolds, 2011). Do and
Reynolds (2013) used the simplex gradient (SG) that has the
perturbation coefficient of 1 in the formulation of SGSD.

However, Bangerth et al. (2006), Li et al. (2013), Li and
Reynolds (2011), and Do and Reynolds (2013) applied the
variants of SPSA to optimization of a single geologic model,
which means that geological uncertainty was not considered.
Fonseca et al. (2017) proposed an extension of SG, which is
named the stochastic simplex approximate gradient (StoSAG),
that improves the accuracy of the stochastic gradient by repeating
multiple perturbations for each ensemble model. In this study,
we propose practical ways to reduce the computational cost of
EnOpt, SG, and StoSAG by approximating the objective function
values of unperturbed control variables using those obtained for
the perturbed ones. The proposed approaches reduce about 10%
to 50% of the computational cost compared to EnOpt, SG, and
StoSAG in our examples.

This paper is organized as follows. In the next section, we
explain why EnOpt may fail when the variance of objective
function values of the ensemble members is not small, by
comparing the gradient approximation schemes in the original
EnOpt and SG. Then we propose new hybrid schemes for
further reducing computational costs in EnOpt, SG, and StoSAG.
Finally, we demonstrate the efficacy of the different schemes
using two examples, a test function that is popular for algorithm
benchmarking and a well placement optimization problem for
pressure management in geologic carbon storage reservoirs.

COMPARISON OF ENOPT AND SG

The steepest ascent or descent algorithm to maximize or
minimize an objective function J(u) is given as

uk+1 = uk ± αk
dk

‖dk‖∞

, for k= 0, 1, · · · until convergence, (1)

where u is the column vector of control variables; u0 is the
initial guess; d is the search direction; α is the step size; and k
is an iteration index. For convenience, all major notations used
in this study are listed in the Nomenclature table attached at
the end of the paper. In this problem, the objective function (J)
is dependent only on u. van Essen et al. (2009) replaced J(u)
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with J(m, u) by adding another input (m) to the scalar function,
wherem is a random vector generated from a known probability
density function. In optimization of well placement and controls,
for instance, m may represent uncertain rock properties arising
from geologic heterogeneity. J(m, u) is dependent on both m

and u, but only u is a control vector. Because J(m, u) inherits
the uncertainty of m, van Essen et al. (2009) suggested to
maximize the approximate expectation of J(m, u) for mi (i = 1,
2, 3, . . . , Ne) sampled from a given probability density function
(Fonseca et al., 2017).

max
u

Em [J (m, u)] = max
u

1

Ne

Ne
∑

i=1

J (mi, u), (2)

where 1/Ne
∑Ne

i=1 J (mi, u) and J(mi, u) are called the objective
function and the J-function, respectively, to avoid confusion. The
former is marginalized over all ensemble members, while the
latter corresponds to a single ensemble member.

Ensemble-based gradients (EnOpt, SG, and StoSAG)
generate the objective function anomalies by stochastically
sampling perturbations for u from a multivariate Gaussian
distribution with mean uk and covariance matrix Cu. The
perturbed vector of u at the kth iteration is denoted by
ûk. In the following, we explain situations that EnOpt may
underperform. We then proceed to introduce several hybrid
schemes that can significantly reduce the computational costs of
the ensemble-based optimization in general while mitigating the
underperformance of EnOpt.

SG is given by Do and Reynolds (2013) as.

dk,SG =
1

Ne

Ne
∑

i=1

(

ûk,i − uk
) (

J
(

mi, ûk,i
)

− J (mi, uk)
)

. (3)

Equation (3) presented by Do and Reynolds (2013) was applied to
a single model. However, once the objective function is replaced
with Equation (2) in the formulation of Do and Reynolds (2013),
Equation (3) can be applied to multiple models (or robust
optimization). Equation (3) is identical to StoSAG with a single
repetitive perturbation. Hereafter, we will use SG to refer to
StoSAG with a single repetitive perturbation.

The search direction of EnOpt is given by Chen et al. (2009).

dk,EnOpt =
1

Ne − 1

Ne
∑

i=1

(

ûk,i − ûk

) (

J
(

mi, ûk,i
)

− J
(

m, ûk
)

)

,(4)

uk ≈ ûk =
1

Ne

Ne
∑

i=1

ûk,i,(5)

J (mi, uk) ≈ J
(

m, ûk
)

=
1

Ne

Ne
∑

i=1

J
(

mi, ûk,i
)

. (6)

Compared to Equation (3), the unperturbed vector of control
variables (uk) and the corresponding J(mi, uk) are approximated

by their corresponding ensemble means (ûk and J
(

m, ûk
)

) in
Equation (4) that are further defined as in Equations (5) and

(6) (Chen et al., 2009; Do and Reynolds, 2013; Fonseca et al.,
2017). In Equation (4), EnOpt needsNe J-function evaluations to
compute a search direction. However, EnOpt requires additional
Ne J-function evaluations to calculate the expectation Em[J(m,
u)] in Equation (2). In Equations (2) and (4), SG needs 2Ne J-
function evaluations to compute a search direction. Thus, SG and
EnOpt essentially take the same computational effort (2Ne) to
compute a search direction and Em[J(m, u)].

Do and Reynolds (2013) demonstrated that the performances
of EnOpt and SG are almost identical for a single geological
model. However, Fonseca et al. (2017) pointed out that EnOpt
may produce unsatisfactory results because the two assumptions
given in Equations (5) and (6) are invalid unless Ne is sufficiently
large or the variance in the prior model form is sufficiently small.
Equation (5) is usually valid because perturbations for uk should
be sufficiently small to approximate ∇uEm[J(m, u)]. Equation
(6) is likely to be invalid if high variations in model parameters
such as permeability and porosity cause large variations in J-
function values. However, even though the variance ofm is small,
other variables in the J-function such as unit costs may still make
large variations in the J-function values. The claim of Fonseca
et al. (2017) can be expressed more quantitatively by simply
manipulating Equation (4):

dk,EnOpt =
1

Ne − 1

Ne
∑

i=1

(

ûk,i − ûk

)

(

J
(

mi, ûk,i
)

− J
(

m, ûk
)

)

=
Ne

Ne − 1

1

Ne

Ne
∑

i=1

(

ûk,i − ûk

)

(

J
(

mi, ûk,i
)

− J (mi, uk)

+ J (mi, uk) − J
(

m, ûk
)

)

=
Ne

Ne − 1

[ 1

Ne

Ne
∑

i=1

(

ûk,i − ûk

)

(

J
(

mi, ûk,i
)

− J (mi, uk)
)

+
1

Ne

Ne
∑

i=1

(

ûk,i − ûk

) (

J (mi, uk) − J
(

m, ûk
)

) ]

=
Ne

Ne − 1

[

dk,SG +
1

Ne

Ne
∑

i=1

(

ûk,i − ûk

)

(J (mi, uk)

− J
(

m, ûk
)

) ]

. (7)

From Equation (7), it follows that

rk =
1

Ne

Ne
∑

i=1

(

ûk,i − ûk

) (

J (mi, uk) − J
(

m, ûk
)

)

,

dk,EnOpt =
Ne

Ne − 1

[

dk,SG + rk
]

,

‖rk‖2 =

∥

∥

∥

∥

Ne − 1

Ne
dk,EnOpt − dk,SG

∥

∥

∥

∥

2

, (8)

where dk,EnOpt/||dk,EnOpt||∞ ≈ dk,SG/dk,SG||∞ is true if ||rk||2 is
sufficiently small compared to dk,SG. However, as ||rk||2 increases,
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dk,EnOpt becomes more inaccurate than dk,SG. In rk in Equation.
(8), because perturbations for uk should be small enough to
approximate a search direction accurately, ||rk||2 is significantly

dependent on J (mi, uk) − J
(

m, ûk
)

. Thus, ||rk||2 is closely
related to the variance in J(m, uk), which is σ 2

J(m,uk)
as given in

Equation (9):

σ 2
J(m,uk)

=
1

Ne − 1

Ne
∑

i=1

[

J (mi, uk) − J (m, uk)
]

2,

J (m, uk) =
1

Ne

Ne
∑

i=1

J (mi, uk). (9)

The norm ||rk||2 is not exactly the same as the variance in J(m,
uk), but ||rk||2 is expected to increase as σ 2

J(m,uk)
increases because

J (m, uk) ≈ J
(

m, ûk
)

. On the basis of the observation that the
approximation of EnOpt becomes inaccurate as the variance in
J(mi, uk) increases, we propose a hybrid gradient of EnOpt and
SG in the next section that first clusters ensemble members based
on the variance of J

(

mi, ûk
)

and then approximate J(mi, uk)
using J

(

mi, ûk
)

within each cluster. Thus, the hybrid gradient
is more computationally efficient than SG because the objective
function for the unperturbed control vector in some ensemble
members does not need to be evaluated. We also propose two
additional practical measures that can save the computational
cost of EnOpt and StoSAG.

COMPUTATIONAL COST REDUCTION OF
ENOPT, SG, AND STOSAG

Here, we introduce three new formulations to save on the
computational cost of EnOpt, SG, and StoSAG. The new
formulations approximate the objective function values for
unperturbed control variables using the objective function values
for perturbed ones in the formulations of EnOpt, SG, and
StoSAG. Thus, these new formulations require fewer J-function
evaluations than that by the original ensemble-based gradients.

In EnOpt, the J-function for unperturbed control variables
does not need to be evaluated for the search direction, but it
needs to be evaluated for the objective function in Equation
(2). However, the means of J(mi, uk) and J

(

mi, ûk,i
)

are similar
because the perturbations on u are small. Thus, Em[J(m, u)] can
be approximated using J

(

mi, ûk,i
)

as given in Equation (10):

max
u

Em [J (m, u)] ≈ max
u

1

Ne

Ne
∑

i=1

J
(

mi, ûk,i
)

. (10)

We call this the modified EnOpt (ModEnOpt), which uses
Equation (10) instead of Equation (2) for approximating Em[J(m,
u)].ModEnOpt requires only half of the number of the J-function
evaluations of EnOpt to approximate a search direction and
calculate Em[J(m, u)].

To save the computational cost of SG, we propose a hybrid
gradient of EnOpt and SG, which is named the hybrid simplex
gradient (HSG) method, on the basis of the observation that

EnOpt provides satisfactory search directions if the variance in
J(m, uk) is small. HSG clusters the ensemble members based on
J
(

mi, ûk,i
)

and then uses the cluster mean instead of J(mi, uk) for
clusters that havemore than onemember as given in the first term
of Equation (11), which is close to the search direction of EnOpt
given in Equation (4). In the second term of Equation (11), J(mi,
uk) should be evaluated for the clusters that have only a single
member, which is close to the search direction of SG given in
Equation (3). The search direction of HSG is given by

dk,HSG =
1

Ne

NC
∑

j=1







∑

i∈Cj ,NCj>1

(

ûk,i − ûkj

) (

J
(

mi, ûk,i
)

− J
(

mi, ûk
)

j

)

+
∑

i∈Cj ,NCj=1

(

ûk,i − uk
) (

J
(

mi, ûk,i
)

− J (mi, uk)
)






(11)

HSG uses a different approximation of Em[J(m, u)] given in
Equation (12), instead of Equation (2):

max
u

Em [J (m, u)] ≈ max
u

1

Ne

NC
∑

j=1







∑

i∈Cj,NCj>1

J
(

mi, ûk,i
)

+
∑

i∈Cj,NCj=1

J (mi, uk)






. (12)

In Equation (12), the J-function values for perturbed control
variables are used to approximate Em[J(m, u)], but the J-function
values for unperturbed ones are used for clusters that have only a
single member.

In Equation (11), the Ne ensemble members (models) are
grouped based on [J(mi, ûk,i)]. However, determining the
optimal number of clusters is still a challenging problem in
data clustering (Jain, 2010). Furthermore, even though models
are grouped to the optimal number of clusters, some groups
might have significantly different J

(

mi, ûk,i
)

values because
cluster algorithms group the models into the number of clusters
unexceptionally regardless of how similar J

(

mi, ûk,i
)

values
are in a group. For this reason, a mean of J

(

mi, ûk,i
)

in a
group might not be properly representative of J(mi, uk) of
the group members. Thus, rather than trying to determine
the optimal number of clusters, we use a predefined criterion
to determine if models have similar J

(

mi, ûk,i
)

. A standard
deviation is the most common indicator of how dissimilar
data are, but the standard deviation should be normalized
in our clustering problem. For example, let us assume that
there are two data sets (1, 2, 3) and (198, 200, 202).
The standard deviation of (1, 2, 3) is smaller than that
of (198, 200, 202), but (198, 200, 202) has relatively small
differences in terms of magnitude compared to (1, 2, 3). In
our clustering problem, group members should have relatively
similar J-function values within each group. Thus, for the
predefined criterion, we use the coefficient of variation shown
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in Equation (13) instead of standard deviation to normalize the
standard deviation.

coefficient of variation (CV) =
standard deviation

mean
(13)

Thus, the Ne models are grouped so that the coefficient of
variation in each cluster is smaller than a predefined value
(CVHSG). However, during clustering, a model should be
assigned to a cluster such that the coefficient of variation
becomes minimal. We introduce an algorithm to find groups
that have small coefficient of variations that are lower than
a predefined coefficient of variation. First, Ne models have
random cluster indices where the initial number of groups
(Nc) is the same to the number of models (Ne). Then whether
the coefficient of variation of a group can be reduced by
adding a model to the group is examined where the model
makes the coefficient of variation of the group minimum.
For example, let us assume that we try to select a cluster
for a model between clusters A and B. The coefficients
of variation of both A and B are smaller than those of
CVHSG. If the coefficients of variation of A and B (after
including the model) are 0.001 and 0.002, respectively, then
the model should be put in cluster A. This is repeated until
the coefficient of variation of the group does not become
smaller. Finding models that make the coefficient of variation
of other groups smaller is repeated. Other details of the
proposed algorithm are described in Algorithm 1. In HSG,
we use Algorithm 1 to make the coefficients of variation
of clusters smaller than CVHSG and to drop the coefficients
of variation of clusters. The procedure of clustering is given
as follows:

The input of Algorithm 1 includes a predefined coefficient of
variation, CVHSG, and the J-function values for perturbed control
variables. The number of clusters does not need to be inputted
for Algorithm 1. The k-means clustering algorithm (MacQueen,
1967), which is one of the most commonly used clustering
algorithms, cannot be used in this case because it requires the
number of clusters to be specified and it tends to group members
that are relatively close to each other. Determination of the
CVHSG value depends on how much computational cost of HSG
is expected to be saved compared to SG. For example, if 70%
of the computational cost is expected to be saved using HSG
compared to SG, then CVHSG is set to a number that makes the
number of clusters 70% of the number of ensemble members.
CVHSG can be chosen based on the initial J-function values of
an ensemble.

HSG is equivalent to ModEnOpt and SG for large and small
CVHSG, respectively, where the sum is divided by Ne – 1 in dk,

ModEnOpt , but this is canceled by ||dk, ModEnOpt||∞ in Equation
(1). For large ||rk||2, a small CVHSG should be used because the
approximate gradient of ModEnOpt is inaccurate. HSG takes
Ne ∼ 2Ne J-function evaluations where Ne and 2Ne correspond
to the number of J-function evaluations of ModEnOpt and
SG, respectively.

Algorithm 1 : Clustering using a predefined coefficient of
variations for HSG (CVHSG)

Sort 1, . . . ,Ne randomly and assign the randomly sorted numbers
to the cluster indices of Ne ensemble members (=c_ind) where
the initial number of clusters (Nc) is the same as the number of
models (Ne)
Mark clustering_done as false for Ne ensemble members
j= 1
While j ≤ Nc

Find ensemble members that belong to Cj and of which
clustering_done is false
If the number of the ensemble members== 0
j++

Else
temp_cv= [inf, inf, . . . , inf] //size of temp_cv= Ne

Form= 1 to Ne

Ifm does not belong to Cj and clustering form is not done
//c_ind[m] 6= c_ind[j] and clusetering_done[m]== false
temp_cv[m] = coefficient of variation of perturbed objective
function values of Cj members andm

End
For-Loop

Find an ensemble member corresponding to the minimum of
temp_cv
If the minimum coefficient of variation≤ CVHSG

Add the ensemble member to Cj

Else
Mark clustering_done as true for the ensemble member
j++

End
End

While-Loop

The search direction of StoSAG is given by
Fonseca et al. (2017) as

dk,StoSAG =
1

Ne

Ne
∑

i=1





1

Np

Np
∑

j=1

(

ûk,i,j − uk
) (

J
(

mi, ûk,i,j
)

− J (mi, uk))



. (14)

StoSAG repeats multiple perturbations (Np) for each ensemble
member, while SG takes a single perturbation for each ensemble
member. StoSAG provides more accurate search directions than
SG does because StoSAG takes more J-function evaluations to
compute the search direction than SG. StoSAG needs Ne(Np +

1) J-function evaluations, and this is (Np + 1)/2 times as many
J-function evaluations as SG requires.

The computational cost of StoSAG can be reduced by
approximating the J-function values of unperturbed control
variables using the J-function values of perturbed ones as
given below:
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dk,ModStoSAG =
1

Ne

Ne
∑

i=1

[ 1

Np

Np
∑

j=1

(

ûk,i,j − uk
) (

J
(

mi, ûk,i,j
)

− J
(

mi, ûk,i
)

)]

, (15)

J (mi, uk) ≈ J
(

mi, ûk,i
)

=
1

Np

Np
∑

j=1

J
(

mi, ûk,i,j
)

. (16)

The modified StoSAG (ModStoSAG) uses different
approximations of Em[J(m, u)] given in Equation (17) instead of
Equation (2):

max
u

Em [J (m, u)] ≈ max
u

1

NeNp

Ne
∑

i=1

Np
∑

j=1

J
(

mi, ûk,i,j
)

. (17)

ModStoSAG requires NeNp J-function evaluations, and it can
save 1/(Np + 1) of the computational cost of StoSAG needed
to compute a search direction. A summary of the ensemble-
based stochastic gradient methods discussed thus far is presented
in Table 1. ModEnOpt, HSG, and ModStoSAG use different
objective functions, but the objective function in Equation (2)
is calculated at initial and final steps for all the formulations to
compare them in the next numerical examples.

NUMERICAL EXAMPLES

Rosenbrock Function
The performance of the six formulations given inTable 1 is tested
using the Rosenbrock (1960) function, which is widely used for
benchmarking optimization solvers. The Rosenbrock function is
given by

J (mi, u) =

Nu
∑

j=1

[

(

1− u2j−1
)2

+mi

(

u2j − u2j−1
2
)2
]

, (18)

min
u

Em [J (m, u)] = min
u

1

Ne

Ne
∑

i=1

J (mi, u), (19)

where u =
[

u1 u2 · · · uNu

]T
and i= 1, 2, . . . ,Ne.mi is a constant

(=100) in the original Rosenbrock function, but ensemble
members have different mi to mimic geological uncertainty
where m ∼ N

(

100, σ 2
m

)

. The number of ensemble members is
100 (Ne = 100), and the ensemble members have different mi.
The dimension of u is 50, and an initial solution is ui = 2.0 for i=

1, 2, . . . , Nu. The objective function is 1
Ne

Ne
∑

i=1
J (mi, u) in Equation

(19), and 100 J-function evaluations are needed to calculate the
objective function. Two values of σm (0.01 and 1.00) are used
to generate two sets of m1, m2, . . . , m100 for the 100 ensemble
members. A larger σm makes a larger variance in J(mi, u) and
larger ||rk||2, which causes inaccurate search directions of EnOpt
and ModEnOpt. Perturbations for u are generated using N(0,
Cu) where Cu is a diagonal matrix and the diagonal elements are
0.0012. Np is set to 3 for both StoSAG and ModStoSAG.

CVHSG is set to a number that makes the number of clusters
about 70 (=0.7 · 100). CVHSG for σm = 0.01 and 1.00 are T
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û
k
,i
−

û
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û
k
,i,
j)

N
e
N
p

Frontiers in Earth Science | www.frontiersin.org 6 May 2020 | Volume 8 | Article 108

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Jeong et al. Efficient Ensemble-Based Stochastic Gradient Methods

FIGURE 1 | Plot of numbers of J-function evaluations and relative objective function values of the seven gradient methods for σm = 0.01. (A) Relative objective

function value is a percentage of the initial objective function value. Symbols represent iterations, and the x-axis is the total number of function evaluations. (B) Shows

the average relative objective function values and the average total number of function evaluations of 100 optimization runs.

1E−5 and 5E−5, respectively, which were determined based
on the J-function values for the initial solution (ui = 2.0 for
i= 1, 2, . . . , Nu).

The performance of the stochastic gradients is compared to
the gradient obtained using FDM (Sun and Sun, 2015). A search
direction of FDM is computed using Equation (20), andNe(Nu +
1) function evaluations are needed.

∂

∂uj

(

Ne
∑

i=1

J (mi, u)

)

=
1

δuj









Ne
∑

i=1
J
(

mi,
[

u1 · · · uj + δuj · · · uNu

]T
)

−
Ne
∑

i=1
J
(

mi,
[

u1 · · · uj · · · uNu

]T
)









, j = 1, . . . ,Nu

(20)

The optimization problem is solved using the steepest descent
method given in Equation (1). The optimization is terminated if
either of the following two conditions is satisfied: (i) the relative
increase of the objective function is <0.0001%, or (ii) the relative
change of the norm of uk – uk+1 is <0.01%.

Figure 1 shows the optimization results for σm = 0.01.
Figures 1A,B show the results of a single run and the
average result of 100 runs, respectively. Because perturbations
are stochastically generated for the stochastic gradients
(EnOpt, ModEnOpt, SG, HSG, StoSAG, and ModStoSAG),
the optimization runs using the stochastic gradients show the
different numbers of J-function evaluations and relative objective
function values for iterations. For this reason, in Figure 1B, the
100 optimization runs are repeated, and the relative objective
function values and the total number of J-function evaluations
are averaged for each iteration. In Figure 1, because σm (=0.01)
is small, the variance in J(mi, u) is also small, and the small
variance in J(mi, u) leads to small ||rk||2. Because EnOpt and

TABLE 2 | Numbers of function evaluations that are needed to achieve 5% of the

relative objective function value in Figure 1B.

Method Number of J-function

evaluations

Method Number of J-function

evaluations

FDM 8,417 HSG 586

EnOpt 788 StoSAG 2,349

ModEnOpt 417 ModStoSAG 1,548

SG 876

ModEnOpt provide accurate search directions for small ||rk||2,
EnOpt and ModEnOpt find satisfactory solutions as the other
gradient methods do.

Table 2 shows the numbers of function evaluations that
are needed to achieve 5% of the relative objective function
value in Figure 1B. ModEnOpt, HSG, and ModStoSAG
saved about 47, 33, and 34% of the function evaluations
compared to EnOpt, SG, and StoSAG, respectively. In Table 2,
ModEnOpt took the smallest number of function evaluations,
and EnOpt needed a smaller number of function evaluations
than SG did.

However, EnOpt and ModEnOpt do not achieve satisfactory
reduction of the objective function value for σm = 1.0 as
shown in Figure 2A. In Figure 2B, EnOpt and ModEnOpt
show the abnormal relation between the number of J-function
evaluations and relative objective function values because EnOpt
and ModEnOpt do not reduce the objective function value
sufficiently for all the 100 optimization runs. The large σm(=1.0)
results in a large variance in J(mi, u) and, consequently, large
||rk||2. For this reason, EnOpt andModEnOpt provide inaccurate
search directions and unsatisfactory optimization results. The
average angles between the search directions obtained using FDM
and the stochastic gradients for σm = 1.0 are given inTable 3. The
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FIGURE 2 | Plot of numbers of J-function evaluations and relative objective function values of the seven gradient methods for σm = 1. (A) Relative objective function

value is a percentage of the initial objective function value. Symbols represent iterations, and the x-axis is the total number of function evaluations. (B) Shows the

average relative objective function values and the average total number of function evaluations of 100 optimization runs.

TABLE 3 | Average angles between the search directions obtained using FDM

and the stochastic gradients for σm = 1.0.

Method Average angle (degrees) Method Average angle (degrees)

EnOpt 83.98 ModEnOpt 81.25

SG 18.65 HSG 21.87

StoSAG 13.76 ModStoSAG 14.74

The angle calculations are repeated 100 times and averaged.

angle between two search direction vectors is calculated using
Equation (21):

θ = cos−1

(

u • v

|u| |v|

)

, (21)

where u and v are vectors corresponding to search directions.
The angle calculations are repeated 100 times and averaged.
The search direction obtained using FDM is considered to
be the most accurate, and a higher angle from the FDM
search direction implies less accuracy. It can be seen from
Table 3 that SG, HSG, StoSAG, and ModStoSAG provide
acceptable search directions, while EnOpt and ModEnOpt
provide inaccurate search directions. The number of J-
function evaluations for the same relative objective value
increases from HSG, SG, ModStoSAG, and StoSAG, as
shown in Figure 2B.

Optimization of Well Placement in a
Carbon Storage Reservoir
Problem Formulation

As a realistic example, we now consider the optimization of brine
extraction well placement in geological carbon sequestration
(GCS) applications. CO2 injection into saline aquifers or depleted

oil and gas reservoirs necessarily leads to pore pressure increases.
The pore pressure buildup not only can affect the CO2 injectivity
and storage performance but may also cause caprock damage,
fault reactivation, induced seismicity, and leakage of brine
and CO2, posing severe problems to CO2 long-term storage
permanence and public safety (Birkholzer et al., 2012; Carroll
et al., 2014; Cihan et al., 2015). Recently, active reservoir pressure
management was proposed as a mitigation measure, which
installs one or more brine extraction wells to reduce pressure
buildup in the reservoir (Bergmo et al., 2011; Buscheck et al.,
2011, 2012; Birkholzer et al., 2012; Cihan et al., 2015; Arena et al.,
2017). The extraction, treatment, and disposal of the extracted
brine, however, impose additional expenses to GCS operators
(Cihan et al., 2015). Thus, the placement and control of brine
extraction wells need to be optimized to improve the economic
feasibility of GCS projects. Cihan et al. (2015) optimized well
placement and controls of brine extraction wells in different
geological models to minimize extracted brine volume and
keep pressure buildups under critical thresholds for potentially
activating fault leakage and/or fault slippage. In their study,
Cihan et al. (2015) adopted a constrained differential evolution
algorithm, which is a heuristic stochastic evolution algorithm
similar to the genetic algorithm. Here, we demonstrate the
use of the more efficient ensemble-based gradient algorithms.
Optimal placement of a brine extraction well is sought inmultiple
geological models (i.e., geologic uncertainty) to maximize the
objective function, which is expressed in the form of the net
present value. Performance of the six formulations given in
Table 1 is compared.

The J-function for a single model,mi, is given by

J (mi, u) =

Nt
∑

n=1





1tn
(

1+ b
)

1tn
365







Ninj
∑

j=1

(

rci · q
n
ci,j − fciq

(

qnci,j

))

(22)
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−

Next
∑

k=1

(

cbe · q
n
be,k − cce · q

n
ce,k

)

−

Nleak
∑

l=1

(

cbl · q
n
bl,l − ccl · q

n
cl,l

)











fciq

(

qnci,j

)

=

{

if qnci,j < qnciq, cciq
(

qnciq − qnci,j

)

otherwise, 0
(23)

where the control vector u is a two-dimensional column vector
including I and J indices of brine extraction wells. In words, the
objective function in Equation (22) can be described as the tax
credit for injected CO2 minus the penalty for unfulfilled CO2

injection, the cost of brine extraction wells, and the damage cost
related to brine and CO2 leakage.

FIGURE 3 | Three-dimensional view of log10 permeability (md). The z-axis is

exaggerated by a factor of 20.

The brine extraction wells are vertically perforated in a CO2

injection zone, and I and J indices are rounded off to integers
during iterations. 1tn is the size (days) of the nth time step
in the reservoir simulation, and b is the annual discount rate.
Ninj, Next , and Nleak are the numbers of CO2 injection, brine

extraction, and leaky wells, respectively. qnci,j, q
n
be,k, and qn

ce,k

represent the average CO2 injection rate at the jth CO2 injector,
the average brine extraction rate at the kth brine extractor, and
the average CO2 extraction rate at the kth brine extractor for
1tn, respectively.

TABLE 4 | Cost factors and unit costs for brine extraction.

Cost factor Unit cost

Tax credit for CO2 injection (rci ) $50/ton

Quota of CO2 injection (qciq ) 2.5 tons/day

Penalty for quota of CO2 injection (cciq) $100/ton/day

Brine treatment (cbe) $10/ton

CO2 reinjection (cce) $50/ton

Brine leakage treatment (cbl ) $10/ton

CO2 leakage (ccl ) $1,000/ton

TABLE 5 | Statistical parameters used to generate the geological model.

Parameter Value

Mean of porosity (fraction) 0.2

Standard deviation of porosity (fraction) 0.05

Mean of log10 horizontal permeability (md) 2

Standard deviation of log10 horizontal permeability (md) 0.6

Correlation coefficient between porosity and log10 horizontal

permeability

0.7

Correlated direction of porosity and log10 horizontal permeability North–south

Correlation lengths (major, minor, vertical) of porosity and log10
horizontal permeability (m)

500, 300, 10

FIGURE 4 | Top view of log10 permeability (md) of 3 of 20 geological models, and the locations of an injector (INJ) and two leaky abandoned wells (L1 and L2).
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One of the main risks related to GCS is leakage from
abandoned wells—if abandoned wells are leaky, then brine and
CO2 can migrate to an overlying formation along the leaky
wells (Birkholzer et al., 2012; Sun et al., 2013). Because the
risk related to leakage must be minimized for safe long-term
CO2 storage, abandoned wells are assumed to be leaky for
conservative estimation. In Equation (20), qn

bl,l and qn
cl,l are the

brine leakage rate at the lth leaky abandoned well and the CO2

leakage rate at the lth leaky abandoned well for the nth time
step. If brine extraction wells are placed near the leaky wells, the
brine and CO2 leakage amount decreases because the installed
brine extraction wells reduce the pressure buildup at the leaky
wells; on the flip side, the brine extraction wells also need to
be shut in early if they are placed near CO2 injectors because
they have early CO2 breakthroughs. The brine extraction wells
should be placed at locations that minimize the leakage costs
at the leaky wells while postponing CO2 breakthrough at the
brine extraction wells as late as possible. rci is the credit for CO2

storage, which is often provided by the government subsidy or
driven by the carbon trading market (Jahangiri and Zhang, 2012;
Allen et al., 2017). In Equation (23), qnciq is the minimum required

CO2 injection rate for 1tn, and a penalty is imposed when the
injection rate cannot be met, qnci,j < qnciq, in which case the

upstream capturing facility needs to find an alternative means for
temporary storage. In Equation (20), cbe, cce, cbl, and ccl are the
unit costs of brine treatment, CO2 reinjection, brine leakage, and
CO2 leakage, respectively.

Overall, the brine extraction well placement optimization
is complex, especially when geologic uncertainty is involved.
The ensemble gradient methods are well-suited to solve such
problems because of their efficiency and the ability to incorporate
geologic uncertainty. As a demonstration, we consider the three-
dimensional reservoir model shown in Figure 3, which is 2.55 km
(x-axis) by 2.55 km (y-axis) by 30m (z-axis), and the dimensions
of a grid block are 50m by 50m by 10m. The vertical structure
consists of three formations, which are named the above zone,
caprock, and injection zone. CO2 is injected at 30 tons/day at
the center of the injection zone for 5 years, and the maximum
bottom-hole pressure is 20,000 kPa. Brine is extracted at an
extraction well at 60 m3/day, and it is shut in if the ratio
of produced CO2 volume to produced brine volume is >100.
The caprock blocks the flow between the above and injection

FIGURE 5 | Iteration steps of well placement of a brine extraction well using HSG for four initial solutions (I and J indices). INJ and L1 and L2 represent the CO2 injector

and two leaky abandoned wells, respectively. (A) 1st initial solution (11,40). (B) 2nd initial solution (40,40). (C) 3rd initial solution (11,11). (D) 4th initial solution (40,11).
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zones, but brine and CO2 can vertically flow up along two leaky
abandoned wells where the leaky wells are located 300m north
and east of the injector in Figure 4. The unit cost data needed for
calculating the J-function in Equations (22) and (23) are given in
Table 4.

Heterogeneous porosity and log10 permeability fields are
generated using the sequential Gaussian simulation and the
sequential Gaussian co-simulation modules of SGeMS (Remy
et al., 2011). Porosity and log10 permeability follow normal
distributions, and their statistical parameters are given inTable 5.
Figure 4 shows three realizations of log10 permeability out of
a total of 20 geological models. The porosity and permeability
of the caprock zone are assumed deterministic and are assigned
values of 0.1 and 0.001 md, respectively. The flow simulation is
conducted using a compositional multiphase reservoir simulator,
CMG-GEM (CMG, 2015). The two leaky abandoned wells are
described using the local grid refinement of CMG-GEM, and the
porosity and the vertical permeability of the leaky wells are set to
0.2 and 1,000 md.

The convergence criteria are as follows: (i) the relative increase
of the objective function is <0.1%, or (ii) the relative change of
the norm of uk – uk+1 is <1%.

RESULTS AND DISCUSSION

The objective of this optimization problem is to find the optimal
location of a brine extraction well that maximizes the mean
of the J-function values given in Equation (22) of the 20
geological models. As described in Equation (22), a solution for
a brine extraction well is a two-dimensional vector including
I and J indices of the brine extraction well. Thus, in this
example, the vector of a search direction has two elements for
the I and J indices of a brine extraction well, and the I and
J indices of a solution are updated at the same time using
the search direction. The optimal solution is sought using the
six stochastic gradients, and then the performance of the six
stochastic gradients is compared. In HSG, CVHSG is set to a
number that makes the number of clusters about 80% of the
number of ensemble members. Np = 2 is used for StoSAG
and ModStoSAG.

Figure 5 shows the brine extraction well locations at the
iterations obtained using HSG for four different initial solutions.
In general, initial solutions for optimization are sampled in a
prior distribution, but the initial solutions located at the four
corners in Figure 5 are selected because optimal solutions are
expected to be located between CO2 plume and the boundary.
The four different initial solutions are fixed to compare the
performance of the stochastic gradients. As described in the
previous section, a brine extraction well should be placed as
close to the CO2 injector and the leaky wells as possible
to mitigate the reservoir pressure buildup, as well as CO2

and brine leakage amounts. However, the brine extraction
well is shut in early if the brine extraction well is placed
in the extent of the CO2 plume, which changes for different
brine extraction well locations because the CO2 migration
is affected by the reservoir pressure drawdown caused by

FIGURE 6 | Average CO2 saturation map of 20 geological models after CO2 is

injected for 5 years when placing a brine extraction well at the optimal location

(I = 31 and J = 18). INJ, EXT, and L1 and L2 represent the CO2 injector, the

brine extraction well, and two leaky abandoned wells, respectively.

the brine extraction well. Furthermore, the reservoir pressure
buildup and drawdown, the CO2 and brine leakage amounts,
and the CO2 plume extent are significantly affected by the
heterogeneity of rock permeability in the 20 geological models.
As shown in Figure 6, a brine extraction well should be
placed out of the CO2 plume extent and as close to the CO2

injector and the leaky wells. (11, 11) and (40, 11) shown in
Figures 5C,D are converged to the same solution, which is (31,
18) shown in Figure 6.

Figure 7 shows the numbers of simulation runs and objective
function values of the six stochastic gradient methods for four
initial solutions. In Figure 7, the number of simulation runs
is how many times the flow simulator is conducted until an
iteration is finished. For example, if the suite of the 20 models
is simulated five times until an iteration ends, then the number of
simulation runs is 100.

EnOpt and ModEnOpt do not achieve satisfactory objective
function values compared to the others. This implies that ‖rk‖2 in
Equation (8) or the variance in J(mi, u) is too large for EnOpt and
ModEnOpt to provide acceptable accuracy of search directions.
In Figure 7, for the same number of simulation runs, HSG and
ModStoSAG reach higher objective function values than SG and
StoSAG do.

CONCLUSION

Ensemble-based optimization algorithms are widely used for
reducing the computational costs of optimization, especially
when the forward problem requires a significant amount of time
to run. In this work, we theoretically and experimentally showed
when EnOpt may fail to achieve satisfactory performance. If
‖rk‖2 in Equation (8) or the variance in J(mi, u) is large, EnOpt
produces unsatisfactory optimization results because the search
direction of EnOpt is inaccurate as shown in the Rosenbrock
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FIGURE 7 | Plot of numbers of simulation runs and objective function values of the six stochastic gradient methods for four initial solutions (I and J locations). Symbols

represent iterations, and the x-axis is the total number of simulation runs. (A) 1st initial solution (11,40). (B) 2nd initial solution (40,40). (C) 3rd initial solution (11,11).

(D) 4th initial solution (40,11).

function example. We also introduced hybrid schemes to reduce
the computational costs of EnOpt, SG, and StoSAG. For the
benchmark example and the geological carbon sequestration
example, the computational costs of EnOpt, SG, and StoSAG can
be significantly reduced by replacing the J-function values for
the unperturbed control variables with those for the perturbed
ones. The ensemble-based optimization schemes proposed in
this study are generic and can be readily used on other
types of problems involving computationally expensive forward
simulations or optimization under uncertainty.
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NOMENCLATURE

u Control vector
d Search direction
α Step size
m Reservoir model parameters
J(m, u) Objective function of a single model and a control

vector
Ne Number of ensemble members
Cu Covariance matrix of perturbations for a control vector
ûk Matrix of perturbed control column vectors for Ne

ensemble members
ûk,i Perturbed control vector of the ith ensemble member at

the kth iteration

ûk,j Mean of control vectors in the jth cluster
Cj jth cluster
Np Number of perturbations for StoSAG and ModStoSAG
ûk,i,j jth perturbed control vector of the ith ensemble

member at the kth iteration
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